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Abstract

This paper extends a previous risk study of the well-known nearest neighbor (NN) rule with fixed and finite reference
samples. Our result is competitive with some previously obtained in fairly restrictive and complex settings, and beats
these in general cases. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The nearest neighbor (NN) rule is one of the
simplest and oldest non-parametric classification
techniques. It uses a set of observations S from a
metric space X to classify members of X into one
of ¢ classes. For each x € X, it chooses the element
x' € S which is the nearest to x and gives the same
class to x as that of x’ (an arbitrary tie-breaking
rule is assumed when more than one point are at
minimal distance). Historically, the first appear-
ance of a similar classification rule occurred in (Fix
and Hodges, 1951). Since then, much work has
been done for the theoretical risk study of the NN
rule or variants (Cover, 1968; Cover and Hart,
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1967; Drakopoulos, 1995; Okamoto and Yugami,
1996; Snapp and Venkatesh, 1998; Venkatesh et al.,
1992).

The first result (Cover and Hart, 1967) showed
that, as the reference sample’s size goes towards
infinity, modulo some smoothness and indepen-
dence constraints, the risk of the NN rule, Ps, is
upperbounded by 2P* — ¢P* /(¢ — 1), where P* is
Bayes optimal risk. Apart from the upperbound
itself, this result is important because it allows to
evaluate the difficulty of a pattern recognition
problem by computing bounds for P* (Cover,
1968; Drakopoulos, 1995). Later results relaxed
the infinite size constraint on S, and studied the
expectation of the NN risk when samples of equal
size are drawn, as for example (Cover, 1968;
Venkatesh et al., 1992).

A recent result (Snapp and Venkatesh, 1998)
even focused on generalizing bounds to the k-NN
rule, in which the k nearest points vote to give a
class. Recently too, the study was relaxed to give
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risk upperbounds for finite and fixed reference
samples § for problems with unrestricted number
of classes (Drakopoulos, 1995). This work consti-
tutes the starting point of our work.

Drakopoulos (1995) carried out his study by
putting continuity assumptions to bound the
variations of X; namely, Holder continuity was
assumed regarding the likelihood functions. Let A
and B be metric spaces upon which metrics d4 and
dp are defined, then a function f : 4 — Bis Holder
continuous iff

Jou>0,K >0:Vx,yc A,
dp(f(x), f(v)) < Kda(x,y)".

Using this hypothesis, Drakopoulos (1995) proves
that the risk of the NN rule is upperbounded by
2P* — cP* /(¢ — 1) + Kg, where K is the maximal
variation (assuming Holder continuity) of the
likelihood functions between one point of X and
its NN in S. This term can be thought of as a
penalty factor due to the finiteness of S. In a sec-
ond theorem, Drakopoulos (1995) strengthens the
result and obtains a smaller upperbound for P,
but at the expense of a very restrictive hypothesis
completing Holder continuity. This hypothesis
expresses that on any point of X, the overall
variation of the likelihood functions over all
classes (using L, norm), between x and its NN in
S, is upperbounded by K'(c) x g(sup,.x P*(»)).
Here K'(c) is increasing and converges to 2, but
g(-) is a decreasing function which converges
to zero as the maximal Jlocal Bayes error,
sup,.y P*(y), attain its maximal possible value,
(¢ —1)/c. By means of words, if there exists in X
one point x for which Bayes rule does only a little
better than a simple coin toss, then for any point y
of X, the conditional class probabilities between y
and its NN in S, potentially very far from y, are
constrained to be practically the same. In spite of
this limitation, Theorem 2 of Drakopoulos (1995)
is interesting because it shows that, modulo the
assumption, the penalty factor due to the finiteness
of § vanishes as P* increases, another key factor
when studying the difficulty of a pattern recogni-
tion problem.

Our aim in that paper is to exhibit a stronger
behavior (that is, a smaller upperbound) in a

more general setting, using weaker and simpler
hypotheses. Our first hypothesis is weaker than the
first one of Drakopoulos (1995). Our second as-
sumption is much less restrictive with respect to
the second one of Drakopoulos (1995). Informally,
it states that there exists on average over X a
positive correlation between the likelihood func-
tions of certain classes. After having presented our
main result, we propose an application of the
theorem in the two-classes case. In that frame-
work, the result is even stronger than in the general
case, since the second hypothesis disappears. The
vanishing property of the penalty factor is there-
fore proven under the weakest restriction scheme,
yet it generalizes all corresponding results of
Drakopoulos (1995).

2. Definitions and related theorems

Most of our notations follow those of Drako-
poulos (1995). Let

S = {x1,X2,~~~,X\S\}

be a finite sample set over a metric space X up-
on which a metric is defined; here, |-| denotes
the cardinality. Assume that each x; is labeled
with one of ¢ classes 0y,0,,...,0.. Define vari-
ables X, @y, that take values over X and
{61,0,,...,0.}, respectively. Similarly to Drako-
poulos (1995), the results we present rely im-
plicitly on the fact that the pairs (observation,
class) of § are independently identically distrib-
uted according to the distribution (X, Oy).
Throughout the paper, we make use of the fol-
lowing notations:

vie{l,2,...,c},

a:(x) = Pr(Oy =0, | X =x),
bi(x) = Pr(@x = 0, | X = argmin d(x,)).
ye

In order to achieve our results, we make the fol-
lowing hypothesis, which explicitly bounds the
variations of class-conditional probabilities.

(H) There exists positive increasing functions
fi(.) : R* —[0,1] such that
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vie{l,2,...,c},
|ai(x) — bi(x)] < fi(d(x, argr_glei;l d(x,»))),

Drakopoulos (1995) puts fi(a) 2 Ka* for some
K; > 0,0; > 0. This states Holder continuity as
presented in the introduction. Remark that (H)
belongs indeed to the weakest hypotheses one
could consider, since the choice f;(-) =1 boils
down to removing the constraint on class i. For
the sake of readability, we make use of the
shorthand

vie {1,2,... ¢}, 0:(x) £ fi(d(x, argmin d(x, 7))).
yeE

Let 3(x) denote the corresponding c-components
vector for all J;(x). Vx € X, P.(x) denotes the
Bayesian error on x and Ps(x) denotes the error of
the NN rule using § on x. P, and Pg are the cor-
responding errors over the whole X. We are now
ready to state the first result of Drakopoulos
(1995). For the sake of comparison, the theorem is
stated locally on every x.

Theorem 1 (Drakopoulos, 1995). Suppose (H)
satisfied assuming Holder continuity. Vx € X, we
have

LP*(x)z—k max  d;(x).

P*(x)gPs(x)<2P*(x) T o—1 i€{1.2,....c}

An overall upperbound on Ps can be easily
obtained by taking the expectations using the
probability density function p(x) of X over X.
Drakopoulos (1995) obtains the upperbound

c
Pg<2P, ———P? +sup max &(x). (1)
c—1 ex i€{l2,..c}

Note the degradation of the penalizing factor de-
pending on g(x), to ensure easy integration. At the
expense of a strong constraint, Drakopoulos
(1995) was able to prove a different upperbound,
which integrates Bayes optimal risk in the penal-
izing factor.

(H') Hypothesis (H) is satisfied and Vx € X,

xeS§

c 2
Z (supKid(x, arg min d(x,y))“”)
1 yes

=

<2 C; 1(1 —C_LIP*(x))

For the sake of simplicity, define

c 2
L= Z (supK,d(x7 argmin d(x,)) ) .

i—1 xes

With the help of (H'), Drakopoulos proves the
following theorem

Theorem 2 (Drakopoulos, 1995). Suppose (H')
satisfied assuming Holder continuity. Vx € X, we
have

P.(x) < Ps(x) <2P.(x) —

Ny 1(1 - P*(x)>.

c

Integration over X brings the same bounds with
the dependencies on x removed. A careful look at
the proof of Theorem 2 (Drakopoulos, 1995) even
allows to replace for the local risk on every x € X
the quantity L by the smaller one

C

Lx)=,|> (K,-d(x, argmin d(x, y>)“f) .

i=1

Even with that refined bound, it is worthwhile
remarking that (H') is highly restrictive. In par-
ticular, on a point x of X where Bayes rule per-
forms only slightly better than a simple coin toss,
the variations of class-conditional probabilities are
constrained to be almost zero between x and its
NN in S, a point which can be very far from x.
More generally, the constraint on Pr(Ox | X) is
very strong when studied over the possible sam-
plings of S. Indeed, the satisfaction of (H') over all
(or many) samplings implies that if the problem
admits a point x € X for which P.(x) = (¢ — 1)/c,
then all points y € X satisfy P.(y) = (¢ —1)/c. In
contrast, the single satisfaction of (H) over all
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possible samplings of S does not suffer the local
influence of some points of X, and the constraints
it puts over Pr(Oy | X) can be reduced provided X
has a reasonable finite diameter.

3. Improved results

We begin with some useful definitions for this
section. We denote the Bayesian class of x as
m, = arg max,., ,a(x). The vectors a,, (x),
B\MX (x) and 3\% (x) are the ¢ — 1 components vec-

tors derived respectively from @(x), 5(x) and d(x)
to which component m, is removed. The following
are general definitions, for some arbitrary vectors
d(x) and &(x) having the same dimension, ¢, and
whose components are referred to as d;(x) and
e;(x), respectively (Vi € {1,2,...,¢c}).

E(@() =1 Y dl). ©)
V) =Y () - E@w)) ()

x (ei(x) — E(é(x)))]. (4)
Hypothesis (H") is the following one.

(1) / COV(@\, (1), B, (1)) p(x) dx > 0.

Contrasting with (H'), which is used to prove
Theorem 2, (H*) has four advantages. First, the
constraint is not a local constraint expressed on
every x € X. Second, it relies actually on the av-
erage behavior over X of certain functions. Third,
this constraint does not concern the Bayes classes
for each point of X, but the other, “minor” classes.
Fourth, it seems reasonable to think that, as .S
grows, on average, the points of X will come close
enough to their neighbor in S so that the class
conditional probabilities will not fluctuate that
much between them, leading to a situation in
which (H") is satisfied. We are now ready to state
our main result.

Theorem 3. Suppose (H) and (H*) satisfied. We
have

P*
P, <Pg<2P, — Clpf+sup5m(x)<1— ¢ )

¢ — xeX c—1

Proof. Proving P, < Py is trivial. We prove the right
inequality. We have

Ps(x) = 1 —a(x) - b(x) (5)

=1-(1-P(x)) (1 — z(: bi(x)>
i=1,i#my

c

- Y a@h) (6)

i=1,i#my

C

—P)+ Y b1 -P) - ax)

i=1,i#my

()

=P.(0)+ Y @@ -Px) - a)
i=1,i#my

C

+ Y (i) = a(0)(1 = Pu(x) = ai(x))

i=1,i#my

c

= 2P () = S P~ V(@ ()

c —
¢

+ ) (ilx) — @) (1 = Px) = ai(x)).
i=1,i#my
(8)

We have made use of the following relationships:
in (6) >y ai(x) =37 bi(x) =1 and a,, (x) =1
—P.(x), and in (8) we have

S a1 = P(x) - alx))
i=1,i#my

—P) P - Y al)

i=1,i#my

— P8) — PAa) — Vi, () -

=P.(x) — P.(x)? — V(@ (x)).

c

c—1
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We upperbound the factor

c

D (Bix) = ai(x)) (1 = Po(x) = a;(x)) = V (@, (x)).
i=1,i#my
First, remark that the quantity

c

(1=P.() Y (bi(x) —alx))

i=1,i#my
= —(1 = P(x)) (b, (x) — @, (x)),

this due to the fact that > ., a;(x) = >, bi(x)
= 1. Now, we have

c

= Y (blx) — ailx))ai(x) = V(@ (x))

i=1,i#my
c P* 2
=_ Z a;(x)b;(x) + () .
i=1,imy c—1

The quantity Cov(d\, (x), E\mx (x)) is also equal to

c 1 c c
S bt - D al D ),
i=1,i#my i=1,i#my J=1j#my

which is also

3wl -2

i=1idm, c—1 c—1
We get
C
Ps(x) = 2P.(x) — mp*(x)z = (b, (x) = @, (x))

(1= 8 ) = Coutn, (0B, ().

c—1
Integrating over X, using the fact that

0<var(P () = [ Pployde — P

X

and using the fact that —(b,, (x)
B, (x) = @, (x)| < I, (x), We get

= an, () <

P*
PS<2P*—%Pf+sup5mx(x)(l— ¢ >

xeX c— 1
- /X CoV(dn (x), By (x))p() di.

There remains to use hypothesis (H*) to get the
desired upperbound. [

When the number of classes increases, this bound
becomes better and better with respect to Theorem
2. Ultimately, our penalty sup,.y ., (x) becomes
negligible with respect to the quantity L/ (c — 1)/c.
On the other side, when ¢ = 2, remark that we have
[y Cov(a\, (x), B\m, (x))p(x)dx = 0, since the func-
tion is 0 everywhere. In that case, we can state the
following theorem, which extends all theorems of
Drakopoulos (1995) while using only (H).

Corollary 4. Suppose (H) satisfied. Whenever
c =2, we have
P, < Pg < 2P, — 2P* 4+ sup d,, (x)(1 — 2P%).

xeX

For example, the theorem of Drakopoulos (1995)
which is proven under the weakest hypothesis
among all his results ((H) restricted to Holder
continuity) would only lead to the upperbound
Pg < 2P, — 2P? + sup max d;(x).

yex i€{1,2}
This upperbound is larger than that of Corollary 4
for two reasons. First, its penalty term,
SUp,cy MaXc(12) 0;(x), is not decreasing as a
function of P*. Second, the dependence on ¢ uses
its maximal component, instead of the (eventually
smaller) single component of Bayes class.

Fig. 1 shows a synthetic and pathologic exam-
ple of a two-classes problem on which our bounds
considerably outperform those of Drakopoulos
(1995). Here, X takes values over the interval [a, b],
and the observations are one dimensional. Note
that the class-conditional densities satisfy Holder
continuity, with o; = o, > 1. Suppose that € is very

Pr(@x = 62| X = z)

,
"
!

| 1
T T
a Ij

Fig. 1. A pathologic example for two classes in which § =

{XI,XZ}.



412 R. Nock, M. Sebban | Pattern Recognition Letters 22 (2001) 407412

small compared to 7. In that case, the bounds of
Drakopoulos (1995) in in Eq. (1) gives the penalty
term

up B 910 =

This term is obtained for the points on the im-
mediate right side of x|, where Pr(Oy = 6, | X = x)
approaches zero. Corollary 4 gives the much
smaller bound

Sup 0, (x)(1 — 2P*) ~ €(1 — 2P"),

xeX

which is even smaller than e. This term is obtained
for the points < (a + b)/2 for which x, is the NN.
Suppose now that P, = 1/8, in which case in Eq.
(1) gives approximately Ps < 7/32 +  whereas our
bound in Corollary 4 gives the much better up-
perbound Ps < 7/32 + 3¢/4.

To finish with this illustrative example, suppose
that § contains only x;. In that case, the penalty
term of Drakopoulos (1995) approaches 5+ ¢
(obtained for the points where Pr(@y = 0, | X = x)
approaches zero), whereas ours remains the same.

4. Conclusion

In this paper, we have provided new results
about the NN risk in the case where the reference
sample is fixed and finite. Our bounds (Theorem 3
and Corollary 4), as well as those of Drakopoulos
(1995) show that the NN risk in the fixed an finite
case can be expressed by the sum of the infinite
sample risk plus a penalty term. The theoretical
interest of our results is to provide better upper-
bounds for the the NN risk as opposed to Drak-
opoulos (1995), while wusing weaker (and
sometimes the weakest) hypotheses. Apart from
this general consideration, we think our bounds
also provide an interesting glimpse into the way
the penalty term behaves, as they show that its
influence can be reduced on hard problems, for
which P, tends to be high. Another interesting
feature of our results is that they hold in a general
and practical setting as opposed to Cover (1968),

because in experimental works the reference set S
is fixed and usually of more or less restricted size.
There is however a price to pay to cast the results
into this new setting. This is the knowledge of a
bound on the variations of class-conditional
probabilities in the domain not covered by S, but it
appears that this is not a difficulty really hard to
bypass. Indeed, conventional statistical analyses
such as inferential statistics heavily rely on dis-
tributional assumptions such as normality, thereby
leading in our case to computable bounds for the
penalty term. Modulo this analytical step, we
think our bounds can be of higher practical po-
tential than those of Cover (1968) and Drakopo-
ulos (1995) to evaluate the real difficulty of a
pattern recognition problem by computing bounds
for P,. This is an important problem which early
motivated the obtention of risk bounds for the NN
rule Cover (1968, 1995), and eventually contrib-
uted to its widespread and use.
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