
An Abstract Weighting Framework for Clustering Algorithms

Richard Nock∗ Frank Nielsen†

Abstract

Recent works in unsupervised learning have emphasized the

need to understand a new trend in algorithmic design, which

is to influence the clustering via weights on the instance

points. In this paper, we handle clustering as a constrained

minimization of a Bregman divergence. Theoretical results

show benefits resembling those of boosting algorithms, and

bring new modified weighted versions of clustering algo-

rithms such as k-means, expectation-maximization (EM)

and k-harmonic means. Experiments display the quality of

the results obtained, and corroborate the advantages that

subtle data reweightings may bring to clustering.

Keywords: Statistical/optimization methods, Clustering

algorithms.

1 Introduction

Recently, a new methodology in the design of super-
vised learning algorithms has allowed to obtain dra-
matic improvements of classification performances: the
constrained minimization of Bregman divergences [1]. A
Bregman divergence is, informally speaking, the tail of
the Taylor expansion of a differentiable convex function.
A famous problem in computational learning theory was
addressed and solved by this technique [2, 3, 4]: boost-
ing, that is, the problem of combining the outputs of
moderately accurate classifiers to get with high proba-
bility a highly accurate ensemble [5]. On-line learning
has also benefited from this framework, as well as rel-
evant applications in portfolio prediction, text catego-
rization and calendar management [1].

On the other hand, unsupervised learning algo-
rithms have so far remarkably remained cut off from
this line of works. This is all the more interesting as
is it well known that Bregman divergence minimization
brings weighted iterative solutions [1], and there has
recently been a growing attention around weighted it-
erative clustering algorithms in unsupervised learning,
such as k-harmonic means (k-Hmeans for short) clus-
tering [6]. Recent approaches have even emphasized the
benefits of weighting the instances in clustering [6], and

∗Grimaag-DSI, Univ. Antilles-Guyane, Schoelcher 97275,
France. E-mail: rnock@martinique.univ-ag.fr.

†Sony CS Labs, FRL. 3-14-13 Higashi Gotanda. Tokyo 141-
0022, Japan. E-mail: Nielsen@csl.sony.co.jp.

make first attempts to explain the quality of the ex-
perimental results by boosting analogies [6, 7]; unfor-
tunately, the analogy has remained so far quite loose,
supported mainly by experimental results and the no-
tice that weighting functions tend to give bigger weights
to points less efficiently clustered, thereby “attracting”
the cluster centers.

It is the aim of this paper to formulate clustering
as a problem of constrained Bregman divergence mini-
mization. The solution obtained has attractive boosting
related theoretical features [4] such as the very fast de-
crease of the loss function under mild assumptions, or
the clustering optimization on both the weighted and
unweighted (original) instances. We also present sim-
ple weighted modifications of commonly used cluster-
ing algorithms such as k-means, EM and k-Hmeans. In
that last case, the weights obtained are different from
those originally presented in [6, 7]. The weighting be-
havior, which respect the boosting analogy of [6], dis-
plays however an original pattern when applied to a non
monotonous clustering algorithm [8]: whenever the clus-
tering gets worse, bigger weights are given to the points
more efficiently clustered, thereby tending to penalize
the clustering, making it attracted by the previous, bet-
ter solutions.

Section 2 presents some preliminaries on clustering.
Section 3 details the theoretical aspects of clustering
with Bregman divergences. Section 4 presents and
discusses some experiments. A last Section concludes
the paper.

2 Definitions and Preliminaries

The task of clustering can be presented from the density
estimation standpoint, using one of its most popular
representatives: k-means [9]. We dispose of a point
set S of m elements and an integer k > 0, and the
task is to estimate k densities, each defining a cluster.
Each point x ∈ S is affected to one cluster: the density
on x of the cluster to which x belongs is noted for
short p(x). The goodness-of-fit of the clustering is
obtained through its likelihood,

∏
x∈S p(x), which we

want to maximize. Equivalently, we want to minimize
the following loss:

∑
x∈S − ln p(x). In our context

of clustering, we refer for short to − ln p(x) as the

KMN loss (on some x ∈ S), after Kearns et al.[10].
[10] provide a convenient abstraction of the k-means
clustering algorithm as a maximum likelihood iterative
procedure, which comes in handy for the derivations
of more complex clustering algorithms (see Algorithm
1 below). In this algorithm, pj denotes the density
associated to cluster j (j = 1, 2, ..., k).

Algorithm 1: k-means(S, k)

Input: point set S, integer k > 0
Initialization: first decomposition into k clus-
ters;
for t = 0, 1, ... do

[1.] ∀i = 1, 2, ..., k :

Si ← {x ∈ S : i = arg max
j

pj(x)} ;

[2.] ∀i = 1, 2, ..., k :

pi ← arg min
p
− 1

m

∑

x∈Si

ln p(x) ;

A popular method (due to E. Forgy) to initialize
the cluster centers is to pick at random k points over
the m points of S [6]. The k-means algorithm, which
is Newton-type (thus, monotonous [8]), is typically run
until the loss decrease in absolute value does not exceed
a small threshold. In the sequel, bold-faces denote
vector notations.

Definition 2.1. Let Pm be the m-dimensional proba-
bility simplex, and u ∈ Pm the uniform vector. For any
properly defined function f and m-dimensional vector
v, let fv be the vector whose jth component is f(vj)
(1 ≤ j ≤ m).

From these definitions, the (uniform) KMN loss on S is
just

− 1
m

∑

x∈S

ln p(x) = −
m∑

j=1

uj ln(pj)

= −u. lnp(2.1)

Notice the slight abuse of notation, with which we
replace for x, the jth element of S, p(x) by pj (j =
1, 2, ..., m). It is worthwhile remarking that when
densities are modeled by multivariate Gaussian densities
with identity covariance matrices, the minimization
of eq. (2.1) to choose the centers in step [2.] of
Algorithm 1 boils down to a conventional least square
minimization problem equivalent to the quantization
error minimization [9]. The new centers are obtained
as the per-cluster average of the points of S [10, 9].

The k-means algorithm is based upon two essential
principles that have been later on discussed and relaxed.
The first one is a longstanding debate on the assign-
ments of points to the clusters (step [1.]). The k-means
chooses hard membership assignment, since each point
belongs exactly to one cluster. Another well-known ap-
proach has proned a fractional assignment, or soft mem-
bership, of each point x ∈ S to all clusters: EM [11].

The second one draws on a recent history of super-
vised learning and the theory of learning pioneered by
Valiant [12]. A breakthrough has recently shown from
both the theoretical and experimental standpoints that
dramatic improvements in the performances of iterative
learning algorithms are obtained when one makes sub-
tles reweighting of the problem’s instance. Probably
because of the increasing popularity of these so-called
boosting algorithms [2], some authors have recently be-
gun to question the transfer of this property to unsu-
pervised learning, debating on the interest of weight-
ing the points in S to influence the choice of the next
clusters (step [2.]) [6]. In the context of unsupervised
learning, the main analogy motivating this question is
that whenever the loss function is essentially decreasing
as a function to a cluster center (such as for Gaussian
priors), points with higher weights should attract the
cluster centers [6]. The iterative nature of popular clus-
tering algorithms [9, 11, 7] is certainly another motiva-
tion for this analogy, as the adaptive nature of boosting
algorithms comes in part from the fact that they are
iterative. These possible connexions with boosting are
explored in the next Section.

3 Weighted Clustering

Let us slightly shift our view of Algorithm 1 and see it
from a more general standpoint. Before convergence,
the new cluster partition at step t + 1 ensures that
−u. lnpt+1 < −u. lnpt (if we replace k-means by a
still iterative but non monotonous algorithm [8], we
may consider that we add a small positive penalty to
the right-hand side). Here, pt is the per-point density
values vector after iteration t (eq. (2.1)); p0 is that of
the algorithm’s initialization step (Cf Algorithm 1).

Definition 3.1. Consider a sequence of reals γt (t =
0, 1, ...) such that u.(lnpt − lnpt+1) = −γt. We call γt

the advantage at time t.

This definition makes sense, since when γt > 0, the
clustering gets indeed better. The distribution is absent
from the γ notation, but it should be clear from context.
Define

∀x ∈ S, dt(x) = ln
pt(x)

pt+1(x)
,(3.2)

so that we have u.dt = −γt. From this standpoint, Al-
gorithm 1 (as well as others, even non monotonous) is
the naive procedure which takes benefit of the advan-
tages over the uniform distribution to drive down the
loss.

The problem is: what if we demand that the
advantage be measured on other distributions ? is there
something to gain over the uniform distribution u ?
These questions may appear surprising at first glance,
because u is the distribution which is used to measure
the loss throughout t. Thereby, it is certainly the most
direct way to control it. But it appears to be not the
unique way. Surprisingly, sometimes, it is also not the
best.

3.1 General Scheme We consider an abstraction
of clustering, which is in particular a generalization
of Algorithm 1. After the initialization of the first
configuration (that is, the first per-point density values
vector p0), we also fix an initial distribution w0 = u.
Algorithm 2 below shows our abstraction of Algorithm
1.

Algorithm 2: Adaptive-Clustering(S, k)

Input: point set S, integer k > 0
Initialization:
— first decomposition into k clusters (p0);
— initialization of the weights (w0 = u);
for t = 0, 1, ... do

[1.] pick pt+1 having advantage γt over wt;
[2.] compute wt+1 from wt;

Exiting the t-loop may be obtained when t reaches
a threshold T , or when no computationally available
pt+1 has advantage significantly different from zero.
Notice that Algorithm 1 is indeed a particular case of
Algorithm 2, in which ∀t ≥ 0,wt = u, and finding
pt+1 is obtained by steps [1.] and [2.] of Algorithm
1. Furthermore, a non-negative advantage γt is always
guaranteed for Algorithm 1 by the fact that it is
Newton-type [8].

Let us detail and explain the loop step of Algorithm
2. In step [1.], we want to pick pt+1 such that

wt.dt = −γt .(3.3)

This is equivalent to stating that
∑

x∈S:dt(x)<0

wt(x)|dt(x)| = γt +
∑

x∈S:dt(x)>0

wt(x)|dt(x)| .

By means of words, when γt > 0, the explanation of
3.3 is simple : in absolute value for each x ∈ S, the

weighted sum of loss decrease on wt is the weighted
sum of loss increase plus a positive advantage. Thus,
the KMN loss, when measured on wt (and not on u
like in eq. (2.1)), decreases, and pt+1 is chosen so
as to make the next clustering have at least a small
gain on wt. Such an assumption of guaranteed small
gain in a weighted iterative learning algorithm is the
cornerstone of boosting. Its related name is the weak
learning assumption [2, 4]. Let us recall that boosting
is primarily a methodology for the iterative combination
of classifiers: the weak learning assumption states that
each local classifier has accuracy only slightly better
than random on the sample’s weights on which it is
built. The power of boosting is to make subtle updates
in the weights so as to obtain, from each of these
locally weak classifiers, a combination of arbitrary high
accuracy, as measured on the initial distribution (e.g.
u, [2, 4]). Provided similar behaviors can be obtained
in the context of clustering, a natural name for eq.
(3.3) when γt > 0 should thus be a weak clustering
assumption.

Let us shift back to Algorithm 2, and detail step [2.],
the computation of wt+1. We wish to find wt+1 which
satisfies two constraints. The first one is straightfor-
ward: it expresses the fact that wt+1 is a distribution
(wt+1 ∈ Pm):

1.wt+1 − 1 = 0 .(3.4)

The second constraint expresses its decorrelation with
respect to the variations of the weighted KMN loss:

wt+1.dt = 0 .(3.5)

Informally, after the computation of the new weights in
wt+1, because of the fact that the weighted KMN loss
on pt and pt+1 remains the same when measured on
wt+1 (eq. (3.5)), we are somewhat forcing the choice of
the next densities in pt+2 (eq. (3.3) with t → t + 1) to
learn something “new” from S.

Remember that m.u = 1. Under constraints (3.4)
and (3.5), wt+1 is chosen so as to minimize a Bregman
divergence with respect to wt: the information diver-
gence [1], 1.i(wt+1,wt), with i(., .) the vector whose
component for some x ∈ S is:

i(wt+1,wt)(x) = wt+1(x) ln
wt+1(x)
wt(x)

−wt+1(x) + wt(x) .

The information divergence is convex in wt+1: its min-
imization under constraints (3.4) and (3.5) is obtained
as the solution to (∀x ∈ S):

∂wt+1 i(wt+1,wt)(x)(3.6)
+

[
bt∂wt+1(1.wt+1 − 1) + ct∂wt+1(wt+1.dt)

]
(x) = 0

with bt and ct Lagrange multipliers. Solving (3.6) for
wt+1 brings

∀x ∈ S,wt+1(x) =
wt(x) exp(−ctdt(x))

exp(bt(ct))
.(3.7)

In (3.7), bt(.) is called the cumulant function, whose
expression is obtained with constraint (3.4):

bt(c)= ln
∑

x∈S

wt(x) exp(−cdt(x)) (c ∈ IR) .(3.8)

The term inside the “ln” is the normalization coefficient
for wt+1:

Zt(c) =
∑

x∈S

wt(x) exp(−cdt(x)) .(3.9)

The last unknown, ct, is obtained from constraint (3.5)
as the unique solution to

∑

x∈S

wt(x)dt(x) exp(−ctdt(x)) = 0 .(3.10)

The next Subsection shows some properties of Al-
gorithm 2, the first of which is the proof that eq. (3.10)
has indeed a single solution.

3.2 Properties of the solution to eq. (3.10)
Define for short g(c) = −∂Zt/∂c. Eq. (3.10) is
equivalent to stating:

g(ct) = 0 .

Lemma 3.1. If ∃x ∈ S : dt(x) > 0 and ∃x ∈ S : dt(x) <
0, then eq. (3.10) has a single solution.

Proof. We have ∀c ∈ IR:

g′(c) = −
∑

x∈S

wt(x)d2
t (x) exp(−cdt(x))(3.11)

< 0 .

Since limc→−∞ g(c) = +∞ (provided at least one x has
dt(x) > 0), and limc→+∞ g(c) = −∞ (provided at least
one x has dt(x) < 0), there is indeed a single solution
to (3.10). This ends the proof of Lemma 3.1.

Lemma (3.1) shows that eq. (3.10) has a single solution,
but it does not states where ct lies in IR. Without more
information, searching for even approximate solutions
might represent a considerable complexity burden at
the data mining scale. Fortunately, we show that ct lies
on an interval of reasonable measure, with efficient and

simple approximation algorithms. ∀` ∈ {+,−}, define

d`
t = min

x∈S:`dt(x)>0
|dt(x)|

d
`

t = max
x∈S:`dt(x)>0

|dt(x)|

D`
t =

∑

x∈S:`dt(x)>0

wt(x)|dt(x)|

ct = − 1
d−t + d+

t

ln
D−

t

D+
t

ct = − 1

d
−
t + d

+

t

ln
D−

t

D+
t

Lemma 3.2.

ct ∈ [min{ct, ct}, max{ct, ct}] .(3.12)

Proof. Remark that g(0) = wt.dt = −γt from con-
straint (3.3). When γt = 0, g(0) = 0 and thus
ct = 0 = ct = ct. Suppose now that γ > 0. Since
g(0) < 0, ct < 0 and We have

∑

x∈S:dt(x)>0

wt(x)dt(x) exp(−ctdt(x)) ≤ exp(−ctd
+

t)D+
t

∑

x∈S:dt(x)<0

wt(x)|dt(x)| exp(−ctdt(x)) ≥ exp(ctd
−
t)D−

t .

Furthermore,

g(ct) =
∑

x∈S:dt(x)>0

wt(x)dt(x) exp(−ctdt(x))

−
∑

x∈S:dt(x)<0

wt(x)|dt(x)| exp(−ctdt(x))

= 0 .

We obtain exp(−ctd
+

t)D+
t ≥ exp(ctd

−
t)D−

t , thus ct ≤
−(1/(d

+

t + d
−
t)) ln(D−

t /D+
t). We also have

∑

x∈S:dt(x)>0

wt(x)dt(x) exp(−ctdt(x)) ≥ exp(−ctd
+
t)D+

t

∑

x∈S:dt(x)<0

wt(x)|dt(x)| exp(−ctdt(x)) ≤ exp(ctd
−
t)D−

t ,

from which we get exp(ctd
−
t)D−

t ≥ exp(−ctd
+
t)D+

t , and
ct ≥ −(1/(d+

t + d−t)) ln(D−
t /D+

t). The cases when
γt < 0 are obtained in the same way (end of the proof
of Lemma 3.2).

Lemma 3.2 shows that ct may be approximated
through a simple dichotomic search. Its computational
complexity is very reasonable, as we now explain. Sup-
pose that we wish to approximate ct by some ĉt such
that |ct − ĉt|/|ct| ≤ ε. Then, the number of dichotomic
steps to beat error ε is only O(log((d

+

t + d
−
t)/(d+

t +
d−t)) + log(1/ε)).

3.3 Properties of Algorithm 2 We now explain
why the clustering bias, as obtained through distribu-
tion wt, may also help to obtain substantial gains over
u. An interest in minimizing the information divergence
subject to the decorrelation with the dt’s is explained
in the next Lemma. Its proof is straightforward once
we remark that

−ctwt.dt = −1.i(wt,wt+1)(3.13)
−1.i(wt+1,wt) ,

−ctu.dt = 1.i(u,wt)− 1.i(u,wt+1)(3.14)
−1.i(wt+1,wt) .

In the sequel, we replace for the sake of readability
Zt(ct) by Zt (eq. (3.9)). We also suppose that
Algorithm 2 is ran for T > 0 clustering rounds.

Lemma 3.3.

1.i(wt+1,wt) = ln(1/Zt) ,(3.15)
(−ct)wt.dt ≤ − ln(1/Zt) ,(3.16) ∑

t≤T

(−ct)u.dt ≤
∑

t≤T

− ln(1/Zt) .(3.17)

Let us name in the sequel 1.i(wt+1,wt) the information
divergence “remainder”, as it is what remains after
minimization to find wt+1. Lemma 3.3 shows the
equivalence between maximizing the advantage γt (eq.
(3.3)), minimizing the normalization coefficient Zt, and
maximizing this information divergence remainder. Let
us concentrate on Zt. From Lemma 3.3, if Zt is small
(say, < 1), then we may indeed expect gains on both wt

and u.

Lemma 3.4. γt 6= 0 implies Zt < 1. Furthermore,
γtct ≤ 0 with equality iff ct = γt = 0.

More than the fact that Zt < 1, an upperbound on its
value is also useful as we shall see that the quantity∏

t≤T Zt is meaningful to appreciate the fraction of
“bad” points in S, i.e. those for which the loss does not
decrease significantly. We now give such an indication
on how slowly Zt approaches 1.

Lemma 3.5. If ∀x ∈ S, |ctdt(x)| is small enough, then
∃k > 0 a constant such that

Zt(ct) ≤ 1 + kγtct .(3.18)

Proof. We use the fact that Zt(ct) ≤ Zt(ct) and
∀dt(x) ∈ IR, exp(−ctdt(x)) = 1 − ctdt(x) +
(ctdt(x))2/2! − (ctdt(x))3/3! + ... (end of the proof of
Lemma 3.5).

Even when the assumption of Lemma 3.5 is strong,
notice that ct is itself not very large, as we have |ct| ≤
γt/(D+

t (d
−
t + d

+

t)). Furthermore, γtct < 0 for any non-
zero advantage (Lemmata 3.2 and 3.4), which may lead
indeed to Zt small enough to guarantee a very fast
vanishing of

∏
t≤T Zt.

The weak clustering assumption is basically local,
since it postulates that at step t, there will be at least
a slim gain for clustering, say for some fraction of
S. What Lemma 3.3 brings is that when all γt > 0,
these small gains cannot cancel each other, as they are
guaranteed to sum up and bring significant gains over
each wt, but also over u.

Now, what happens when some γt < 0, i.e. when
the clustering gets locally worse on wt ? We now show
that its degradation on u is actually smaller. We have
[1]

1.i(u,wt) ≥ 1.i(u,wt+1)(3.19)
+1.i(wt+1,wt) .

The proof of the next Lemma is based on Lemma 3.4,
and (3.13), (3.14), (3.19).

Lemma 3.6. γt ≤ 0 ⇒ u.dt ≤ wt.dt − (1.i(wt,wt+1) +
1.i(wt+1,wt))/ct.

Fix for short Lt = −u. lnpt (t ≥ 0) as the KMN loss
at time t, and δt = ct − ct−1 (t > 0). The next Lemma
extends ineq. (3.17) by providing an upperbound on the
KMN loss for some time T + 1 > 0 with γT > 0.

Lemma 3.7. ∀T > 0, if γT > 0 then

LT+1 ≤ L0 +
T∑

t=1

δt(Lt − L0)
cT

+
1
cT

T∑
t=0

ln
1
Zt

.

Let us write this bound as LT+1 ≤ L0 + a1(T) + a2(T).
Since γT > 0, cT < 0, and thus a2(T) < 0. Furthermore,
since each Zt ≤ 1, each iteration may help to improve
the clustering through a2(T) (each term in the sum is
≤ 0). Let us concentrate on a1(T). Eqs. (3.14) and
(3.19) bring −ctu.dt ≤ 0. Consider for the sake of
simplicity that each δt ≤ 0 (thus, ct ≤ ct−1 ≤ 0). This
yields u.dt ≤ 0, thus, Lt − L0 ≤ 0. We obtain that
a1(T) is also negative, and each step also contributes to
the KMN loss decrease.

Let us compare this decrease to that of the un-
weighted (naive) clustering which would repeatedly
minimizes Lt. We have LT+1 = L0+

∑T+1
t=1 (Lt − Lt−1),

which we write for short LT+1 = L0 + a3(T). No-
tice that Lemma (3.7) exhibits two sources of loss de-
crease (a1(T) and a2(T)) instead of only one for the
naive approach (a3(T)). Consider for the sake of sim-
plicity that there is a constant, strictly negative loss

decrease Lt − Lt−1 = η < 0 for both approaches.
Fix t∗ = arg min1≤t≤T δt as the iteration of the worst
weighted decrease. Then, we would have a1(T) < a3(T)
provided T (T + 1)δt∗η/(2cT) ≤ (T + 1)η, that is,

ct∗ ≤ ct∗−1 + 2
cT

T
.

We also have limT→+∞ cT /T = 0; since all δt are non
positive, the constraint for the weighted clustering to
be better than the unweighted clustering vanishes as
T increases. Notice that we did not even make use of
a2(T), which is also < 0.

We now focus on boosting-like properties that Al-
gorithm 2 may exhibit. The next Lemma gives, on our
unsupervised learning setting, the equivalent of a well
known boosting Theorem (Th. 1 in [4]).

Lemma 3.8. ∀T > 0, if γT > 0, then

|{x ∈ S : pT+1(x) ≤ (p0)
c0
cT (x)

∏T
t=1(pt)

δt
cT (x)}|

m

≤
∏

t≤T

Zt .

Under the hypothesis that γt ≥ 0, ∀t < T and δt ≤
0, ∀t ≤ T , we get

∀t ≤ T,
δt

cT
∈ [0, 1]

c0

cT
∈ [0, 1]

c0

cT
+

∑

t≤T

δt

cT
= 1

Fix for short α0 = c0/cT and αt = δt/cT (1 ≤ t ≤ T).
Lemma 3.8 can be reformulated to integrate the loss
functions Lt, as:

|{x ∈ S : LT+1(x) ≥ ∑T
t=0 αtLt(x)}|

m
≤

∏

t≤T

Zt .

Therefore, Lemma 3.8 states that there is a very fast
(exponential, Cf Lemma 3.5) decrease of the number
of points in S for which the loss at time T + 1 is not
smaller than the weighted average of all their previous
losses. Note that the weights αt emphasize the best
iterations (for which the decrease of ct is the largest).
Thus, it tends to strengthen this phenomenon.

Lemma 3.8 brings a geometric mean inequality on
the densities. Using the AGH-inequality, it immediately
implies the same result for the harmonic mean [13]. It is
also possible to obtain a more natural arithmetic mean
inequality, using a reverse of the AGH-inequality [13]:

denote αT = min0≤t≤T :αt>0 αt and αT = max0≤t≤T αt.
Then we also have:

|{x ∈ S : pT+1(x) ≤ e
− (αT−αT)2

4αT αT
∑T

t=0 αtpt(x)}|
m

≤
∏

t≤T

Zt .

3.4 Clustering under constant advantage The
next Lemma is a direct, simple consequence of Lemmata
3.7, 3.8. It holds under an assumption resembling that
of the constant learning rate in supervised learning [1].

Lemma 3.9. Fix some T > 0 for which the following
holds: γT > 0, γt ≥ 0 (∀0 ≤ t < T) and ct = c
(∀0 ≤ t ≤ T). Then we have

LT ≤ L0 +
1
c

∑

t≤T−1

ln
1
Zt

,(3.20)

and

|{x ∈ S : LT (x) ≥ L0(x)}|
m

≤
∏

t≤T

Zt .(3.21)

Since c < 0, this Lemma says that there is a significant
global decrease of the loss function Lt through the
iterations (eq. (3.20)), but also the fraction of points for
which this loss does not decrease vanishes very rapidly
(Zt < 1, ∀t, see Lemma 3.5).

3.5 Hard and Soft Membership Assignments
for pt+1 Choosing pt+1 having (whenever possible)
positive advantage over pt on wt (constraint (3.3))
may be easily obtained when treating it as multivariate
Gaussian densities with identical covariance matrix.
Since the last partition (pt) is fixed, we only have
to minimize −wt.pt+1, and this amounts to a least
square solution for the cluster centers [10]. The hard
membership (k-means) solution is:

arg min
µ1,...,µk∈IRn

k∑

i=1

∑

x∈Si

wt(x) ‖ x− µi ‖2 .(3.22)

Solving (3.22) yields

∀i = 1, 2, ..., k,

µi =

∑
x∈Si

wt(x).x∑
x∈Si

wt(x)
.(3.23)

If we integrate the weight update between steps [1.]
and [2.] in Algorithm 1, then we obtain a weighted k-
means clustering algorithm, which is not monotonous,

and therefore not Newton-type (because between each
weight modification, both the points of S and the
cluster centers get reallocated). Thus, there are two
possible behaviors. If ct < 0, the new weights put
greater emphasis on points less efficiently clustered so
far. However, if ct > 0 (the clustering gets worse),
the new weights put greater emphasis on points more
efficiently clustered so far, thereby tending to correct
the smaller quality of the clustering found.

The same reasoning allows to obtain the soft mem-
bership (EM) solution [10]. If we put a fractional as-
signment of each x ∈ S to a cluster i ∈ {1, 2, ..., k} with
density q(i|x) (with

∑
i q(i|x) = 1), then we replace

problem (3.22) by:

arg min
µ1,...,µk∈IRn

k∑

i=1

∑

x∈S

wt(x)q(i|x) ‖ x− µi ‖2 .(3.24)

Solving (3.24) brings our weighted EM solution for the
cluster centers:

∀i = 1, 2, ..., k,

µi =
∑

x∈S wt(x)q(i|x).x∑
x∈S wt(x)q(i|x)

.(3.25)

Finally, notice that pt does not need to be a density:
we only need dt to be defined on S. For instance,
suppose that the loss on one x ∈ S depends on the
location of all cluster centers instead of just one [6].
In that case, the squared Euclidean distance may be
replaced by the harmonic mean [6] (∀a ∈ IR+,∗):

∀x ∈ S, fa(x) =
k∑k

i=1
1

‖x−µi‖a

.(3.26)

The density on x can be replaced by exp−fa(x): even
when this is not a proper density, we can still solve
(3.22), and get the corresponding center update. Define

∀i = 1, 2, ..., k,∀x ∈ S

gi(x) = 1

‖x−µi‖a+2

(∑k

j=1
1

‖x−µj‖a

)2 .

Then, we get

∀i = 1, 2, ..., k,

µi =
∑

x∈S wt(x)gi(x).x∑
x∈S wt(x)gi(x)

.(3.27)

This brings our weighted k-Hmeans algorithm for the
cluster centers, whose weighting scheme appears to be
much different from the original k-Hmeans [6, 7].

k-Hmeans weighted k-Hmeans

Figure 2: BIRCH configurations (K = k = 16) for
soft memberships after 26 iterations: our weighted-k-
Hmeans hits all theoretical clusters, while the usual k-
Hmeans does not (see text for graphical conventions).

4 Experiments

We report experiments comparing our weighted versions
of clustering algorithms to the original algorithms.
Notice that original algorithms may also be weighted
(such as for k-Hmeans), but we keep the term “original”
for these algorithms in order to avoid confusion with
our modified weighted versions. There are various
datasets used for our experimental comparisons, but
in order to make fair comparisons, the weighted and
original versions are run on the same datasets, and
initialized with the same set of empirical cluster centers.
Thus, the differences in results stem from differences
in the weighting strategies, and since the algorithms
are deterministic, even relatively small variations in
the results may actually denote different behaviors and
significant variations in the results quality.

4.1 k-Hmeans vs weighted k-Hmeans We ran
the original k-Hmeans and our weighted version on
a simulated dataset of choice for the evaluation of
harmonic clustering, BIRCH [6, 7]. The dataset consists
of a set of 2D clusters, whose centers are located on
a
√

K × √
K grid. Here, K denotes the number of

theoretical clusters. The distance between two adjacent
cluster means is 4

√
2 with cluster radius of

√
2 (i.e. the

variance in each direction is 1). We fix k = K, and pick
K to be a squared between 32 and 202. We also chose
m = 10000. After [6, 7], the comparison measure is the
number of theoretical clusters “hit” by empirical centers
[6, 7]. The bigger this measure and the better the
algorithms. The motivation for this choice stems from
[6, 7]: the harmonic loss function experimentally helps
to spread more rapidly the centers; the hits appreciate
both its speed and efficiency in spreading. Figure 2
displays graphically two examples of configurations for

K 9 16 25 36 49 64 81 100 121 144 169 196 324 361 400
CK−Hmeans 9 15 24 33 46 60 74 92 113 129 158 181 298 324 371
IK−Hmeans 25 - 15 21 - 16 24 - 30 - - - - - -

Cw−K−Hmeans 9 16 24 33 47 60 74 93 113 130 159 182 302 325 372
Iw−K−Hmeans 16 - 9 8 - 27 24 - 15 - - - - - -

Figure 1: Number (C) of theoretical clusters hit by a center after 50 iterations, for K-Hmeans and weighted-k-
Hmeans (w−K − Hmeans). When CK−Hmeans = Cw−K−Hmeans, the value I. gives the smallest iteration for
which C. is obtained. Boldfaces denote the best results.

both the original algorithm and our modified weighted
harmonic clustering. Because harmonic clustering uses
a soft-membership function, each cluster center found
is associated to a random color, and each pixel of the
image displays the value of the soft membership function
computed on its coordinates. The thick white dots show
the center of the empirical clusters. The graphical result
of Figure 2 clearly displays that weighted-k-Hmeans
outperforms K-Hmeans on this BIRCH configuration,
as it hits all 16 theoretical clusters after 26 iterations,
while K-Hmeans does not (and still does not hit them all
after 50 iterations). Synthetic results are presented on
Figure 1 for experiments on 15 BIRCH configurations.
They display the superiority of our weighted-k-Hmeans
algorithm. Indeed, it is beaten by the original k-Hmeans
only on 1 configuration out of the 15.

4.2 k-means vs weighted k-means We first run
k-means and weighted k-means on datasets with m =
10000 points, with K ∈ {10, 20, ..., 400} theoretical clus-
ters. The clusters are generated by spherical Gaussians
with varying covariance matrix. The data are 2D. For
each K, we pick k ∈ {10, 20, ..., 100} experimental clus-
ters (this makes 400 runs for each algorithm). The KMN
loss of each algorithm is computed after T = 20 itera-
tions, and we keep all configurations for which the rel-
ative difference in the KMN loss is > 1% in absolute
value (otherwise, there is no significant visible differ-
ence). We obtain 33 configurations, 13 of which are in
disfavor of the weighted algorithm. A simple sign test
reveals a threshold probability p = 14.81% for reject-
ing the hypothesis that the weighted algorithm is not
better.

Then, we run again the algorithms with the same
parameters, but on clusters with less overlap. It is
indeed well known that less overlaps tend to “trap”
k-means on worse local optima [6]. Figure 3 shows
a crop of a dataset we obtained. Thick black dots
denote the cluster centers, and convex hulls delimit the
clusters found. To summarize, 109 iterations display
a difference > 1%, 42 of which are in disfavor of the
weighted algorithm. The threshold probability is now

k-means weighted-k-means

Figure 3: Crop of a clustering (K = 60, k = 50) for
k-means vs weighted-k-means: the KMN loss is 19.64%
smaller for our weighted algorithm.

p ≈ 1.05%, which tends to display the ability of the
weighted algorithm to reduce the hardness of clustering
problems with less overlaps.

Recall that the starting point for both the weighted
and the unweighted k-means are exactly the same: same
dataset and same starting clusters. Furthermore, the
KMN loss for Gaussian priors and hard membership
function boils down to computing for each point the
squared Euclidean distance to its cluster center, and
then averaging over all points of S. Thus, a 1%
difference threshold in the KMN loss is in fact significant
to account for a difference between the algorithms, from
both the visual and statistical standpoints.

We have experimented the efficiency in spreading
the empirical cluster centers, using the hit numbers, in
the same way as for harmonic clustering above. We
have generated 3D ring Gaussians, that is, spherical
Gaussians whose points are translated by some radius r
(fixed for each theoretical cluster) on some random axis
passing on the cluster’s expectation. We have generated
datasets with m = 3000 points and K ∈ {5, 10, ..., 55}.
For each k ∈ {5, 15, 25, 35}, we have ran both k-
means and weighted-k-means. We have computed the
average number of theoretical clusters hit by a cluster
center found, and have computed the number of couples

k win/tie/lose
5 2/9/0
15 6/4/1
25 3/3/5
35 7/3/1

Tot. 18/19/7

Figure 4: Score of weighted-k-means against k-means
for the hit numbers on 3D ring Gaussians (see text for
details).

k win/tie/lose
35 3/7/1
40 4/7/0
45 5/6/0
50 5/5/1
55 3/8/0

Tot. 20/33/2

Figure 5: Score of weighted-k-means against k-means
for the hit numbers on 4D spherical Gaussians (see text
for details).

(k,K) for which this score is in favor of weighted-k-
means (“win”), is in disfavor (“lose”), or for which both
algorithms maintain on average the same number of hits
(“tie”). Figure 4 shows the results obtained. From these
results, it comes that on more than 40% of the runs,
the weighted version of k-means succeeds in making a
better attraction of the cluster centers, while it fails on
less than 16% of them. To complete this experiment,
we have ran again weighted-k-means and k-means on
4D spherical Gaussians, with larger values for k, to see
what happens when one requests more clusters. Figure
5 shows the results obtained. In this case, weighted-k-
means wins on 36.4% of the runs, while it is beaten only
on 3.6% of them. This ratio of 10 in favor of weighted-k-
means tends to prove that the weighting scheme tends to
spread more rapidly the centers of clusters, in the same
way as it does for harmonic clustering (Cf Subsection
4.1). This also explains partially why the difference
between weighted-k-means and k-means is sharpened on
datasets with less overlaps between theoretical clusters:
the rapidity in spreading the centers may help to escape
the poor local optima on which the k-means are trapped.

5 Conclusion

Recent papers in unsupervised learning have put a
great emphasis in trying to bring to clustering the
recent breakthrough of a supervised learning technique
that has allowed to obtain dramatic improvements in
performances. In the context of unsupervised learning,

this represents the ability to make subtle reweighting of
the points of a dataset, with the hope to get better final
solutions, and get them faster than without reweighting.
In fact, some of the essential reasons for this motivation
are purely conceptual but quite appealing, as it seems
indeed natural that points less efficiently clustered so
far may “attract” the clusters on the next rounds, and
thus receive bigger weights [6, 7].

The main contribution of this paper is to adopt an
insight from classification to improve the performance
of unsupervised learning algorithms, by making more
precise this analogy to boosting algorithms in super-
vised learning. We have proposed an abstract itera-
tive clustering scheme that, coupled to some particular
reweighting scheme, may indeed bring significant im-
provements on unweighted clustering from the theoret-
ical standpoint. This iterative clustering scheme can be
specialized to bring weighted variants of k-means, EM,
and even harmonic means clustering [6, 7]. Our experi-
ments display the ability of the weighted algorithms to
obtain better solutions, but also to obtain them faster
than for the non-modified clustering algorithms.

6 Acknowledgments

R. Nock gratefully acknowledges a visiting grant from
Sony CSL Tokyo. The authors would like to thank J.-C.
Janodet and T. Boudellal for comments on this paper.

References

[1] C. Gentile and M. Warmuth, “Proving relative loss
bounds for on-line learning algorithms using Bregman
divergences,” in Tutorials of the 13 th International
Conference on Computational Learning Theory, 2000.

[2] Y. Freund and R. E. Schapire, “A Decision-Theoretic
generalization of on-line learning and an application to
Boosting,” Journal of Computer and System Sciences,
vol. 55, pp. 119–139, 1997.

[3] J. Kivinen and M. Warmuth, “Boosting as entropy
projection,” in Proc. of the 12 th International Con-
ference on Computational Learning Theory, 1999, pp.
134–144.

[4] R. E. Schapire and Y. Singer, “Improved boosting al-
gorithms using confidence-rated predictions,” in Proc.
of the 11 th International Conference on Computa-
tional Learning Theory, 1998, pp. 80–91.

[5] M.J. Kearns, “Thoughts on Hypothesis Boosting,”
1988, ML class project.

[6] G. Hammerly and C. Elkan, “Alternatives to the k-
means algorithm that find better clusterings,” in Proc.
of the 11 th International Conference on Information
and Knowledge Management, 2002, pp. 600–607.

[7] B. Zhang, M. Hsu, and U. Dayal, “k-harmonic means -
a spatial clustering algorithm with boosting,” in Tem-
poral, Spatial, and Spatio-Temporal Data Mining, J. F.

Roddick and K. Hornsby, Eds., pp. 31–45. Springer
Verlag, 2000.

[8] L. Bottou and S. Bengio, “Convergence properties
of the k-means algorithm,” in Advances in Neural
Information Processing Systems 7, 1995, pp. 585–592.

[9] J. McQueen, “Some methods for classification and
analysis of multivariate observations,” in Proc. of the
5th Berkeley symposium on mathematical statistics and
probability, 1967, pp. 281–297.

[10] M. J. Kearns, Y. Mansour, and A. Y. Ng, “An
information-theoretic analysis of hard and soft assign-
ment methods for clustering,” in Proc. of the 13 th

International Conference on Uncertainty in Artificial
Intelligence, 1997, pp. 282–293.

[11] A. P. Dempster, N. M. Laird, and D. B. Rubin,
“Maximum likelihood from incomplete data via the EM
algorithm,” J. of the Royal Stat. Soc. B, vol. 39, pp.
1–38, 1977.

[12] L. G. Valiant, “A theory of the learnable,” Communi-
cations of the ACM, vol. 27, pp. 1134–1142, 1984.

[13] I. Budimir, S. S. Dragomir, and J. Pečarič, “Further
reverse results for Jensen’s discrete inequality and ap-
plication in information theory,” Journal of Inequal-
ities in Pure and Applied Mathematics, vol. 2, 2001,
article 5.

