On Tracking Portfolios with Certainty Equivalents on a generalization of Markowitz model: the Fool, the Wise and the Adaptive

RICHARD NOCK (i), BRICE MAGDALOU (i), ERIC BRIYS (i, 2) AND FRANK NIELSEN (3)
lnock.bmagdalou@martinique.univ-ag.fr, eric.b@cyberlibris.com, Nielsen@csl.sony.co.jp (i) CEREGMIA, Martinique, France, (2) Cyberlibris SA, Paris, France, (3) Sony CS Labs, Inc., Japan

General investment framework

- Investor: strategies to find \(\alpha \), to rank portfolios (\(\alpha' > \alpha \) ?)
- General investment framework
 - **Strategy II** - Normative

Strategy I : (Non-trivial but) oversimplistic

\[\alpha \geq \alpha' \Rightarrow E_{\text{norm}}[w \cdot \alpha'] \geq E_{\text{norm}}[w \cdot \alpha] \]

Strategy II - Normative

If Make five assumptions about the way the investor computes \(\alpha \geq \alpha' \) :

1.
2.
3.
4.
5.

For some utility function \(U \).

Risk premium and Certainty equivalent

- Theorem:
 - Risk premium and Certainty equivalent associated to \(\alpha \), \(\theta \):

From information geometry pops-up duality allocations vs returns

- \(\theta \) may be interpreted as a natural market allocation, informative signal for investors (generalizes a result by Markowitz, 1952, for Gaussian: \(\alpha_{\text{unc}} \propto \lambda_j \))

General learning framework: on-line with three players

- **General experimental framework**
 - \#4 markets with daily (DJIA, NYSE, TSE) or weekly (S&P500) returns:
 - \#Players (main runs in the supplementary material): \(\alpha \in \{0.01, 1, 100\}, \eta \in \{0.01, 1, 100\}, \psi \in \{M, KL, IS\}, \theta \)

Experiments

- **Contenders**:
 - UCRP (Uniform Cost Rebalanced Portfolio) & Best stock
 - OMD (min), OMD (median), OMD (max)

Properties of OMD

- **Theorem**: lowerbound on certainty equivalents for OMD
 - \(\text{Fix } \Delta = K/\min(t_1)(\alpha_0 - \alpha_1)^2 \) : then, for any \(\eta > 0 \),

Algorithm: OMD

- **Lemma**: OMD uses a generalization of Amari’s natural gradient
 - The solution is \(\alpha' = -\eta t \min(t_2)(\alpha_0 - \alpha_1) \)
 - satisfies:

Betting strategies of OMD

- \(\alpha = 100.0, \eta = 0.01 \) :

Work supported by ANR / Additional material (proofs, experiments) available at: http://www1.univ-ag.fr/~nock/Articles/ICML11/