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Abstract. A Jensen-Bregman divergence is a distortion measure de-
fined by a Jensen convexity gap induced by a strictly convex functional
generator. Jensen-Bregman divergences unify the squared Euclidean and
Mahalanobis distances with the celebrated information-theoretic Jensen-
Shannon divergence, and can further be skewed to include Bregman di-
vergences in limit cases. We study the geometric properties and combi-
natorial complexities of both the Voronoi diagrams and the centroidal
Voronoi diagrams induced by such as class of divergences. We show that
Jensen-Bregman divergences occur in two contexts: (1) when symmetriz-
ing Bregman divergences, and (2) when computing the Bhattacharyya
distances of statistical distributions. Since the Bhattacharyya distance
of popular parametric exponential family distributions in statistics can
be computed equivalently as Jensen-Bregman divergences, these skew
Jensen-Bregman Voronoi diagrams allow one to define a novel family of
statistical Voronoi diagrams.

Keywords: Jensen’s inequality, Bregman divergences, Jensen-Shannon
divergence, Jensen-von Neumann divergence, Bhattacharyya distance,
information geometry.

1 Introduction

The Voronoi diagram is one of the most fundamental combinatorial structures
studied in computational geometry [2] often used to characterize solutions to
geometric problems [3] like the minimum spanning tree, the smallest enclosing
ball, motion planning, etc. For a given set of sites, the Voronoi diagram partitions
the space into elementary proximity cells denoting portions of space closer to a
� This journal article revises and extends the conference paper [1] presented at
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cludes novel extensions to matrix-based Jensen-Bregman divergences, and present
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site than to any other one. Voronoi diagrams have been generalized in many
ways by considering various types of primitives (points, lines, balls, etc.) and
distance functions (Lp Minkowski distances [4], convex distances1 [5], Bregman
divergences [6], etc.) among others.

In this work, we introduce a novel class of information-theoretic distortion
measures called skew Jensen-Bregman divergences that generalizes the celebrated
Jensen-Shannon divergence [7] in information theory [8]. We study both Voronoi
diagrams and centroidal Voronoi tessellations [9] with respect to that family
of distortion measures. As a by-product, we also show that those skew Jensen-
Bregman Voronoi diagrams allow one to characterize statistical Voronoi dia-
grams induced by the skew Bhattacharyya statistical distance on a given set of
probability measures.

Our main contributions are summarized as follows:

– We define the family of Jensen-Bregman divergences extending the concept
of Jensen-Shannon divergence, and show that those divergences appear when
symmetrizing Bregman divergences,

– By skewing those Jensen-Bregman divergences, we obtain parametric diver-
gences that encapsulate Bregman divergences as limit cases,

– We study the combinatorial complexities of skew Jensen-Bregman Voronoi
diagrams (generalizing Bregman Voronoi diagrams [6]),

– We describe an efficient algorithm to arbitrarily finely estimate the Jensen-
Bregman centroids, and extend its scope to matrix-valued divergences,

– We show that the statistical Bhattacharyya distance of parametric exponen-
tial family distributions amount to compute a Jensen-Bregman divergence
on the corresponding parameters.

The paper is organized as follows: Section 2 introduces the class of Jensen-
Bregman divergences and described the link with Bregman divergence sym-
metrization [6]. Section 3 defines the Voronoi diagram with respect to Jensen-
Bregman divergences, and bound their complexity by studying the correspond-
ing minimization diagram and investigating properties of the bisectors and level
sets. Section 4 presents the Jensen-Bregman centroids, design an efficient it-
erative estimation algorithm, and provide some experiments on the centroidal
Jensen-Bregman Voronoi tessellations. It is followed by Section 5 that extends
Jensen-Bregman divergences to matrix-valued data sets. Section 6 introduces
a skew factor in the divergence and show how to obtain Bregman Voronoi dia-
grams [6] as extremal cases. Finally, Section 7 concludes the paper by mentioning
the underlying differential geometry.

In order to not overload the paper, Appendix A introduces the class of statis-
tical Bhattacharyya distances, and show how it is equivalent to Jensen-Bregman
divergences when distributions belong to the same parametric exponential fam-
ily.

1 Convex distances may not necessarily be metrics [5]. A metric satisfies both the
symmetry and triangular inequality axioms.
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2 Jensen-Bregman Divergences

There is a growing interest in studying classes of distortion measures instead of
merely choosing a single distance. This trend is attested in many fields of com-
puter science including computational geometry, machine learning, computer
vision, and operations research. The goal is to study and design meta-algorithms
that can provably run correct on a class of distances rather than on a single
distance at hand. Among such classes of distances, the Bregman distances [6]
appear attractive because this family of dissimilarity measures encapsulate both
the geometric (squared) Euclidean distance and the information-theoretic rela-
tive entropy. A Bregman distance BF on an open convex space X ⊆ R

d is defined
for a strictly convex and differentiable function F as

BF (p, q) = F (p) − F (q) − 〈p − q,∇F (q)〉, (1)

where 〈p, q〉 = pT q denotes the inner product, and

∇F (x) =
[

∂F

∂x1
...

∂F

∂xd

]T

(2)

the partial derivatives. Choosing F (x) =
∑d

i=1 x2
i = 〈x, x〉 yields the squared

Euclidean distance Bx2(p, q) = ‖p − q‖2, and choosing F (x) =
∑d

i=1 xi log xi =
S(x) yields the relative entropy, called the Kullback-Leibler divergence [8]. The
Kullback-Leibler divergence is defined for normalized d-dimensional “distribu-
tion” points (i.e., points falling in the (d− 1)-dimensional unit simplex denoting
discrete distributions) as:

I(p, q) = BS(p, q) =
d∑

i=1

pi log
pi

qi
. (3)

Handling Bregman divergences instead of the (squared) Euclidean distance brings
the opportunity to enlarge the field of applications of geometric algorithms to
other settings like statistical contexts.

The generator function F can be interpreted as a measure of information
(namely a negative entropy, since entropies are usually concave functions [8]).
In information theory, the entropy measures the amount of uncertainty of a
random variable. For example, one expects that the entropy is maximized for
the uniform distribution. Axiomatizing a few behavior properties [8] of entropy
yields the unique concave function

H(x) = x log
1
x

= −x log x, (4)

called the Shannon entropy (−H(x) is the convex Shannon information).
Bregman divergences are never metrics, and provably only symmetric for the

generalized quadratic distances obtained for generator F (x) = Qx for a positive



Skew Jensen-Bregman Voronoi Diagrams 105

definite matrix Q � 0. Thus those distances are preferably technically called
divergences instead of distances. Bregman divergences satisfy

BF (p, q) ≥ 0, (5)

with equality if and only if p = q. This is called Gibb’s inequality for the par-
ticular case of Kullback-Leibler divergence, and can be demonstrated by using a
geometric argument as follows: Let x̂ = (x, F (x)) denote the lifting map of point
x to the potential function plot F = {x̂ = (x, F (x)) |x ∈ X}. The Bregman
divergence measures the vertical distance between two non-vertical hyperplanes:
The hyperplane Hq tangent at the potential function F = (x, F (x)) at lifted
point q̂:

Hq(x) = F (q) + 〈x − q,∇F (q)〉, (6)

and its translate H ′
q passing through p̂:

H ′
q(x) = F (p) + 〈x − p,∇F (q)〉. (7)

We have
BF (p, q) = H ′

q(x) − Hq(x), (8)

independent of the position of x. This geometric interpretation is illustrated in
Figure 1.

F

q p

p̂

q̂
Hq

H ′
q

BF (p, q) = Hq − H ′
q

Fig. 1. Interpreting the Bregman divergence as the vertical distance between the tan-
gent plane at q and its translate passing through p (with identical slope ∇F (q))

Since Bregman divergences are not symmetric, one can naturally symmetrize
them as follows:

SF (p, q) =
BF (p, q) + BF (q, p)

2
(9)

=
1
2
〈p − q,∇F (p) −∇F (q)〉. (10)

That is indeed what happened historically with Jeffreys [10] considering the
J-measure as the sum of sided I measures:
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J(p, q) = I(p, q) + I(q, p) (11)

However, there are two major drawbacks for such an information-theoretic
divergence:

1. The divergence SF may be undefined (unbounded): For example, considering
the negative Shannon entropy, the symmetrized Kullback-Leibler divergence
is undefined if for some coordinate qi = 0 and pi 
= 0.2

2. The divergence SF is not bounded in terms of the variational metric distance
V (p, q) =

∑d
i=1 |pi−qi| (L1-metric [4]). For the Kullback-Leibler divergence,

it is known that KL(p, q) ≥ 1
2V 2(p, q). Such kinds of bounds are called

Pinsker’s inequalities [11].

To overcome those two issues, Lin [7] proposed a new divergence built on the
Kullback-Leibler divergence called the Jensen-Shannon divergence. The Jensen-
Shannon divergence is defined as

JS(p, q) = KL
(

p,
p + q

2

)
+ KL

(
q,

p + q

2

)
. (12)

This divergence is always (1) defined, (2) finite, and furthermore (3) bounded
by the variational L1-metric:

V 2(p, q) ≤ JS(p, q) ≤ V (p, q) ≤ 2 (13)

Those two different ways to symmetrize the KL divergence J (SF for Shannon
entropy) and JS are related by the following inequality

J(p, q) ≥ 4 JS(p, q) ≥ 0. (14)

The Jensen-Shannon divergence can be interpreted as a measure of diversity
of the source distributions p and q to the average distribution p+q

2 . In the same
vein, consider the following Bregman symmetrization [12,13]:

JF (p, q) =
BF (p, p+q

2 ) + BF (q, p+q
2 )

,
(15)

=
F (p) + F (q)

2
− F

(
p + q

2

)
= JF (q, p). (16)

For d-dimensional multivariate data, we define the corresponding Jensen di-
vergences coordinate-wise as follows:

JF (p, q) =
d∑

i=1

JF (pi, qi) =
d∑

i=1

F (pi) + F (qi)
2

− F

(
pi + qi

2

)
. (17)

2 We may enforce definiteness by assuming the distributions are mutually absolutely
continuous to each others [8].
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Jensen-Bregman divergences JF are always finite (0 ≤ JF < ∞) on the
domain X (because entropies F measuring uncertainties are finite quantities:
F (x) < ∞). JF denote the Bregman divergence of the source distributions to
the average distributions. Another way to interpret this family of divergences
is to say that the Jensen-Bregman divergence is the average of the (negative)
entropies minus the (negative) entropy of the average. For the negative Shannon
entropy, we find the celebrated Jensen-Shannon divergence. Those divergences
are not translation-invariant, and we require F to be strictly convex since for
linear generators L(x) = 〈a, x〉+ b, one does not discriminate distributions (i.e.,
JL(p, q) = 0 ∀p, q).

This family of divergences can be termed Jensen-Bregman divergences.3 Since
F is a strictly convex function, JF is nonnegative and equal to zero if and
only if p = q. Figure 2 gives a geometric interpretation of the divergence as
the vertical distance between (p+q

2 , F (p+q
2 )) and the midpoint of the segment

[(p, F (p)), (q, F (q))]. Positive-definiteness follows from the Jensen’s inequality.

(p, F (p))
(q, F (q))

p qp+q
2

(p+q
2 , F (p+q

2 ))

(p+q
2 , F (p)+F (q)

2 )

JF (p, q)

Fig. 2. Interpreting the Jensen-Bregman divergence as the vertical distance between
the midpoint of segment [(p, F (p)), (q, F (q))] and the midpoint of the graph plot(

p+q
2

, F
(

p+q
2

))

Note that Jensen-Bregman divergences are defined modulo affine terms
〈a, x〉+ b. (Indeed, let G(x) = F (x) + 〈a, x〉+ b, then one checks that JF (p, q) =
JG(p, q).) Thus we can choose coefficients b = −F (0) and a = −∇F (0) to fix
unambiguously the generator. This means that the plot (x, F (x)) of the convex
function touches the origin at its minimum value.

Jensen-Bregman divergences contain all generalized quadratic distances
(F (x) = 〈Qx, x〉 for a positive definite matrix Q � 0), well-known in computer
3 Or Burbea-Rao divergences [14]) or Jensen divergences. We prefer the term

Jensen-Bregman because as we shall see (1) skew Jensen-Bregman divergences in-
clude Bregman divergences in the limit cases, and (2) they are obtained by sym-
metrizing Bregman divergences à la Jensen-Shannon.
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vision as the squared Mahalanobis distances (squared Euclidean distance ob-
tained for Q = I, the identity matrix).

JF (p, q) =
F (p) + F (q)

2
− F

(
p + q

2

)

=
2〈Qp, p〉+ 2〈Qq, q〉 − 〈Q(p + q), p + q〉

4

=
1
4
(〈Qp, p〉 + 〈Qq, q〉 − 2〈Qp, q〉)

=
1
4
〈Q(p − q), p − q〉

=
1
4
‖p − q‖2

Q.

It is well-known that the square root of the Jensen-Shannon divergence (using
Shannon entropy generator F (x) = −x log x) is a metric. However, the square
root of Jensen-Bregman divergences are not always metric. A Jensen-Bregman di-
vergence is said separable if it can be decomposed independently dimension-wise:

F (x) =
d∑

i=1

fi(xi), (18)

with all fi’s strictly convex functions. Usually all fi’s are taken as an identical
univariate function. For example, Shannon (convex) information (the negative
of Shannon concave entropy) is defined as

I(x) = −
d∑

i=1

xi log xi, (19)

for x belonging to the (d− 1)-dimensional simplex Sd−1 of discrete probabilities
(
∑d

i=1 xi = 1). Shannon information can be extended to the non-normalized
positive measures Pd by taking I(x) = −∑d

i=1 xi log xi − xi.
Appendix A shows that those Jensen-Bregman distances encapsulate the

class of statistical Bhattacharyya distances for a versatile family of probability
measures called the exponential families. Let us now consider Jensen-Bregman
Voronoi diagrams.

3 The Voronoi Diagram by Jensen Difference

We have shown that Jensen-Bregman divergences are an important class of dis-
tortion measures containing both the squared Euclidean/Mahalanobis distance
(non-additive quadratic entropy [8]) and the Jensen-Shannon divergence (addi-
tive entropy [8]). Note that one key property of the Euclidean distance is that
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D(λp, λq) = λD(p, q). That is, it is a distance function of homogeneous degree
1. A distance is said of homogeneous degree α if and only if

D(λp, λq) = λαD(p, q). (20)

Usually, Jensen-Bregman divergences are not homogeneous except for the fol-
lowing three remarkable generators:

– Burg entropy (α = 0)

F (x) = − log x, JF (p, q) = log
p + q

2
√

pq
(21)

(logarithm of the ratio of the arithmetic mean over the geometric mean),
– Shannon entropy (α = 1)

F (x) = x log x, JF (p, q) =
1
2

(
p log

2p

p + q
+ q log

2q

p + q

)
(22)

– Quadratic entropy (α = 2)

F (x) = x2, JF (p, q) =
1
4
(p − q)2 (23)

Since Jensen-Bregman Voronoi diagrams include the ordinary Euclidean
Voronoi diagram [3],4 the complexity of those diagrams is at least the complex-
ity of Euclidean diagrams [15,6]: namely, Θ(n� d

2 �). In general, the complexity
of Voronoi diagrams by an arbitrary distance function (under mild conditions)
is at most O(nd+ε) for any ε > 0, see [16,17]. Thus as the dimension increases
there is a potential quadratic gap in the combinatorial complexity between the
Euclidean and general distance function diagrams.

Let us analyze the class of Jensen-Bregman diagrams by studying the induced
minimization diagram and characterizing the bisector structure.

3.1 Voronoi Diagrams as Minimization Diagrams

Given a point set P = {p1, ..., pn} of n sites,5 the Jensen-Bregman Voronoi
diagram partitions the space into elementary Voronoi cells such that the Voronoi
cell V (pi) associated to site pi is the loci of points closer to pi than to any other
point of P with respect to the Jensen-Bregman divergence:

V (pi) = {p | JF (p, pi) < JF (p, pj) ∀j 
= i}. (24)

4 Since the Voronoi diagrams by any strictly monotonous increasing function of a
distance coincides with the Voronoi diagrams of that distance, the squared Euclidean
Voronoi diagram coincides with the ordinary Voronoi diagram.

5 Without loss of generality, we assumed points distinct and in general position.
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Fig. 3. The 2D Jensen-Burg Voronoi diagram of 4 points from the corresponding lower
envelope of corresponding 3D functions

For each Voronoi site pi, consider the following anchored distance function to
that site:

Di(x) = JF (x, pi) =
F (pi) + F (x)

2
− F

(
pi + x

2

)
(25)

Thus the Voronoi diagram amounts to a minimization diagram. This minimiza-
tion task can be solved by computing the lower envelope of (d + 1)-dimensional
functions (x, Di(x)). The projection of the lower envelope (resp. upper envelope)
yields the Jensen-Bregman Voronoi diagram (resp. farthest Jensen-Bregman
Voronoi diagram). Figure 3 displays the lower envelope of four 3D functions
for the Burg entropy generator (homogeneous degree α = 0).

In general, besides the ordinary Euclidean case with F (x) = x2, the equation
of the bisector can be tricky to manipulate, even in the planar case. For example,
consider the Burg entropy (F (x) = − logx). Using

∑
log ↔ log

∏
, the Burg

bisector B(p, q) for the corresponding separable Jensen-Burg distance can be
written as:

B(p, q) :
d∏

i=1

pi + xi√
pi

=
d∏

i=1

qi + xi√
qi

, (26)

where p = (p1, ..., pd) and q = (q1, ..., qd) denote the coordinates of p and q,
respectively.

We next concentrate on a concave-convex structural property of the Jensen-
Bregman bisector. But first, we recall some prior work on Voronoi diagrams.
The Voronoi diagrams with respect to convex functions has been studied [18].
However, note that Jensen-Bregman divergences are not necessarily convex.
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(a) Quadratic (b) Shannon (c) Burg

Fig. 4. (Top) 1D Voronoi diagram from the lower envelope of corresponding anchored
distance functions for the (a) quadratic, (b) Shannon and (c) Burg entropies. (Bottom)
minimum of the functions D′

i(·) (removing the common term 1
2
F (x)).

Indeed, without loss of generality, consider separable Jensen-Bregman diver-
gences, and let us look at the second-order derivatives of a univariate Jensen-
Bregman divergence. We have

D′
p(x) = J ′

F (x, p) =
1
2
F ′(x) − 1

2
F ′

(
p + x

2

)
(27)

and

D′′
p (x) = J ′′

F (x, p) =
1
2
F ′′(x) − 1

4
F ′′

(
p + x

2

)
. (28)

This second-order derivative is not necessarily always strictly positive. For exam-
ple, consider F (x) = x3 on R

+ (with F ′′(x) = 6x). We have D′′
p (x) = 3(x− p+x

4 );
This is non-negative for x ≥ p

3 only. That means that some Jensen-Bregman di-
vergences are neither convex nor concave either. Another typical example is the
Jensen-Burg entropy (F (x) = − log x and F ′′(x) = 1/x2). Indeed, the anchored
distance JF (x, p) at p is strictly convex if x > p(1 +

√
2) and strictly concave

if x < p(1 +
√

2). However, Jensen-Shannon divergence (defined for generator
F (x) = x log x with F ′′(x) = 1/x) is convex for all values on the positive orthant
(positive measures P2): Indeed, D′′

F (x) = 1
2x − 1

4
2

p+x = 1
2 ( 1

x − 1
p+x ) > 0 for all

p > 0 (p ∈ P).
In general, a necessary condition is that F is strictly convex: Indeed, choose

x = p (for any arbitrary p), it comes that D′′
p (x) = 1

4F ′′(p) that is positive
if and only if F ′′(p) > 0. That is, it is required that F be strictly convex.
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In the general case, JF is convex if and only if its Hessian is positive definite:6

∇2JF (·, p) � 0 ∀p:

∇2JF =

[
∂2JF (x,y)

∂x2
∂2JF (x,y)

∂x∂y
∂2JF (x,y)

∂x∂y
∂2JF (x,y)

∂y2

]
(29)

=

[
F ′′(x)

2 − 1
4F ′′(x+y

2 ) − 1
4F ′′(x+y

2 )
− 1

4F ′′(x+y
2 ) F ′′(y)

2 − 1
4F ′′(x+y

2 )

]
� 0 (30)

Considering separable divergences JF , the positive definiteness condition of the
Hessian becomes

F ′′(x) > F ′′(
x + y

2
) − F ′′(x) (31)

It follows that the Jensen-Shannon (separable) divergence (F (x) = x log x − x,
F ′′(x) = 1

x ) is a strictly convex distance function on the set of positive measures
X = R++ since 1

x > 2
x+y − 1

x for all x, y > 0.

Lemma 1. Jensen-Bregman divergences are not necessarily strictly convex nor
strictly concave distortion measures. Jensen-Shannon divergence is a strictly con-
vex function on the set Pd of positive measures. Separable Jensen-Bregman di-
vergences JF on domain X d are strictly convex distance functions if and only if
F ′′(x) > F ′′(x+y

2 ) − F ′′(x) > 0 for x, y ∈ X .

Lihong [19,18] studied the Voronoi diagrams in 2D and 3D under a translation-
invariant convex distance function (e.g., a polyhedral convex distance).
Translation-invariant means that a convex object C gives a distance profile, and
the distance between two points p and q is the smallest scaling factor so that a
homothet of C centered at p touches q. Note that Jensen-Bregman divergences
are not invariant under translation.

Recently, Dickerson et al. [20] studied the planar Voronoi diagram for smoothed
separable convex distances. They show that provided that the functions of the
minimization diagrams satisfy the constraint f ′′′f ′ < (f ′′)2, then the 2D Voronoi
diagram has linear complexity and can be computed using a randomized algo-
rithm in Õ(n log n) time. In fact, in that case, the distance level sets {Dpi(x) =
l}l (iso-distance level) yield pseudo-circles, and the arrangement of bisectors are
pseudo-lines. However, if the condition f ′′′f ′ < (f ′′)2 fails, the 3D minimization
diagram (and corresponding 2D Voronoi diagram) may have quadratic complex-
ity. For example, choosing f(x) = ex2

, and F (x, y) = ex2
+ ey2

yields potentially
a quadratic complexity diagram.

Consider a d-dimensional finite point set p1, ..., pn, and let pi,1, ..., pi,d denote
the coordinates of point pi for all i ∈ {1, ..., n}. We consider separable Jensen-
Bregman divergences. Let x1, ..., xd denote the coordinates of point x.
6 A matrix M is said positive definite iff. xT Mx > 0 for all x �= 0. A positive def-

inite matrix has all its eigenvalues strictly positive, and hence the trace (sum of
eigenvalues) and determinant (product of eigenvalues) are necessarily positive.
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Since the term F (x)
2 are shared by all Di’s functions, we can remove it equiva-

lently from all anchored distance functions. Therefore the minimization diagram
mini Di(x) is equivalent to the minimization diagram of the functions

D′
i(x) =

1
2
F (pi) − F

(
pi + x

2

)
, (32)

or equivalently using separable generator by

D′
i(x) =

d∑
k=1

1
2
F (pi,k) − F

(
pi,k + xk

2

)
. (33)

This minimization diagram can be viewed as the lower envelope of n concave func-
tions (entropy function −F ) in dimension d+1. The vertical shift corresponds to
a weight F (pi) =

∑d
k=1 F (pi,k)/2. Let us write the equation of a bisector (p, q):

B(p, q) :
F (p)

2
− F

(
x + p

2

)
=

F (q)
2

− F

(
x + q

2

)
(34)

:
d∑

k=1

F (pk)
2

− F

(
xk + pk

2

)
=

d∑
k=1

F (qk)
2

− F

(
xk + qk

2

)
. (35)

That is, we get

B(p, q) :
(

F

(
x + q

2

)
− F

(
x + p

2

))
+

(
F (p)

2
− F (q)

2

)
= 0 (36)

:
d∑

k=1

(
F

(
xk + qk

2

)
− F

(
xk + pk

2

))
+

d∑
k=1

(
F (pk)

2
− F (qk)

2

)
= 0(37)

The bisector is thus interpreted as the sum of a convex function

d∑
k=1

F

(
xk + qk

2

)
− F (pk)

2

with a concave function

d∑
k=1

−F

(
xk + pk

2

)
− F (qk)

2
.

The next section on centroidal Voronoi tessellations show how to handle this
concave-convex structural property using a tailored optimization mechanism.
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Fig. 5. (Left) The Jensen-Shannon Voronoi diagram for a set of 16 points (posi-
tive arrays denoting unnormalized probability distributions). (Right) The Jensen-Burg
Voronoi diagram for the Burg entropy F (x) = −∑d

i=1 log xi.

4 Jensen-Bregman Centroidal Voronoi Diagrams

The centroidal Voronoi diagram [9] (or centroidal Voronoi tesselation; CVT for
short) is defined as follows: First, we fix a number of generators n, and a compact
domain X (say, a unit square). Then we ask to find the locations of the generators
so that the induced Voronoi cells have (approximately) more or less the same
area. Figure 6(b) shows a CVT for a set of 16 points. A CVT is computed itera-
tively by first initializing the generators to arbitrary position (Figure 6(a)), and
by iteratively relocating those generators to the center of mass of their Voronoi
cell (Lloyd iteration). Proving that such a scheme is always converging is still
a difficult open problem of computational geometry [9], although that in prac-
tice it is known to converges quickly. Instead of relocating to the center of mass
(barycenter) according to a uniform density distribution (i.e., to the centroid or
geometric center of the cell), we can relocate those generators to the barycenter
of the cell according to an underlying non-uniform density distribution. This
is one technique commonly used in non-photorealistic rendering (NPR) called
stippling [21], the art of pointillism. Figure 6(c) is a source image represent-
ing the underlying grey intensity distribution. Figure 6(d) is the stippling effect
produced by computing a CVT with respect to the underlying image density.

To extend the centroidal Voronoi tesselations to Jensen-Bregman divergences,
we first need to define centroids (and barycenters) with respect to this dissimilar-
ity measure. Consider a finite set of points P = {p1, ..., pn}. The Jensen-Bregman
centroid is defined as the minimizer of the average Jensen-Bregman distance:

c∗ = arg min
c

n∑
i=1

1
n

JF (pi, c) (38)
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(a) (b)

(c) (d)

Fig. 6. (Top) Centroidal Voronoi diagram of 16 sites: (a) initialization, and (b) after
a few iterations. (Bottom) Application to image stippling: (c) grey density image and
(d) centroidal Voronoi diagram according to the underlying density.

By choosing F (x) = 〈x, x〉, we minimize the sum of the squared Euclidean
distances, and find the usual Euclidean centroid.7 Similarly, the barycenter is
defined with respect to (normalized) weights (interpreted as point multiplicities):

c∗ = arg min
c

n∑
i=1

wiJF (pi, c) = arg min
c

L(c) (39)

Using the structure of the optimization problem, we can use the Convex-ConCave
Procedure [22] (CCCP), a general purpose loss function minimizer. Indeed, we
can always decompose an arbitrary (non-convex) function as the sum of a con-
vex function and concave function (or the difference of two convex functions),
provided that the Hessian of the loss function function is bounded:8

L(c) = Lconvex(c) + Lconcave(c). (40)

For the Jensen-Bregman centroid, this decomposition is given explicitly as fol-
lows:

Lconvex(c) =
F (c)

2
(41)

7 If instead of minimizing the squared Euclidean distance, we consider the Euclidean
distance, we do not get closed-form solution. This is the so-called Fermat-Weber
point.

8 Always bounded on a compact.
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Lconcave(c) = −
n∑

i=1

F

(
pi + c

2

)
, (42)

since the sum of concave functions is a concave function. The CCCP approach
consists in setting the gradient to zero: ∇xL(x) = 0. We get

1
2
∇F (x) −

n∑
i=1

wi

2
∇F

(
x + pi

2

)
= 0. (43)

That is, we need to solve equivalently for

∇F (x) =
n∑

i=1

wi∇F

(
x + pi

2

)
(44)

Since F is strictly convex and differentiable, we have ∇F that is strictly monotone
increasing (because the Hessian is positive definite, i.e. ∇2F � 0), and the
reciprocal gradient ∇F−1 is well-defined.

Thus solving Eq. 44 amounts to solve for

x = ∇F−1

(
n∑

i=1

wi∇F

(
x + pi

2

))
(45)

Starting from an arbitrary initial value x0 of x (say, the Euclidean center of
mass), the optimization proceeds iteratively as follows:

xt+1 = ∇F−1

(
n∑

i=1

wi∇F

(
xt + pi

2

))
. (46)

For the Jensen-Shannon (separable) divergence defined on positive measures, we
thus update the centroid independently on each coordinate by

xt+1 =
n

2
∑n

i=1
1

xt+pi

.

The CCCP algorithm guarantees monotonicity and convergence to a local min-
imum or saddle point. For the Jensen-Shannon divergence, this local minimum
yields the global minimum since the distance function is strictly convex. Note
that for the quadratic entropy F (x) = 〈x, x〉, we get a closed-form solution (i.e.,
the center of mass).

However, in general, we do not obtain a closed-form solution, and can only
estimate the Jensen-Bregman barycenters up to some arbitrary precision. Thus,
we do not have closed-form solutions of computing the Jensen-Bregman cen-
troid of a Voronoi cell. Nevertheless, we can bypass this by finely discretizing
the domain, and estimating the centroids using the above generalized mean inter-
ations. We implemented and computed the centroidal Jensen-Bregman Voronoi
diagrams following such a scheme. Figure 7 presents the Jensen-Bregman cen-
troidal Voronoi tesselations obtained, assuming an underlying uniform density.
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(a) Burg CVT (init.) (b) Burg CVT (25 iterations)

(c) JS CVT (init.) (d) JS CVT (25 iterations)

Fig. 7. Centroidal Jensen-Bregman Voronoi diagrams for the Burg and Shannon (JS)
entropies. CVTs provide a way to sample uniformly space according to the underlying
distance.

The following section shows how to extend those results to matrix-based data
sets.

5 Matrix-Based Jensen-Bregman Divergences

A recent trend in data processing is to consider matrix-valued data sets, where
each datum is not handled as a scalar or vector but rather as a 2D matrix. Such
kind of data sets occurs frequently in many science and engineering applica-
tion areas where they are termed tensors: Gaussian covariance matrices [23] in
sound processing, elasticity tensors in mechanical engineering [24], polarimetric
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synthetic aperture radar [25], diffusion tensor imaging (DTI) [26], kernel-based
machine learning [27], etc. Those matrices M are symmetric and positive definite
(SPD) M � 0 : ∀x ∈ R

d 
= 0, xT Mx > 0, and can be visualized as ellipsoids:
Each matrix M , also called a tensor, is geometrically represented by an ellipsoid
{x | xT Mx = 1}. Let us denote by Sym++ the open convex cone of symmetric
positive definite matrices [28].

We build a matrix-based Jensen-Bregman divergence from a convex generator
F : Sym++ → R

+ as follows:

JF (P, Q) =
F (P ) + F (Q)

2
− F

(
P + Q

2

)
≥ 0, (47)

with equality if and only if P = Q.
Typical matrix-based convex generators are :

– F (X) = tr(XT X): the quadratic matrix entropy,
– F (X) = − log detX : the matrix Burg entropy, and
– F (X) = tr(X log X − X): the von Neumann entropy.

Interestingly, those generators are invariant by a permutation matrix P , ie.
F (PX) = F (P ). Choosing F (X) = tr(X log X − X), we get the Jensen-von
Neumann divergence, the matrix counterpart of the celebrated Jensen-Shannon
divergence. A d×d-dimensional SPD matrix is represented by D = d(d+1)

2 matrix
entries. Thus 2 × 2-matrices are encoded by D = 3 scalar values.

The matrix-based centroidal Voronoi tesselation requires to compute the SPD
centroid (of discretized matrices M1, ..., Mn) using the CCCP iterative optimiza-
tion technique mentioned in Eq. 45:

Ct+1 = ∇F−1

(
n∑

i=1

1
n
∇F

(
Mi + Ct

2

))
. (48)

Table 1 reports the matrix gradients and reciprocal gradients for common matrix-
based generators.

We now present a generalization of those Voronoi diagrams and centroidal
Voronoi tessellations when skewing the divergences. We shall see that skewing
the Jensen-Bregman divergences allows one to generalize Bregman Voronoi dia-
grams [6].

Table 1. Characteristics of convex matrix-based functional generators

Entropy name F (X) ∇F (X) (∇F )−1(X)

Quadratic 1
2
trXXT X X

log det − log detX −X−1 −X−1

von Neumann tr(X log X − X) log X exp X
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6 Skew Jensen-Bregman Voronoi Diagrams

Recall that Jensen-Bregman divergences are divergences defined by a Jensen gap
built from a convex generator function. Instead of taking the mid-point (for value
α = 1

2 ), we may consider skewing the divergence by introducing a parameter α
as follows:

J
(α)
F : X × X → R

+

J
(α)
F (p, q) = αF (p) + (1 − α)F (q) − F (αp + (1 − α)q)

We consider the open interval (0, 1) since otherwise the divergence has no dis-
criminatory power (indeed, for α ∈ {0, 1}, J (α)

F (p, q) = 0, ∀p, q). Although
skewed divergences are asymmetric J

(α)
F (p, q) 
= J

(α)
F (q, p), we can swap argu-

ments by replacing α by 1 − α:

J
(α)
F (p, q) = αF (p) + (1 − α)F (q) − F (αp + (1 − α)q)

= J
(1−α)
F (q, p) (49)

Figure 8 illustrates the divergence as a Jensen gap induced by the convex gen-
erator.

Those skew Burbea-Rao divergences are similarly found using a skew Jensen-
Bregman counterpart (the gradient terms ∇F (αp+(1−α)q) perfectly cancel in
the sum of skew Bregman divergences):

αBF (p, αp + (1 − α)q) + (1 − α)BF (q, αp + (1 − α)q) = J
(α)
F (p, q) (50)

In the limit cases, α → 0 or α → 1, we have J
(α)
F (p, q) → 0 ∀p, q. That is,

those divergences loose their discriminatory power at extremities. However, we
show that those skew Burbea-Rao divergences tend asymptotically to Bregman
divergences [29]:

BF (p, q) = lim
α→0

1
α

J
(α)
F (p, q) (51)

BF (q, p) = lim
α→1

1
1 − α

J
(α)
F (p, q) (52)

Let us consider the Voronoi diagram of a finite point set p1, ..., pn with respect
to J ′(α)

F , a normalized skew Jensen difference that matches exactly Bregman or
reverse Bregman divergences in limit cases:

J ′(α)
F (p, q) =

1
α(1 − α)

J
(α)
F (p, q)
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J
(α)
F (p, q)

p q

F (p)

F (q)

αp+ (1− α)q

F

αF (p) + (1− α)F (q)

F (αp+ (1− α)q)

Fig. 8. Skew Jensen-Bregman divergence defined as a Jensen gap induced by a convex
generator

The right-sided Voronoi cell associated to site pi is defined as

Vα(pi) = {x | J ′(α)
F (pi, x) ≤ J ′(α)

F (pj , x)∀j} (53)

Similarly, the left-sided Voronoi cell

V ′
α(pi) = {x | J ′(α)

F (x, pi) ≤ J ′(α)
F (x, pj)∀j} (54)

is obtained from the right-sided Voronoi cell by changing parameter α to 1− α:

V ′
α(pi) = V1−α(pi). (55)

Thus we restrict ourselves to the right-sided Voronoi cells.
The bisector B of points pi and pj is defined by the non-linear equation:

B : α(F (pi) − F (pj)) + F (αpj + (1 − α)x) − F (αpi + (1 − α)x) = 0 (56)

Note that for α → 0 or α → 1, using Gâteaux9 derivatives [29], we find a bisector
either linear in x or in its gradient with respect to the generator (i.e, ∇F (x)).
Namely, the (normalized) skew Jensen-Bregman Voronoi diagrams become a
regular Bregman Voronoi diagram [6].

Figure 9 depicts several skew left-sided/right-sided Jensen-Bregman Voronoi
diagrams. Observe that for α ∈ {0, 1}, one of the two sided types of diagrams
become affine (meaning bisectors are hyperplanes) since they become a sided
Bregman Voronoi diagram [6].

9 We assume that limλ→0
F (x+λp)−F (x)

λ
exists and is equal to the Gâteaux derivative:

〈p,∇F (x)〉.
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α Left-sided V ′
α Right-sided Vα

0.0
V ′

0 = V1 Affine (≡ Bregman) V0 = V ′
1

0.2
V ′

0.2 = V0.8 V0.2 = V ′
0.8

0.8
V ′

0.8 = V0.2 V0.8 = V ′
0.2

1.0
V ′

1 = V0 V1 = V ′
0 Affine (≡ Bregman)

Fig. 9. Skew Jensen-Bregman Voronoi diagrams for various α parameters (Jensen-
Shannon divergence). Observe that Vα = V ′

1−α. In the extremal cases α = 0 and α = 1,
the skew Jensen-Bregman diagrams amount to Bregman or reversed Bregman Voronoi
diagrams. Note that the left-sided α = 0 and right-sided α = 1 are affine diagrams
since they amount to compute Bregman Voronoi diagrams.
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Dealing with skew Jensen-Bregman Voronoi diagrams is interesting for two
reasons: (1) it generalizes the Bregman Voronoi diagrams [6] obtained in limit
cases, and (2) it allows to consider statistical Voronoi diagrams following [29].
Indeed, consider the parameters of statistical distributions as input, the skew
Jensen-Bregman Voronoi diagram amounts to compute equivalently a skew Bhat-
tacharrya Voronoi diagram. Details are left in [29].

7 Concluding Remarks and Discussion

We have introduced a new class of information-theoretic divergences called
(skew) Jensen-Bregman divergences that encapsulates both the Jensen-Shannon
divergence and the squared Euclidean distance. We showed that those diver-
gences are used when symmetrizing Bregman divergences and computing the
Bhattacharyya distance of distributions belonging to the same statistical ex-
ponential families (see Appendix). We have studied geometric characteristics
of the bisectors. We then introduced the notion of Jensen-Bregman centroid,
and described an efficient iterative algorithm to estimate it using the concave-
convex optimization framework. This allows one to compute Jensen-Bregman
centroidal Voronoi tessellations. We showed how to extend those results to
matrix-based Jensen-Bregman divergences, including the Jensen-von Neumann
divergence that plays a role in Quantum Information Theory [30] (QIT) dealing
with density matrices.

The differential Riemannian geometry induced by such a class of Jensen gaps
was studied by Burbea and Rao [14,31] who built quadratic differential metrics
on probability spaces using Jensen differences.

The Jensen-Shannon divergence is an instance of a broad class of divergences
called the Csiszár f -divergences. A f -divergence If is a statistical measure of
dissimilarity defined by the functional If (p, q) =

∫
p(x)f( q(x)

p(x) )dx. It turns out
that the Jensen-Shannon divergence is a f -divergence for generator

f(x) =
1
2

(
(x + 1) log

2
x + 1

+ x log x

)
. (57)

The class of f -divergences preserves the information monotonicity [32], and their
differential geometry was studied by Vos [33]. Note that the squared Euclidean
distance does not belong to the class of f -divergences although it is a Jensen-
Bregman divergence.

To conclude, skew Jensen-Bregman Voronoi diagrams extend naturally Breg-
man Voronoi diagrams [6], but are not anymore affine diagrams in general. Those
diagrams allow one to equivalently compute Voronoi diagrams of statistical distri-
butions with respect to (skew) Bhattacharrya distances. This perspective further
opens up the field of computational geometry to statistics and decision theory
under uncertainty, where Voronoi bisectors denote decision boundaries [34].
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Additional material on Jensen-Bregman divergences including videos are avail-
able online at:

www.informationgeometry.org/JensenBregman/
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A Bhattacharyya Distances as Jensen-Bregman
Divergences

This appendix proves that (skew) Jensen-Bregman divergences occurs when com-
puting the (skew) Bhattacharrya distance of statistical parametric distributions
belonging to the same probability family, called an exponential family. It follows
that statistical Voronoi diagrams of members of the same exponential family
with respect to the Bhattacharrya distance amount to compute equivalently
Jensen-Bregman Voronoi diagrams on the corresponding measure parameters.

A.1 Statistical Exponential Families

Many usual statistical parametric distributions p(x; λ) (e.g., Gaussian, Pois-
son, Bernoulli/multinomial, Gamma/Beta, etc.) share common properties aris-
ing from their common canonical decomposition of probability distribution:

p(x; λ) = pF (x; θ) = exp (〈t(x), θ〉 − F (θ) + k(x)) . (58)

Those distributions10 are said to belong to the exponential families (see [35] for
a tutorial). An exponential family is characterized by its log-normalizer F (θ), and
a distribution in that family is indexed by its natural parameter θ belonging to the
natural space Θ. The log-normalizer F is strictly convex, infinitely differentiable
(C∞), and can also be expressed using the source coordinate system λ using the
bijective map τ : Λ → Θ that converts parameters from the source coordinate
system to the natural coordinate system:

F (θ) = (F ◦ τ)(λ) = Fλ(λ). (59)

The vector t(x) denote the sufficient statistics, that is the set of linear inde-
pendent functions that allows to concentrate without any loss all information
about the parameter θ carried in the i.i.d. observation sample x1, x2, ..., . The

10 The distributions can either be discrete or continuous. We do not introduce the
framework of probability measures here so as to not to burden the paper.

www.informationgeometry.org/JensenBregman/
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inner product 〈p, q〉 is a dot product 〈p, q〉 = pT q for vectors. Finally, k(x) rep-
resents the carrier measure according to the counting measure or the Lebesgue
measure. Decompositions for most common exponential family distributions are
given in [35]. To give one simple example, consider the family of Poisson distri-
butions with probability mass function:

p(x; λ) =
λx

x!
exp(−λ), (60)

for x ∈ N
∗ a non-negative integer. Poisson distributions are univariate expo-

nential families (x ∈ N) of order 1 (i.e., a single parameter λ). The canonical
decomposition yields

– the sufficient statistic t(x) = x,
– θ = τ(λ) = log λ, the natural parameter (and τ−1(θ) = exp θ),
– F (θ) = exp θ, the log-normalizer,
– and k(x) = − logx! the carrier measure (with respect to the counting mea-

sure).

A.2 Bhattacharyya Distance

For arbitrary probability distributions p(x) and q(x) (parametric or not), we
measure the amount of overlap between those distributions using the Bhat-
tacharyya coefficient [36]:

Bc(p, q) =
∫ √

p(x)q(x)dx, (61)

where the integral is understood to be multiple if x is multivariate. Clearly, the
Bhattacharyya coefficient measures the affinity between distributions [37], and
falls in the unit range: 0 ≤ Bc(p, q) ≤ 1. In fact, we may interpret this coefficient
geometrically by considering

√
p(x) and

√
q(x) as unit vectors (eventually in

infinite-dimensional spaces). The Bhattacharyya coefficient is then the dot prod-
uct, the cosine of the angle made by the two unit vectors. The Bhattacharyya
distance B : X × X → R

+ is derived from its coefficient [36] as

B(p, q) = − ln Bc(p, q). (62)

Although the Bhattacharyya distance is symmetric, it is not a metric because it
fails the triangle inequality. For distributions belonging to the same exponential
family, it turns out that the Bhattacharyya distance is always available in closed-
form. Namely, the Bhattacharyya distance on probability distributions belonging
to the same exponential family is equivalent to a Jensen-Bregman divergence
defined for the log-normalizer of the family applied on the natural parameters.
This result is not new [38] but seems to have been rediscovered a number of
times [39,40]. Let us give a short but insightful proof.
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Proof. Consider p = pF (x; θp) and q = pF (x; θq) two members of the same
exponential families EF with natural parameters θp and θq, respectively. Let us
manipulate the Bhattacharyya coefficient Bc(p, q) =

∫ √
p(x)q(x)dx:

=
∫

exp
(〈

t(x),
θp + θq

2

〉
− F (θp) + F (θq)

2
+ k(x)

)
dx

=
∫

exp
(〈

t(x),
θp + θq

2

〉
− F

(
θp + θq

2

)
+ k(x)+

F

(
θp + θq

2

)
− F (θp) + F (θq)

2

)
dx

= exp
(

F

(
θp + θq

2

)
− F (θp) + F (θq)

2

)
,

since
∫

pF (x; θp+θq

2 )dx = 1. We deduce from B(p, q) = − lnBc(p, q) that

B(pF (x; θp), pF (x; θq)) =
F (θp) + F (θq)

2
− F

(
θp + θq

2

)
(63)

It follows that the Bhattacharyya distance for members of the same exponen-
tial family is equivalent to a Jensen-Bregman divergence induced by the log-
normalizer on the corresponding natural parameters:

B(pF (x; θp), pF (x; θq)) = JF (θp; θq), (64)

with the Jensen-Bregman divergence defined as the following Jensen differ-
ence [41]:

JF (p; q) =
F (p) + F (q)

2
− F

(
p + q

2

)
(65)

For Poisson distributions, we end up with the following Bhattacharyya distance

B(pF (x; θp), pF (x; θq)) = JF (θp, θq)
= JF (log λp, log λq),

=
λp + λq

2
− exp

log λp + log λq

2
,

=
λp + λq

2
− √

λpλq

=
1
2
(
√

λp − √
λq)2 (66)

Exponential families in statistics are mathematically convenient once again. In-
deed, the relative entropy of two distributions belonging to the same exponen-
tial family, is equal to the Bregman divergence defined for the log-normalizer on
swapped natural parameters [6]: KL(pF (x; θp), pF (x; θq)) = BF (θq, θp).
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For skew divergences, we consider the Chernoff divergences

Cα(p, q) = − ln
∫

pα(x)q1−α(x)dx (67)

defined for some α (and generalizing the Bhattacharyya divergence for α = 1
2 ).

The Chernoff α-divergence amounts to compute a weighted asymmetric Jensen-
Bregman divergence:

Cα(pF (x; θp), pF (x; θq)) = Jα
F (θp, θq) (68)

= αF (θp) + (1 − α)F (θq) − F (αθp + (1 − α)θq).(69)
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