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ABSTRACT
Mainstream approaches in the design of virtual libraries
basically exploit the same ambient space as their physical
twins. Our paper is an attempt to rather capture automati-
cally the actual space on which the books live, and learn the
virtual library as a non-linear book manifold. This tackles
tantalizing questions, chief among which whether modeling
should be static and book focused (e.g. using bag of words
encoding) or dynamic and user focused (e.g. relying on what
we define as a bag of readers encoding). Experiments on
a real-world digital library display that the latter encod-
ing is a serious challenger to the former. Our results also
show that the geometric layers of the manifold learned bring
sizeable advantages for retrieval and visualization purposes.
For example, the topological layer of the manifold allows to
craft Manifold association rules; experiments display that
they bring dramatic improvements over conventional asso-
ciation rules built from the discrete topology of book sets.
Improvements embrace each of the following major stand-
points on association rule mining: computational, support,
confidence, lift, and leverage standpoint.
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1. INTRODUCTION
Digital libraries are on the brink of Big Data for the man in

the street [9]. Scientific analyses at this size level are recent
[15], but another challenge is being faced for digital libraries,
that will necessitate a leap forward on tools to crunch in-
formation, to find and visualize its useful core for the end
readers. Ideally, a working digital library should stimulate
serendipitous browsing: one finds some book at some place
in the digital library, and an even more interesting book is
sitting right next to it. In the physical library, centuries of
optimization of arrangements have led to Classifications like
the Library of Congress and Dewey Decimal Classifications
(resp. LCC and DCC). These are finely-tuned ways to cope
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with the discrete topology on a set of books B, and find the
right partition of B that fits a set of physical shelves. This
is a common-point physical libraries share with their digi-
tal twins: digital libraries also adopt a direct standpoint on
their content’s ambient space [3, 7, 18, 20].

In this paper, we claim that perhaps this approach is not
optimal when it comes to fit to one’s palm — or tablet — a
complete digital library. We tackle the question of whether
the digital library’s organization can be learned as a nonlin-
ear submanifold of its books contents, or as a submanifold
of the traces that leave readers wandering round the virtual
shelves. Our answer, obtained over a real-world experiment
for a major international actor of digital libraries, is clear-cut
affirmative. It brings new materials to the table of manifold
learning algorithms, and a new application of these algo-
rithm to craft association rules. Manifold association rules
exploit the topological layer of the learned manifold. From
both the computational and accuracy standpoints, they are
found to dramatically improve upon techniques relying on
the first layer of data, the discrete topology of B, that are
mainstream in association rule mining [12]. Our contribu-
tions also include (i) the design and test of an encoding for
books, bag of readers (BoR), which is shown to be a serious
challenger to the popular bag of words encoding (BoW) to
capture the library’s content; (ii) an improvement of a man-
ifold learning algorithm [25] (iii) the design of information-
geometric interfaces to browse through the library’s con-
tent. We end up with a seamless and scalable integration
of manifold-based techniques to digital libraries. Other ap-
proaches, pioneered in Latent Semantic Indexing [4], also
use a similar algebraic toolbox as ours — singular value de-
composition — to come up with a reduced representation
of data, and many of them have been used in document or
text related works [13]. A crucial difference with our work,
however, is that such approaches rely on linear manifolds,
like e.g. PCA in statistics, and thus fit projections of the
ambient space and fall short of the discriminative power of
(arbitrary) non-linear manifolds, that are important to cap-
ture fine grained structures in the data [23].

The following section defines and explain how to craft
book manifolds and manifold association rules. Two exper-
imental sections follows, and a last section concludes with
perspectives on non-linear book manifolds.

2. DIGITAL LIBRARIES AS NON-LINEAR
BOOK MANIFOLDS

Capitalized bold letters like M denote matrices, and ital-
icized bold letters like v denote vectors. mij and vi re-



Algorithm 1: learn-f (B, d′)

Input: B = {bi, i = 0, 1, ...,m− 1}, d′ ∈ N∗;

Output: Classification function f : B → R
d′ ;

1. Compute W ∈ R
m×m
+ with wij

.
= s (bi, bj) = wji;

2. NormalizeW to obtain matrixN with spec (N) ⊂ R;
3. Diagonalize: N = P−1DP, where dii ≥ djj , ∀i ≤ j;
4. Finish-up: f (bi)

.
= (pi1, pi2, ..., pid′), ∀bi ∈ B;

spectively denote coordinate (i, j) of M, and coordinate i of
v (coordinates start from zero). Blackboard notations like
S denote subsets of (tuples of, matrices of) reals, and |S|
their cardinal. The identity matrix is denoted I, and the
all-1 vector is denoted 1. Matrix M is (row) stochastic iff
mij ≥ 0, ∀i, j and M1 = 1. M is doubly stochastic iff both
M and M⊤ are stochastic, where “⊤” denotes transpose.
The spectrum of M is denoted spec (M).

2.1 Learning the digital library
We let B ⊂ R

d denote a set of books, B = {bi, i =
0, 1, ...,m−1}, for some respective dimension and size d,m ∈
N∗. Without additional assumption, the ambient space of
books is a d-dimensional real-valued feature space. Prior to
defining this space, we first focus on the way we use it to
learn the actual geometry of the library. Assume that the
library we seek lives on a non-linear low-dimensional man-
ifold of R

d. We chose to rely mainly on three prominent
historical approaches to learn this manifold [14, 19, 25]. We
also crafted a novel variant of [25] for the task at hand,
which makes overall four tested approaches to learn the li-
brary’s geometry. Assume we have a symmetric similarity
function between books, s : B × B → R+. From this, we
can learn from book similarities the classification function1

f : B → R
d′ which places the books on the d′ ≪ d dimen-

sional manifold we seek. Algorithm 1 (learn-f ) presents
the four main steps used to learn f . Its basic ingredient is a
similarity matrix W whose coordinates are the similarities
between books.
The four approaches we use to learn the geometry of the

library differ on the way the normalization is performed in
step 2. of learn-f . The two main normalizations are the
normalized Laplacian and the Markov chain normalization,
respectively denoted [14, 19]:

N
.
= D’−

1
2WD’−

1
2 , (1)

N
.
= D’−1W , (2)

where D’ is diagonal, with d′jj
.
=

∑

k
wjk =

∑

k
wkj . The

probabilistic interpretation of (2) in terms of percolation be-
tween states of Markov chains is particularly interesting for
our task [14]. Assume s (bi, bj) is roughly proportional to
the probability of being jointly interested by books bi and
bj . In this case, books that are brought close by function
f tend to maximize this joint interest, acting somehow in
favor of serendipitous browsing (See Section 1).
One can also remark that both (1) and (2) are each the

first step — of different algorithms — which iteratively ap-
proximate W by a doubly stochastic matrix. It was re-
marked by by [21] for (2) and much later for (1) [25]. Since
W is symmetric, [25] propose to explicitly seek the symmet-

1We can think of it as a virtual equivalent of DDC or LCC.

ric doubly stochastic matrix N which best approximates W,
according to the minimization of the Frobenius norm, or the
entropy. We abstract this problem as find:

arg min
N∈R

m×m

+

dr (N||W), s.t. N = N⊤,N1 = 1 , (3)

where dr (N||W)
.
=

∑

ij
dr (nij ||wij) and

dr (x||y) = r (x)− r (y)− (x− y)r ′(y) (4)

is a Bregman divergence with generator r , a strictly convex
differentiable function [2] with domr ⊇ [0, 1], and r ′ is the
derivative of r . Frobenius norm and the entropy used in [25]
are particular cases of Bregman divergences [2]. The third
algorithm we have used to find N is the iterative procedure
for the Frobenius norm of [25] to solve (3).

Compared with this approach, (1) and (2) achieve a com-
promise between improving the doubly stochastic approx-
imation of N with respect to W while limiting the drift
between the eigensystems of N and W, since a single step
of the algorithm is performed. To what extent do these two
concurrent objectives play in the accuracy of the final man-
ifold is an interesting question. Our fourth approach adds a
preprocessing scaling step to (3) in which we replace W by
a matrix which is the closest to a doubly stochastic matrix
under the constraint that its eigenvectors are the same as
W. If the closedness is evaluated using the same divergence
as (3), then this amounts to finding W′ = uW with:

u = arg min
v∈R+

Dr (vW1||1) . (5)

Through closed-forms solutions to (5) are not always avail-
able, their fast approximation is trivial, as explained below.

Lemma 1. u ∈ [(maxi 1
⊤
i W1)−1, (mini 1

⊤
i W1)−1], with

1i the all-0 vector with a 1 in coordinate i.

(proof omitted) Hence, a fast dichotomic search is enough
to approximate u. In the case where we consider the Frobe-
nius norm (r (x) = x2), the solution to (5) is explicit as we
have u = 1⊤W1/1⊤W21. Let us summarize the four dif-
ferent normalizations performed in step 2. of learn-f : (NL)
normalized Laplacian (1); (MC) Markov chain normalization
(2); (DS) doubly-stochastic approximation (3) with Frobe-
nius norm; (SDS) doubly stochastic approximation preceded
by scaling. We have also tested, for each of these normal-
izations, an additional preprocessing step to step 2. which
consists in replacing W by a sparse symmetric matrix, as
follows (for some k ∈ N∗): wij = 1 iff bi ∈ k-snn(bj) and
0 otherwise. k-snn(bj) is the set of k symmetric nearest
neighbors of book bj [17]. The sparsified matrix is a trun-
cated version of the geodesic distance matrix of isomap [23],
but in which k-nns are replaced by k-snns, guaranteeing to
keep the symmetry.

2.2 Books and similarities

2.2.1 Books: bag of words vs bag of readers
The first solution to code the ambient space of books is to

consider the books’ content, and more precisely treat books
as bag of words (BoW) [10]. Experimentally, rather than
parsing words from the books’ contents — which would make
a very large d —, we use the books’ XML descriptions of
their titles and abstracts. Vectors are post-processed in the
usual way [10], with tf-idf weighting and normalization to
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Figure 1: A bookshelf {b⋆, b1, b2, b3} obtained after
affinity propagation. The star shows that book b⋆ is
the exemplar of the bookshelf: it may be thought as
its most accurate representative (see text).

unit norm. There is however another way to represent books,
which consists in taking the binary Users×Books matrix
that would be used to describe the users as a function of the
books with which they have interacted2, and then transpose
it to reveal a description of books as a simple function of the
users who have interacted with the books, considering that
similar books should be the subject of joint interactions for
many readers. This is what we call a bag of readers (BoR)
encoding. Though this encoding is accessible only once a
sufficiently large number of interactions have occurred, it is
perhaps more appealing than BoW, as it is dynamic and
evolves with the readers’ habits, and it makes also possible
to reveal associations between books that would have been
missed from the books’ contents alone.

2.2.2 Book similarities
We have considered three kinds of similarities, each of

which falls in [0, 1], “1” being the maximal similarity always
achieved for s (bi, bi). The first one, derived from the Heat
kernel, belongs to the most popular in manifold learning [1]:

shea(bi, bj) = exp(−‖bi − bj‖
2
2/T ) , T > 0 . (6)

The second one is built from the cosine similarity:

scos(bi, bj) =
1

2

(

1 +
b
⊤
i bj

‖bi‖2‖bj‖2

)

. (7)

The last one is the Jaccard index, that we note by a minor
abuse of notation as:

sjac(bi, bj) =
h (bi)

⊤
h (bj)

‖h (bi + bj)‖22
. (8)

Here, h : Rd → {0, 1}d denotes the Heaviside function which
replaces > 0 coordinates by 1.

2.3 Bookshelves
So far, we have described the way we shape the digital li-

brary as a submanifold of Rd. The next step is the building
of virtual bookshelves, that is, clusters of books. There exists
an important literature on clustering in the context of digi-
tal libraries [11]. A natural approach to crafting bookshelves
consists in performing a (hard) clustering of the manifold,

2In our experiments, users may not just read the books on-
line: they can also place them on public or private book-
shelves, or buy physical copies. Hence, “interacted” is more
suited than simply “read”.
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Figure 2: Scatterplot comparing BoW encoding ver-
sus BoR encoding, according to the number of book-
shelves (left) and χ2 p-values (right, see text for de-
tails about the implementation). On both plots,
the diagonal is the y = x line. Points below the
y = x line represent smaller numbers of bookshelves
for BoR (left) and smaller (hence, better) p-values
for BoR (right). The green thick dashed rectangle
(right plot) on the lower-right distinguishes a region
for which (i) log(pBoW/pBoR) ∈ [80, 140] — i.e. BoR is
much more accurate than BoW, and (ii) p-values for
BoW are“close” to 1 relatively to the other p-values.

under the constraint that the number of bookshelves is suf-
ficiently (but not too) large. Because of this constraint, al-
gorithms that are known to be subject to trapping in local
minima — like k-means — gave poor results. Even improve-
ments that guarantee on average to approach global minima
[16] gave better but still unsatisfactory results, and were
outperformed by an algorithm which comes in the nick of
time for such an application: affinity propagation [6]. Affin-
ity propagation is a message passing algorithm which ends
with a hard clustering solution whose number of clusters is
not fixed in advance; it depends on a user-fixed preference
parameter P . Affinity propagation brings, from its ances-
try in median-based clustering methods a rare plus: each
bookshelf contains an exemplar [6], that is, a book which
is supposed to embody the best all books in the bookshelf.
Figure 1 provides a schematic view of what are exemplars
and bookshelves. One can provide a high-level description
of the algorithm as a process alternating between exchanges
of two types of messages between books until convergence.
In a first round, each book bi sends a real-valued responsi-
bility message to each book bk, telling to which extent bk

may serve as an exemplar for bi. Then, Each bk sends a
real-valued availability message to each bi, telling to which
extent bi may choose bk as exemplar. Before a new round
of message exchanges begins, each book elects its exemplar
on the basis of the current availabilities and responsibilities
[6]. Each bookshelf is thus a set of books having chosen the
same exemplar.

2.4 MARs: Manifold association rules
Most of the theoretical works on association rule mining

work on the discrete topology on B. This is natural: item-
sets are the basic building blocks of association rules, and
they are also the open sets of the discrete topology. This
is, however, everything but efficient from the computational
standpoint, and finding the best rules resembles finding a
needle in a haystack as B gets larger [8, 24]. The library’s
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Figure 3: Scatterplots comparing the results of the
three similarities tested in (6), (7) and (8). The top
row displays the number of bookshelves, and the
bottom row the p-values. Conventions follow Figure
2. On the lower right plot, the green thick dashed
lines delineate a region in which at least one of the
p-values is “large” (≥ 10−20); this scatterplot also de-
picts the results of BoW encoding (blue squares)
and BoR encoding (red circles, see text for details).

manifold provides us with a topological layer which comes
in handy to reduce the number of candidates.
An association rule is a logical rule over the discrete topol-

ogy of B, which can be written Bl ⇒ Br, where Bl ∪ Br ⊆
B,Bl ∩ Br = ∅ [22]. In the context of the digital library, it
can be interpreted as: if a reader has interacted with the
books of Bl, then he has also interacted — or will likely
interact — with the books from Br. Set Bl ∪ Br is called
the itemset of the association rule. We have chosen to rely
on four of the most popular criteria to evaluate association
rules: the support of the rule Bl ⇒ Br is the support of
its itemset, noted Supp(Bl ∪Br), equal to the proportion of
readers having interacted with all the corresponding books.
The confidence of the association rule is:

Conf(Bl ⇒ Br)
.
=

Supp(Bl ∪ Br)

Supp(Bl)
. (9)

The lift of the association rule is:

Lift(Bl ⇒ Br)
.
=

Supp(Bl ∪ Br)

Supp(Bl)Supp(Br)
. (10)

Finally, the leverage is defined as:

Leve(Bl ⇒ Br)
.
= Supp(Bl ∪ Br)

−Supp(Bl)Supp(Br) . (11)

Remark that the support, lift and leverage are invariant to
the permutation of the left-hand sides and right-hand sides
of an association rule.
We let Manifold association rules (MARs) denote asso-

ciation rules built from the topological layer of the book
manifold itself, and not directly from the discrete topology
of B. Typically, this means building itemsets out of the
geometric proximities between books on the manifold. We
give a simple and efficient example of MARs: the candidate
itemsets are restricted to be subsets of the bookshelves, and
thus subsets of the clusters found by affinity propagation.
In Figure 1, bookshelf {b⋆, b1, b2, b3} would thus generate 6
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Figure 4: Scatterplots comparing the results of
DS and our scaled modification SDS, according to the
number of bookshelves (left) and the χ2 p-values
(right). Conventions follow Figure 2; on the left
plot, the green thick dashed lines are lines of equa-
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Figure 6: Scatterplots evaluating the influence of
sparsifying W with symmetric nearest neighbors, ac-
cording to the number of bookshelves (left) and p-
values (right). Conventions follow Figure 2; on the
left plot, the green thick dashed lines are the lines of
equation y = (121/67)x, y = (67/121)x; the right plot
distinguishes the results of the different similarity
functions: green triangles are the (H)eat kernel (6),
red circles are the (C)osine similarity (7) and blue
squares are (J)accard index (8) (see text).

candidate itemsets of size 2. To save space, we shall work in
this paper only, but extensively, on association rules of size
two, with a single book on the left- and right-hand sides.

This size constraint leaves us space to study a very inter-
esting particular case of MARs. Because affinity propaga-
tion makes a clearcut distinction between the exemplar of
a bookshelf and its other books, it is interesting to define
MARs in which either the left- or the right-hand side of the
association rule is an exemplar. For example, b⋆ ⇒ b1 is an
example of such a rule from Figure 1; b2 ⇒ b⋆ is another
example. We denote the subset of MARs in which b⋆ is in
the left-hand side as F-MARs, for centriFuge-MARs, while
those in which b⋆ is in the right-hand side shall be denoted
P-MARs, for centriPete-MARs. For example, the bookshelf
of Figure 1 would yield 12 MARs, 3 F-MARs and 3 P-MARs.

3. EXPERIMENTS

Domain.
Experiments related in this Section have been pursued

during the deployment of a digital library, built for individ-
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Figure 5: Logscale scatterplots comparing p-values for the four different types of normalizations (Subsection
2.1). Conventions follow Figure 2 (see text for details).

ual readers by Europe’s leader on digital books rental3 over
a year in 2010-2011. We recorded the complete behavior of
the first seven thousands readers of the digital library dur-
ing the first year of their membership. Any such user can
perform three types of actions on books: (i) read books on-
line, (ii) place books of his/her choice on a virtual bookshelf
which can be shown to other users, (iii) buy physical copies
of the books of his/her choice. We filtered out the books on
which no user had interacted, to ensure that BoR encoding
was meaningful; the resulting set of books (more than eight
thousands) was also used for BoW encoding for the purpose
of manifold comparisons.
The remaining parameters still not fixed in Section 2 have

been chosen as follows: k = 5 in k-snn, T = 1000 in (6), P
in affinity propagation was fixed to be the 90th percentile of
similarities, and finally d′ = 3 for visualization purposes.

Evaluation metrics to rank manifolds.
We have computed and visualized all manifolds for every

possible choice of parameters described in Section 2. This
represents 4 (normalization) × 2 (sparsification with -snn)
× 2 (books encoding) × 3 (similarities) = 48 manifolds, and
as many different digital libraries. This task is unsupervised,
yet there is a possibility to compare between each others the
manifolds obtained, via the bookshelves computed. Intu-
itively the set of bookshelves should be sufficiently correlated
with the high-leveled topics of the books, and it turns out
that each book of the digital library is classified according
to one of six primary topics (cooking, home, family, money,
leisure, health) — obviously, informations about topics are
not used to learn whichever of the manifolds. Out of the set
of b bookshelves obtained, we compute a 6 × b contingency
table and compute the p-value of a χ2

5(b−1) independence
test for the observed contingency. The primary goal of p-
values is not to make inference, but rather rank manifolds:
manifolds are indeed compared on the basis of the log-ratio
of their associated p-values. Still, inference would be possi-
ble on each manifold with the χ2 test of independence, the
minute p-values obtained in general and the small number
of bookshelves observed (given the number of books used)
raising little possibilities of type II errors.

3.1 Books encoding: BoR challenges BoW

Figure 2 summarizes the p-values that were obtained for
the two different encodings of books. Since primary topics
are heavily correlated to the books’ titles and abstracts, one
would expect BoW encoding to beat hands down BoR en-
coding. Figure 2 displays that it is not the case, and it is
even the opposite which happens sometimes, as witnessed

3http://www.cyberlibris.com

by the green dashed rectangle of dots, for which BoW per-
forms quite “poorly” (p ≈ .2 for the rightest point), while
p-values of BoR are all of minute order (≤ 10−100). Thus,
choosing the dynamic information contained in the user’s
traces in lieu of the static information of the books contents
yields in some cases dramatic improvements in the library’s
manifold. The number of bookshelves is also significantly
smaller for BoR encoding (sign test p-value ≈ 10−12), but
the ratio with BoW encoding is almost always in the inter-
val [.5, 2], which denotes a remarkable stability in the results
of affinity propagation.

3.2 Books similarity: Cosine and Jaccard sim-
ilarities perform the best

Comparing the three similarities in terms of number of
bookshelves gives no clear-cut pattern as to whether one
similarity would bring different results than the others, as
evidenced by the top row of Figure 3. When it comes to com-
paring p-values, the observations are much different. Indeed,
the heat kernel similarity performs extremely poorly com-
pared with the cosine similarity — a single point is (slightly)
above the y = x line —, and quite poorly, even when it is
less noticeable, compared with Jaccard index. It is impor-
tant to emphasize the fact that these poor results should not
stem from a bad choice of parameter T of the heat kernel,
as it was tuned to get the best results.

We believe that there is a technical rationale to this phe-
nomenon — which represents good news for manifold asso-
ciation rules. Both BoW and BoR encoding, with tf-idf

weighting and normalization, approximate maximum likeli-
hood fitting, incorporating knowledge about all books into
the modeling of each of them [5]. The normalizations of
W are also related to a probabilistic modeling of transitions
between books. It turns out that (7) and (8) still follow
this probabilistic modeling, while (6) does not. It is quite
obvious for Jaccard index (8), which, in the BoR encod-
ing, estimates the probability that a user interacts with two
books:

sjac(bi, bj)
.
= P̂r[bi ∩ bj ] . (12)

The cosine similarity (7), on the other hand, relies on a
Laplacian normalization of joint marginals. Whenever bi, bj ∈
{0, 1}d, it is indeed not hard to see that up to an additive
constant,

scos(bi, bj) ∝ P̂r[bi ∩ bj ]
(

P̂r[bi]P̂r[bj ]
)− 1

2

.

Figure 3 (lower-right plot) also displays that the accuracy of
these two similarities heavily relies on book encodings: while
cosine similarity works better with BoW encoding, Jaccard
index favors BoR encoding.
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Figure 7: Scatterplots comparing the resuls of MARs vs P- and/or F-MARs, from the support, confidence,
lift and leverage standpoints (from left to right). Each point is the average (over all manifolds) of the
parameters computed over all manifold association rules obtained. General conventions follow Figure 2. On
each scatterplot, the green thick dashed lines represents the average performances of size-two association rules
(See text for details); in the squares delineated by these green lines, any point denotes manifold association
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3.3 Doubly stochastic approximation: SDS beats
DS

Recall that DS may be understood as a generalization of
the Laplacian and Markov chain normalizations, in which
rather than making a single iteration towards doubly stochas-
tic approximation, one performs all necessary iterations [21,
25]. SDS is a variant of DS in which DS is given a similarity
matrix already “close” to a doubly stochastic matrix while
keeping the same eigenvectors as the initial similarity ma-
trix W. DS and SDS were compared on our domain, and the
results obtained, both in terms of the number of bookshelves
and p-values, are displayed in Figure 4. Conclusions from
both scatterplots are quite easy to draw: first, none of the
algorithms yields a significant increase (or decrease) in the
number of bookshelves: ratios do not exceed 147/92 ≈ 1.6
(Figure 4). Second, p-values tend to display that SDS per-
forms better than DS: all but two point are below the y = x
line (sign test p-value ≈ 0.016), with log ratios that can be
very large: log(pDS/pSDS) ≈ 144 for the lower right point.

3.4 Manifold normalization: SDS is competi-
tive against NL and MC

We have compared the four different techniques to nor-
malize W in learn-f . Figure 5 presents the scatterplots
obtained. The first conclusion that can be drawn is that
DS performs poorly with respect to all other approaches. MC,
SDS and NL produce results that are quite equivalent. The
slight advantage for NL and MC observed from the points that
are slightly above the y = x line (on scatterplots 3 and 5,
starting from the left) is dampened by the significant outlier
on which SDS clearly beats the two other approaches, with
log(pNL/pSDS) > 100 and even log(pMC/pSDS) > 130. This out-
lier is however important as it corresponds to mixing pop-
ular settings to learn the manifold: BoW encoding, cosine
similarity (7) and no sparsification of W. This might indi-
cate that SDS may be a valuable candidate to compete again
standard normalization techniques on other domains as well.
This may also indicate that the normalization step in mani-
fold learning has to achieve a compromise between finding a
doubly stochastic approximation of W, while staying close
to the original W from the spectral standpoint.

3.5 Sparsifying W may improve the results
An important question in the context of the digital library

is the way sparsifying W works in manifold learning, and
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Figure 9: Truncated distributions of non-zero lifts
for MARs (upper row) and F- or P-MARs (bottom
row), as a function of the similarity s (., .) (Subsection
2.2). x-scales are logscales (see text for details).

whether it allows to keep or improve the results. This ques-
tion is important from two standpoints, the first of which
being the computational complexity standpoint: a sparse
W opens possibilities of faster algorithms to diagonalize N;
the second standpoint is robustness: if sparsification works,
it indicates that the digital library’s organization does not
degrade with local information loss. We have thus compared
the manifolds obtained with and without sparsification by
k-snn. Fixing k = 5 results in a harsh sparsification: in
our case, since 2kn coordinates of W remain non-zero, we
end up with less than 1% non-zero values on the sparsified
W. Figure 6 displays the way sparsification influences man-
ifold learning. Sparsification has a small, but significant,
qualitative influence, as it tends to increase the number of
bookshelves (sign test p-value ≈ 0.02). From the quantita-
tive standpoint, the increase is in fact quite small as seen
from the two lines in between which the data is sandwiched
(See Figure 6), and from the barycenter of data, accounting
for only roughly 10% increase in average. p-values display
that sparsification tends to improve the results (sign test p-
value≈ 0.02), but its positive influence is the most dramatic
when W is the least sparse: using the heat kernel as simi-
larity (6) brings a similarity matrix with no zero coordinate.
Without sparsification, p-values are always ≥ 10−20. Sparsi-
fication helps to decrease p to minute values < 10−100. The
impact of sparsification may explain that DS performs poorly
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Figure 8: Truncated distributions of non-zero lifts for MARs (upper row) and F- or P-MARs (bottom row),
as a function of the normalization of W (Subsection 2.1). x-scales are logscales (see text for details).

in part because it tends to de-sparsify W. Among all runs,
the two poorest results (p-values = 0.09, 0.19) are obtained
when running DS after having sparsified W. In these partic-
ular cases, a single iteration of DS yields a matrix already
without zeroes, as this matrix is W+ (1/n)11⊤ [25].

3.6 Manifold association rules always improve
upon association rules

General patterns on MARs, F- and P-MARs.
We have first compared the average parameters (support,

confidence, lift, leverage) of the sets of MARs for each possi-
ble way of building the manifold with BoR encoding. This
represents 24 ways of building the manifold, on each of which
we computed the averages of the four parameters — support,
confidence, lift, leverage — for the three different types of
MARs: general MARs, F-MARs and P-MARs. For each
type of MARs, we generated every association rule following
the setting of Subsection 2.4, thus without minimal support
requirement. We compared the results obtained with Apri-
ori generating all association rules with two books — thus,
still without minimal support constraint. Manifold associa-
tion rules obtained are thus a subset of the association rules
output by Apriori, and our first objective is to assess the
quality of the subsets with respect to the whole set.
The results are displayed on Figure 7. All comparisons

are clear-cut: regardless of the combination of parameters
to build the manifold, regardless of the criterion used to com-
pare the sets of association rules obtained (average support,
confidence, lift or leverage), manifold association rules sys-
tematically improve upon the whole set of association rules
on average, and most of the times by orders of magnitude.
This implies that the manifold geometrically captures the
most prominent associations between books. This is not sur-
prising: learning the manifold relies on basic building blocks
that call to a probabilistic modeling of data: book similari-
ties (Subsection 2.2), normalization of W (Subsection 2.1),
etc. . Since the criteria used to evaluate association rules

have probabilistic backgrounds (9—11), it is not surprising
that the best association rules “pop out” on the manifold.

Improvements on F- and P-MARs.
There is more: drilling down into MARs displays that

affinity propagation succeeds in pinpointing important books
as exemplars. For example, the average support of F- or P-
MARs is greater than MARs’ for all but one manifolds (Fig-
ure 7, left plot). Both F-MARs and P-MARs also improve
confidences compared to MARs, but there is no difference on
average between F-MARs and P-MARs from the confidence
standpoint (scatterplot not shown to save space). Results
from the lift and leverage criteria confirm the conclusion
that MARs select very accurate subsets of association rules,
an improvement which is even better for F- and P-MARs.

These conclusions are to be read in the light of the number
of association rules selected: the number of MARs ranged
from 4.8% of the total association rules to 12.9% of the to-
tal, and the numbers of F- or P-MARs were remarkably
stable, ranging from 0.22% to 0.26% of the total association
rules regardless of the manifold. Once again, this stability
of affinity propagation is remarkable.

Criteria at a glance: the case of the lifts.
We have also drilled down into the influences of the mani-

fold construction’s parameters on association rules, to see to
what extent the choices made upstream on the manifold con-
struction also impact downstream, on the association rules
built from the manifold itself. We focus on the lifts of the
association rules, and first consider the influence of the nor-
malizations of W, as displayed in Figure 8 for the lifts’ dis-
tributions obtained. To keep the best viewing of plots, we
filtered out MARs whose left- or right-hand side has zero
support, showing only the truncated part of distributions
for MARs with non zero lift. Notice that for more than 95%
of the curves, the remaining truncated part still represented
a mass > .5, sometimes even exceeding .75. Three notable
facts emerge: (i) DS performs the worst among all four nor-
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Figure 10: Truncated distributions of non-zero lifts
for MARs (upper row) and F- or P-MARs (bottom
row), as a function of the sparsification of W (Sub-
section 2.1). x-scales are logscales (see text).

malizations; (ii) the strictly positive lifts for MC (MARs, F-
or P-MARs) and SDS (MARs) are, for more than 99.9% of
the association rules, strictly greater than one — once again,
this accounts for the fact that the manifold is built around
the most prominent dependences between books; (iii) MC and
SDS peak on MARs with very large lifts (≥ 100), and seem
to be the best normalizations from this standpoint. To sum-
marize, the choice of the normalization of W impacts quite
similarly on the quality of the association rules (from the lift
standpoint), and on the quality of the book manifold.
Drilling down into the global influence of the similarity

function on the lift of the association rules somehow con-
firms an intuition, namely that the choice of Jaccard index
provides the best lifts on whichever of MARs, F-MARs or
P-MARs, as displayed in Figure 9 (right column). In Sub-
section 3.2, we emphasized the quality of the manifold asso-
ciating BoR encoding and Jaccard index. Figure 9 somehow
confirms the positive impact downstream of this combina-
tion, but the intuition also suggests that the positive impact
may be boosted by the fact that Jaccard index already en-
codes in W a quality (support) of association rules with two
books (12). We also remark that Cosine similarity still wins
— but this time by a whisker — over the Heat kernel. This,
again, goes hand in hand with remarks in Subsection 3.2 ac-
cording to which the Cosine similarity is seemingly a better
associate to BoW encoding.
Last, but not least, Figure 10 depicts the influence of spar-

sification on the lifts obtained for MARs, F- and P-MARs.
While all curves peak on association rules with large lifts,
the plots clearly display that the peaks are more pronounced
when W is not sparsified. The plots display that the differ-
ence is much more pronounced for MARs: lifts ≈ 100 peak
round 5% without sparsification, while they peak approx-
imately at 2.8% with sparsification. This general picture
hides in fact significant discrepancies appearing as one drills
down into the influences of the choice of the similarity func-
tion and the normalization of W. Figure 11 reveals the

most significant differences between this “reference peak”
(lift ≈ 100) for MARs taken without and with sparsifica-
tion of W. The first pattern is that DS normalization is in
fact the worst setting for sparsifying W. This parallels the
results of Subsection 3.5, according to which sparsification
before using DS already produces the worst manifolds, and
should thus reasonably produce association rules of lower
quality as well. We also remark that the normalized Lapla-
cian NL provides pattern which is similar in all but one as-
pect: sparsifying W still produces good results according to
the reference peak. Hence, the lost of information due to
sparsification does not prevent to obtain good association
rules. When we look at the best results obtained, including
results not shown to save space, the most dramatic density
is the one shown in Figure 11 for Jaccard index, SDS nor-
malization and no sparsification of W. The peak of lifts
≈ 100 is the tallest (it peaks at ≈ 7%) of all experiments,
by far. Once again, this sounds like a confirmation that se-
lecting good parameters to build the manifold also impact
positively on the selection of manifold association rules: in
particular, recall that Jaccard index favors BoR encoding
(Subsection 3.2). We also think that this result may be in-
terpreted as the matrix W should be sparsified, but not too
much to produce good results from the manifold association
rules standpoint. Indeed, Jaccard index already produces a
sparse matrixW given that few users had more than a dozen
books in their traces, from which it comes that roughly 3%
of the matrix W is potentially non-zero. Finally, we no-
tice from the rightmost column of Figure 11 that in some
cases, sparsifying W improves the results as witnessed by
MC’s normalization with Cosine similarity.

Other criteria: summary.
We lack space to provide results as detailed for the sup-

port, confidence and leverage parameters, but we can sketch
general patterns: results of MARs, F- and P-MARs follow
similar trends. Without sparsification, the best results are
obtained in general for MC, while they are obtained in general
for SDS with sparsification. The poorest normalization is al-
ways, and sometimes by far, DS. Hence, we see once again
that the best parameters to build the manifold also yield the
most accurate manifold association rules.

3.7 Manifold visualization
A very important perspective on manifold-based learning

is the way we map the manifold on end-user devices. From
the geometrical standpoint, conventional Euclidean embed-
dings become suboptimal with respect to more sophisticated
embeddings: for example, making all data fit into the display
may reduce the readability of data (Figure 12, (a)). This
problem does not hold for the Poincaré and Beltrami-Klein
disks (resp. (b) and (c) in Figure 12; manifold computed us-
ing Jaccard index (8), and SDS normalization of W without
sparsification). These mappings keep invariant the Voronoi
diagram, and hence the wings of the digital library observed
in (b), from the organization of colors, actually exist in the
manifold. Here, the east green part of the picture is a wing
of cooking; it is noticeable that a lot of health books (deep
blue) are attached to cooking books (green), and two of the
health books that are the closest to cooking’s turn out to
be diet books. Such topics did not belong to the data used:
they have been brought together and define clear-cut wings
in the digital library only because manifold learning was
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successful in capturing, from the local behaviours of users,
a global contextual structure meaningful for the librarian or
the expert. This map is a concrete example of the power
a careful application of non-linear manifold learning tech-
niques. In (c), lines denote itemsets that belong to the same
association rules. Remark that this geometric visualization
of association rules offers, on a single picture, a general view
which carries out more informations than the equivalently
long lists of association rules that would be displayed in a
more conventional way.

4. SCALING UP TO A GROWING LIBRARY
Armed with the best set of parameters from Section 3,

the digital library is currently being scaled up to its real
size since the end of 2011. Figure 12 (d, e) presents 2D
and 3D focus+context visualizations that were specifically
developed from hyperbolic geometric visualizations (Subsec-
tion 3.7), to fit rectangle displays like TVs or tablets. The
dataset now contains 60 000+ readers (mainly scholars, stu-
dents and library patrons, mostly from Europe and Maghreb
countries) and containing 9 980 books dealing with science,
travel, business and cooking4. In the same way as was re-
marked the correlation between the manifold learned and
the book topics — not included in data — in subsection
3.7, we can remark, from (e), the strong correlation between
Dewey classification subjects — not included in data — and
the organization of the manifold on this larger domain.

5. CONCLUSION AND PERSPECTIVES
When it comes to digital libraries, the Big Data phe-

nomenon reminds the magical realistic tale of the (huge) Li-
brary of Babel of J.-L. Borges, and in particular the metaphor
that the library’s random content is so big that any book
ever written must be hidden somewhere, but the human pop-
ulation roaming the library — including the librarians — is
left in a state of complete despair. Digital libraries face the
challenge of lifting their tools towards an always improved
meaningful handling of their content for the end-user. Our

4http://www.scholarvox.com/?sitelang=en

paper is a step towards a roadmap to handle this problem
with non-linear manifold learning algorithms. Its solution is
not straightforward, yet experimental clues provide us with
sets of working parameters that seem to perform well, among
which the emphasis on a “bag of users” encoding allowing to
learn the dynamics of users wandering around virtual book-
shelves. The current scaling up to a whole digital library,
and the feedback being received from readers comfort us in
this opinion. From a research standpoint, the topological
layer of the manifold provides us with a material to build
association rules with striking results. More than just our
application to the digital library, computational complex-
ity is perhaps the strongest advocate for the application of
manifold association rules to other domains [24].
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