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Abstract

A data stream is a potentially uninterrupted flow of data. Mining this flow makes it necessary to cope with uncertainty, as only a part of9
the stream can be stored. In this paper, we evaluate a statistical technique which biases the estimation of the support of patterns, so as to
maximize either the precision or the recall, as chosen by the user, and limit the degradation of the other criterion. Theoretical results show11
that the technique is not far from the optimum, from the statistical standpoint. Experiments performed tend to demonstrate its potential,
as it remains robust even under significant distribution drifts.13
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction17

A growing body of works arising from Databases and
Data Mining deals with data arriving in the form of contin-19
uous potentially infinite streams, i.e. an ordered sequence
of item occurrences that arrives in a timely manner. Data21
streams have seen the emergence of crucial problems that
were previously not as pregnant for databases, such as the23
accurate retrieval of informations in a data flow that pre-
vents its exact storage, and whose information may evolve25
through time. Emerging and real applications generate data
streams: trend analysis, fraud detection, intrusion detection,27
click stream, among many others. Trend analysis is an im-
portant problem that commercial applications have to deal29
with, which is to detect in the data stream significant trends,
emerging buzz, and unusually high or low activity [1].31
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In fraud detection, data miners try to detect suspicious 33
changes in user behavior [2]. Finally, intrusion detection
is a critical approach to help protect systems, with the 35
growing importance of network systems security and the
sensitivity of the informations stored and manipulated 37
online [3].

A crucial issue in Data Mining that has recently attracted 39
significant attention [3–8] is to build the set of the most fre-
quent patterns encountered in the data stream. Though it is 41
straightforward to formulate, addressing this issue faces two
non-trivial problems. The first is the statistical approxima- 43
tion of the true supports by observed supports. The second
concerns the drifts that the data stream may face through 45
time.

The rest of this paper is organized as follows. Section 2 47
states precisely the problem. Our theoretical approach is pre-
sented and discussed in Section 3. Section 4 is experimen- 49
tal: it presents and discusses some results that were obtained
on readily generable data streams. In Section 5 we make 51
some comparisons with related approaches. Finally, Section
6 concludes the paper with future avenues for research. In 53
order not to laden the paper, an Appendix at the end of the
paper contains the proof of a theorem. 55
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2. Problem statement1

We define items as the unit information, itemsets to be
sets of items [9], and sequential patterns to be sequences of3
items [10]. We use the word pattern for a shorthand to both
settings, without loss of generality. A pattern is �-frequent5
if it occurs in at least a fraction � of the data stream (called
its support), where � is a user-specified parameter.7

Basically, our problem is motivated by the fact that the
data we store catches a glimpse of a data stream, and the in-9
formation we mine should take into account the uncertainty
generated by this partial observation of the whole stream.11
Our setting is thus a bit more downstream than those of
[5,11–14]. Given the nature of the streaming data, there are13
two sources of error when estimating frequent patterns from
the available part of the stream:

15
(1) it is possible that some patterns observed as frequent

might in fact not be frequent anymore from a longer17
observation of the data stream;

(2) on the other hand, some patterns observed as not fre-19
quent may well in fact be frequent from a longer history
of the data stream.21

The point is that it is statistically hard to nullify both sources
of error from the observation of a subset, even very large,23
of the whole data stream [15]. This unsatisfiable goal can
be relaxed to the tight control of one source or error, while25
keeping the other one within reasonable bounds. This goal,
which we address in this paper, can be summarized as fol-27
lows; the user fixes some related parameters and chooses a
source of error:

29
(a) the source of error chosen is nullified with high proba-

bility;31
(b) the other one incurs a limited loss.

In this paper, we propose a solution to this problem which33
is statistically near optimal: any other technique that would
yield a loss significantly smaller on (b) would not satisfy35
(a), regardless of its computation time.

Another problem regarding data streams is the robustness37
of the technique, when the stream is subject to distribution
drifts. In this case, pattern supports may fluctuate, and min-39
ing is as efficient as it makes a fast tracking and update of
the frequent patterns.41

3. Our approach

Our approach relies on the following model of the data43
stream. It is supposed to be obtained from the repetitive
sampling of a potentially huge domain X which contains45
all possible data sequences, see Fig. 1 (a). Obviously, X is
unknown, but we have access to its elements through an un-47
known distribution D, see Fig. 1(b). We make absolutely
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Fig. 1. Our framework. The left hand-side depicts the reality, and the
right-hand side what we “see” from the sampling of the stream (see text
for details).

no assumption on D, except for the moment that it does 49
not change through time (later, this assumption shall be re-
laxed). Now, the user specifies a real 0 < � < 1, the theoreti- 51
cal support, and ideally wishes to recover all the patterns of
X that are �-frequent with respect to D (also called true �- 53
frequent). This set is called X�, and formally defined below.

Definition 1. 55

∀0���1, X� = {T ∈ X : �X(T )��}, (1)

with �X(T ) = ∑
T ′∈X:T � t T

′ D(T ′), and T � t T
′ means that 57

T generalizes T ′.

Ideally, our objective should be to approximate X�. How- 59
ever, X is typically huge and the set S of observed data se-
quences which we have sampled from X in the data stream, 61
has a size |S| = m which is typically of minute order with
respect to |X|. In our framework, we usually reduce this dif- 63
ference with some algorithm returning a superset S∗ of S,
having size |S∗|=m∗ > m. Typically, S∗ contains additional 65
generalizations of the elements of S [16]. The key point is
that S∗ is usually still not large enough to cover X�, regard- 67
less of the way it is built (see Fig. 2). We can thus relax our
objective to solve the following affordable estimation prob- 69
lem:

(Pb1) approximate as best as possible the following set: 71

X∗
� = X� ∩ S∗, (2)

for any S and S∗ (see Figs. 1 (c) and 2). 73
Now, ∀T ∈ S∗, we cannot compute exactly �X(T ), since

we do not know X and D. Rather, we have access to its best 75
unbiased estimator �S(T ), which can be easily computed
from S: ∀T ∈ S∗, �S(T )=∑

T ′∈S:T � t T
′ w(T ′), with w(T ′) 77

the weight (observed frequency) of T ′ in S. We adopt the
following approach to solve problem (Pb1): 79

(Pb2) find some 0 < �′ < 1 and approximate the set X∗
�

by the set of observed �′-frequent of S∗, that is: 81

S∗
�′ = {T ∈ S∗ : �S(T )��′}. (3)

PR2549



UNCORRECTED P
ROOF

ARTICLE IN PRESS
P.-A. Laur et al. / Pattern Recognition ( ) – 3

S*
�′ FP

S*

TP TN

FN

X*
�

Fig. 2. The error estimation: the set we build, S∗
�′ , may suffer two sources

of error from X∗
� (see text for details).

Addressing (Pb2) amounts to fixing an accurate value for1
�′. Clearly, the naive approach fixing �′ = � does not bring
X∗

� = S∗
�′ ; it only guarantees that this holds with probability3

1 when m → ∞ (from Borel–Cantelli’s lemma, [17]), and it
can only guarantee a fixed rate of convergence of S∗

�′ towards5
X∗

� as m increases (from Glivenko–Cantelli’s theorem, and
[17,18,15]). Statistically speaking, it is thus hard to find7
some �′ that nullifies the error incurred, i.e. the weight on
D of X∗

��S∗
�′ , for any m. Fortunately, this error is composed9

of two separate sources that were previously presented in
Section 2, and its support can be decomposed as follows:11

X∗
��S∗

�′ = (X∗
�\S∗

�′) ∪ (S∗
�′ \X∗

�). (4)

It turns out that it is possible to obtain, modulo some user-13
fixed statistical risk �, some fairly strong constraints on ei-
ther of its components, i.e. the weight on D of X∗

�\S∗
�′ or15

S∗
�′ \X∗

� . What is most interesting is that these constraints
hold regardless of m.17

We now turn to the formal criteria appreciating the good-
ness of fit of S∗

�′ . We define:19

T P =
∑

T ∈S∗
�′∩X∗

�

D(T ), FP =
∑

T ∈S∗
�′ \X∗

�

D(T ),

FN =
∑

T ∈X∗
�\S∗

�′

D(T ), T N =
∑

T ∈S∗\(S∗
�′∪X∗

� )

D(T ).

The precision allows to quantify the proportion of estimated21
�-frequent that are in fact not true �-frequents:

P= T P/(T P + FP). (5)23

Maximizing P is equivalent to the minimization of our first
source of error. Symmetrically, the recall allows to quantify25
the proportion of true �-frequent that are missed:

R= T P/(T P + FN). (6)27

Maximizing R amounts to the minimization of our second
source of error. We also make use of a well-known quan- 29
tity in information retrieval, which is a weighted harmonic
average of precision and recall, the F�-measure. Thus, we 31
can adjust the importance of one source of error against the
other by adjusting the � value: 33

F� = (1 + �2)PR/(R+ �2P). (7)

Informally, our approach boils down to picking a �′ different 35
from �, so as to maximize either P or R. Clearly, extremal
values for �′ could address the problem, but they would yield 37
very poor values for F�, and also be completely useless for
data mining purposes. For example, we could choose �′ =0, 39
and would obtain S∗

0 = S∗, and thus R= 1. However, in this
case, we would also have P = |X∗

�|/|S∗|, a too small value 41
for many domains and values of �. We would also keep all
elements of S∗ as true �-frequents patterns, a clearly huge 43
drawback for mining issues. We could also choose �′ =1, so
as to be sure to maximize P this time; however, we would 45
also have R = 0, and would keep no element of S∗ as �-
frequent patterns. Fig. 1 (d) gives the possible choices of �′, 47
for some � > 0 presented below.

3.1. (�, �)-covers 49

We adopt the concise probabilistic notation of [19], and
define for some predicate P the notation ∀�P which means 51
that P holds for all but a fraction �� of the sets S sampled
under distribution D. Equivalently, P holds with probabil- 53
ity �1 − � over the sampling of S on distribution D. The
following definition is the cornerstone of our approach. 55

Definition 2. ∀0���1, ∀0���1, ∀S ⊆ X, we say that
S∗ is a sup-(�, �)-cover of X iff ∀T ∈ X∗

� , 57

�S(T )��X(T ) − �. (8)

Respectively, we say that S∗ is an inf-(�, �)-cover of X iff 59
∀T ∈ S∗\X∗

� ,

�S(T )��X(T ) + �. (9) 61

The way we use Definition 2 is simple. Consider that the
user has fixed both the theoretical support 0���1, and the 63
statistical risk parameter 0 < � < 1. Suppose we can find �
such that: 65

∀�, S∗ is an inf -(�, �)-cover of X. (10)

Now, fix �′ = � + �, so that we keep S∗
�+�. Because (10) 67

holds, we observe ∀T ∈ S∗\X∗
�, �S(T )��X(T )+ � < �+ �.

Thus, we obtain ∀�, S∗
�+� ⊆ X∗

� , which easily yields: 69

∀�,P= 1. (11)

Thus, there is no first source of error, with high probability. 71
Now, suppose we can find � such that ∀�, S∗ is a

sup -(�, �)-cover of X, and fix this time �′ = � − �, 73
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so that we keep S∗
�−�. Because of the property of S∗, we1

observe ∀T ∈ X∗
�, �S(T )��X(T ) − ��� − �, which yields

∀�, X∗
� ⊆ S∗

�−�, and finally:3

∀�,R= 1. (12)

In that case, there is no second source of error with high5
probability.

Computationally speaking, both sets S∗
�+� and S∗

�−� can7
be easily built empirically from S∗. Solving problem (Pb2)
is now reduced to finding an accurate value of � such that9
S∗ is a sup or inf -(�, �)-cover of X with high probability.
This is exposed in the following subsection.11

3.2. Finding �

The following theorem gives a value � which yields with13
high probability a sup -(�, �)-cover of X.

Theorem 1. ∀X, ∀D, ∀m > 0, ∀0���1, ∀0 < ��1, the15
following holds: ∀�, S∗ is a sup-(�, �)-cover of X, for any �
satisfying:17

��
√

(1/(2m)) ln(|X∗
�|/�).

Proof. A standard application of Chernoff bounds yields19
that the probability for any fixed pattern T ∈ X to observe
�S(T )��X(T ) − � is no more than exp(−2m�2). Using the21
union bound, the probability that this is observed for some
pattern ∈ X∗

� is no more than |X∗
�| exp(−2m�2). Solving for23

� this quantity equal to � yields the theorem. �

The same kind of result can be obtained for inf -(�, �)-25
covers, with the same proof. Hereafter, we give the statement
of the theorem.27

Theorem 2. ∀X, ∀D, ∀m > 0, ∀0���1, ∀0 < ��1, the
following holds: ∀�, S∗ is an inf-(�, �)-cover of X, for any29
� satisfying:

��
√

(1/(2m)) ln(|S∗\X∗
�|/�)31

Theorems 1 and 2 say that finding (inf / sup)-(�, �)-covers
is a fairly easy task. What they do not say is whether this33
simplicity can be replaced by another approach, may be more
sophisticated, to find significantly better covers. In other35
words, could there exist equivalents to Theorems 1 and 2
with a significantly smaller �? In the following subsection,37
we discuss some properties of our method, and show in
particular that the answer to this question is no.39

3.3. Near optimality of (�, �)-covers

The following argument shows that there are no signifi-41
cant better covers than those proposed in Theorems 1 and 2.
Informally, we build to this extent a skewed distribution D43

on some very simple X∗
� , such that with probability �� we

“miss” the (�, �)-cover for some value of � slightly smaller 45
than that proposed in Theorems 1 or 2. The following the-
orem proves the result for sup -(�, �)-covers of X. 47

Theorem 3. ∃X, ∃D, ∃m > 0, ∃0���1, ∃0 < ��1 such
that the following holds: with probability ��, S∗ is not a 49
sup-(�, �)-cover of X, for any � satisfying:

��c

√
(1/(2m)) ln(|X∗

�|/�), 51

for some constant c < 1.

The proof of this theorem is postponed to the Appendix. 53
Since failing to obtain a sup -(�, �)-covers of X ultimately
means failing to have maximal recall, our computation of � 55
is thus close to the best possible which keeps the guarantees
we want on recall. Obviously, the same kind of theorem 57
holds for inf -(�, �)-covers of X, and its proof follows that
of Theorem 3. 59

Theorem 4. ∃X, ∃D, ∃m > 0, ∃0���1, ∃0 < ��1 such
that the following holds: with probability ��, S∗ is not an 61
inf-(�, �)-cover of X, for any � satisfying:

��c

√
(1/(2m)) ln(|S∗\X∗

�|/�), 63

for some constant c < 1.

The criterion which is not controlled may suffer some 65
loss, but what Theorems 3 and 4 say on this criterion is that
the loss it incurs is also statistically near-optimal; a sim- 67
ple argument shows that the value of this loss behaves in a
very reasonable manner: Theorems 1 and 2 guarantee that 69
��(1/m) log m∗ for reasonable �; since generating S∗ is as
worst reasonably polynomial in m, we can expect m∗ �mk 71
for some small constant k > 0, which yields ��1/m1−o(1).
In other words, �± � converges quite rapidly to �, and since 73
a similar rate of convergence of the observed frequencies to
their expectations holds as well, we observe a fast conver- 75
gence of X∗

�\S∗
�+� → ∅ (for �′ = � + �) or S∗

�−�\X∗
� → ∅

(for �′ = � − �), ensuring a reasonably fast maximization of 77
the unconstrained criterion as well.

3.4. Discussion 79

We now shift to a discussion on the way our approach be-
haves when there is a distribution drift, i.e. when D changes 81
through time. The way we estimate the true probabilities is
pointwise, so we cannot easily model their functional vari- 83
ation (i.e. build some regression model of the probabilities
as a function of time); however, regardless of the drifts of 85
D, what we need is only to make accurate updates of our
predictions on the �-frequent patterns. It turns out that our 87
approach can be tailored in a very simple way to estimate
these changes in X∗

� . This simply consists in estimating �S(.) 89
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∆t,1 ∆t,3

�X(T )
�X(T )

time t

∆t,2

�

−

Fig. 3. A moving window makes it possible to track distribution drifts.
In this example, we may detect that T is �-frequent during window �t,1
while it is not �-frequent anymore during �t,3 (see text for details).

on the basis of a moving window, wide enough to ensure m1
large enough, and regularly sampling the data stream. All
other parameters do not change. With this straightforward3
adaptation, Fig. 3 explains that the distribution drift is es-
timated with respect to the moving average of the distribu-5
tions (thick lines, for three windows, �t,1, �t,2, �t,3), and
not with respect to the true distributions (regular line). In7
other words, we estimate for any pattern T the fluctuations
of a moving average �X(T ) instead of �X(T ). With respect9
to this change, it is straightforward to show that the results
of Theorems 1 and 2 still hold, and thus that we manage,11
under any such distribution drift, to keep maximal precision
or recall with respect to the average drift. This smoothes the13
small local drifts, but keeps the significant variations of D
within the detection range. These variations are those that15
play the key roles in the shifts of X∗

� .
There only remains to upperbound |X∗

�| and |S∗\X∗
�| to17

compute empirically � for Theorems 1 and 2, respectively.
The true cardinals depend on both the nature (the complex-19
ity) of the patterns built, and on the underlying distribution
D (since it depends on �). Thus, it may be hard to compute21
them exactly. Since |X∗

�| + |S∗\X∗
�| = m∗, we shall use af-

terwards in the experiments the same upperbound, m∗, for23
both cardinals.

4. Experiments25

Two kinds of experiments were performed. First, we eval-
uate how our statistical supports are helpful to mine frequent27
patterns. Second, we analyze the behavior of our approach
according to distribution drifts.29

4.1. Evaluation of statistical supports

Experiments are provided on two different settings: item-31
set databases, and sequential pattern databases.

4.1.1. Itemset databases 33
We have chosen three real life databases from the Fre-

quent itemsets Mining Dataset Repository [20], whose prin- 35
cipal goal is to evaluate and compare association rules al-
gorithms. Fig. 4 gives the details of the databases. To make 37
a fair evaluation of statistical supports, the databases are
used to represent X, and a data stream is created by random 39
sampling, out of which a window is saved (S) whose size
represents a fixed percent of the original database size. To 41
make these experiments as exhaustive as possible, many pa-
rameters have been tested, and Fig. 5 presents each of them. 43
As shown in this figure, two kinds of samplings have been
used. The first allows a fine sampling of the database, for 45
small values ranging from 1% to 10% by steps of 1% (col-
umn “sampling1” in Fig. 5), and typically gives an idea of 47
what may happen for very large, fast data streams. We have
completed this first range with a coarse range of samplings, 49
from 10% to 100% by steps of 3% (column “sampling2” in
Fig. 5), which gives a basic idea of the average and limit be- 51
haviors of our method. Finally, � has been chosen to range
through a somewhat usual interval of values for common 53
statistical risks, i.e. starting from 1% and stopping at 11%
by steps of 2% (see Fig. 5). On the top of our experiments, 55
we have chosen to use an implementation of the a priori

Fig. 4. Itemset Databases. For each of them, we give, from left to right, the
whole number of transactions of the database, the whole number of items,
the maximum size of a transaction, and the average size of a transaction.

Fig. 5. Range of parameters for the experiments. For each parameter, the
range of values it takes is given on the form [a, b]/c, where a is the
starting value, c is the increment, and b is the last value. Thus, the set of
values is {a, a + c, a + 2c, . . . , b}. � is the minimum theoretical support,
� is the risk parameter. The columns “sampling1” and “sampling2” give
the two scales of percentages of the database sampled out of the data
stream (see text for details). 57
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Fig. 6. Three examples of plots for two of our databases, with � = .05. For three different values of �, we give the precision (left plot) and recall (right
plot) for the three methods consisting in picking S∗

�−�, S
∗
� , S∗

�+�. The x-axis denotes the percentage of the data kept out of the simulated data stream
(see text for details).

algorithm [9]. Given the very large number of tests to do1
for each database, we have written a test generator, which
automatically crosses the parameters, and makes all experi-3
ments for all possible tuples of parameters. This represents
thousands of runs, and due to this very large number and5
the lack of space, we have chosen to report some plots we
consider as representative, and synthesize the whole results.7
Fig. 6 shows result from experiments on the Accidents and
Retail databases. Each plot describes for one database and9
one support value, either the precision or recall of the three
methods which consist in keeping S∗

�−�, S
∗
� , and S∗

�+�. No-11
tice that the value of the risk parameter is kept constant, i.e.
� = .05.13

A first glance at these plots, or the other ones, on
whichever of the three databases, reveals that their behavior15

is almost always the same. Namely:

• the precision equals or approaches 1 for a large majority 17
of storing sizes when �′ = � + �,

• the recall equals or approaches 1 for a large majority of 19
storing sizes when �′ = � + �.

These observations are in accordance with the theoretical 21
results of Section 3. There is another phenomenon we may
observe: for example, the recall associated to �′ = � + � is 23
not that far from the recall of �′ =�. Similarly, the precision
associated to �′ = � − � is not that far from the precision of 25
�′ = �. This shows that the maximization of the precision
or recall is obtained at a reduced degradation of the other 27
parameter.
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Fig. 7. Two sets of plots of the F� value from the Accidents database, with � = .2 for the left plots and � = 1.8 for the right plots (see text for details).

A close look at small storing sizes of the streams (before1
10%) also reveals a more erratic behavior without conver-
gence to maximal precision or recall. The behavior for the3
Retail and Kosarak databases is also the same. Rather than
being due to the statistical supports, we feel that this be-5
havior is linked to the sizes of the databases used. Small
databases lead to even smaller storing sizes, and frequent7
itemsets are in fact trickier to predict. This, we think, may
not be expected from larger databases, or even real-world9
data streams, for which the size of X is much larger. In Fig. 7,
two sets of two plots taken from the Accidents database plot11
the F� measure, against the size of the stream used (in %).
The values of � have been chosen different from 1 to make13
precision and recall have significantly different importances.
On each plot, the F� value displays the advantage that pick-15
ing �′ = � ± � may have over the choice �′ = �, when pre-
cision and recall have different importance, i.e. for mining17
problems with varying misestimation costs.

4.1.2. Sequential pattern databases19
In order to evaluate our predictive method with sequential

patterns, we have chosen two real life databases from web21
servers. Fig. 8 summarizes these databases. Dragons is ob-
tained from an internet web site1 from March 21th 2005 to23
March 28th 2005: the data represent the behavior of this web
site usage. The web log size is about 2,54Go. A preprocess25
was done in order to prune irrelevant data (spiders, robots,
etc.). In order to avoid traditional problems when consider-27

1 www.elevezundragon.com.

Fig. 8. Sequential pattern databases. For each of them, we give from left
to right: the whole number of transactions, the whole number of items,
the maximum size of a transaction, and the average size of a transaction.

ing raw web logs, URL pages having same values for sim-
ilar variables were grouped together. Finally, we consider 29
that the session time was set to 4 h. The second database of
Fig. 8, named BuAG, is obtained from the 3,48Go web log 31
server of some university’s library,2 from January 1st to
November 1st 2004. As previously, a preprocess was done 33
and the session time was set to 3 min.

Experiments similar to itemset databases have been per- 35
formed. Fig. 9 summarizes the varying parameters (� was
fixed to .05). On the top of our experiments, we have chosen 37
to use a traditional sequential pattern algorithm, PSP [21].
Similarly to the itemsets databases, a generator was devel- 39
oped due to the large number of tests.

Fig. 10 shows some results obtained. Similar to itemsets 41
databases, the plots are in accordance with the theoretical
results of Section 3. On these results, there is however a 43

2 www.univ-ag.fr/buag/.

PR2549

http://www.elevezundragon.com
http://www.univ-ag.fr/buag/.


UNCORRECTED P
ROOF

8 P.-A. Laur et al. / Pattern Recognition ( ) –

ARTICLE IN PRESS

Fig. 9. Range of parameters for the experiments on sequential patterns
databases. Conventions follow Fig. 5.

greater difference between the curves for �±�, for whichever1
of the precision or recall, and this difference is as larger as
the database stored is smaller. We feel that this is again due3
to the storage size, but there may also be a setting influence,5
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Fig. 10. Examples of plots with �= .05 and three � values. For theses values we give the P (left plot) and R (right plot) for the three methods consisting
in picking S∗

�−�, S
∗
� , S∗

�+�.

which makes that sequences are more difficult to handle than
(unordered) itemsets. 7

In Fig. 11, two sets of two plots taken from the Dragons
database plot the F� measure, against the size of the stream 9
used (in %). Similar for precision and recall, the results are
more contrasted than for itemset databases, as there is no 11
clear winning strategy. However, the results tend to get better
when � gives more importance to precision. 13

4.2. Distribution drifts

Experiments were performed on distribution drifts with 15
the Accidents database (see Section 4.1.1). Fig. 12 describes
the experimental protocol for drift generation. Basically, 17
the stream is generated by alternating two periods that
switch the database used to generate the stream. There is a 19
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Fig. 11. Two sets of plots of the F� value from the Dragons database, with � = .2 for the left plots and � = 1.8 for the right plots.
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Fig. 12. Our framework with distribution drifts (see text for details).

so-called undrift period, which corresponds to a period1
where the stream is generated by sampling the usual
database, X. There is also a drift period, on which we sam-3
ple a database X′ which is some “drifted” version of X,
i.e. for which distribution D is modified. In order to control5
the drift, X′ is obtained by repeatedly sampling X with
different parameters (size of X′, minimal/maximal repe-7
tition of sequences, choice of data sequences, . . .). Drift
periods are represented by gray sequences in Fig. 12. The9
database stored, S, is a sliding window which moves along
the stream, sampling some mixed database of X and X′.11

Again, we use an experiment generator which crosses
various parameters. The support, �, ranges from 40% to13

Fig. 13. Precision under drift (summary, see text for details).

80% by step of 5%. In the stream described in Fig. 12,
undrift periods that have 20k transactions3 alternate with 15
drift periods that have 10k transactions. The window size
ranges from 5k transactions to 165k transactions by steps 17
of 20k transactions. For each possible sliding window, we
compute precision and recall. Due to the lack of space, we 19
present here the results for � = 40%. Fig. 13 summarizes
the results for precision P, for three typical window sizes: 21
1.5%, 7% and 50% of the whole stream (respectively small,
intermediate and large sizes). The rows depict three drift 23
ratios, where the ratio is the percentage of transactions in
the windows that come from the drifted database X′. Each 25
cell of the table displays, from the left to the right, the

3 20k = 20 000.
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(Pθ, Pθ+ε, P−ε) = f (window)
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Fig. 14. Precision plots for �′ = �, � + �, � − �, for a 50% window size
(we recall that �=40%). Notice that the left and right y-axes (drift ratio)
do not have the same scale.

decreasing order in which the three choices of �′ perform1
against each other. The left parameter performs the best, the
right performs the worst, and the middle performs midway3
between the others. For example, if we have �, � + �, � − �,
it means that plots obtained using �′ = � are the best for5
the precision. Nonavailable results are indicated by “n.a.”.
Different phenomena emerge from this table:

7
• Results for reasonable drifts still follow the theory (a

majority for drifts �66%), as the order is �+� > � > �−9
�. Furthermore, the precision approaches its maximum
for a window size of 50%, regardless of the position of11
the sliding window on the stream. These are certainly
good news for statistical supports.13

• The precision tends to increase with the window size.

Fig. 14 gives a snapshot on a particular configuration, in15
which the drift ratio ranges from 31% to 35%. Remark that
the smallest drift brings maximal precision. Again, this is17
good news, since it is in accordance to a theory initially de-
veloped for nondrifted environments, and the drift incurred is19
clearly not small. Moreover, the order in the plots is constant
through time. Finally, the difference between the precisions21
for � + � and � tends to increase with the drift ratio. This is
also good news for statistical supports. We now proceed in23
the same way for the recall. The table of Fig. 15 gives re-
sults for the recall that follow the conventions of Fig. 13 for25
the precision. The results appear to be even better than for
the precision, since until 66% drift ratio, the order always27
favors the choice �′ = � − �. From the precision and recall
tables, we can say that for large drifts (�67%), the choice29
�′ = � seems to be the best. We feel that this is partly due to
the statistical uncertainty generated by the large drift, which31
seems to favor the consensus choice �′ = �. Fig. 16 presents

Fig. 15. Recall under drift (summary, conventions follow Fig. 13).
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Fig. 16. Recall plots for a particular configuration. Conventions are the
same as for Fig. 14.

a snapshot of some results, following Fig. 14. This time, the 33
drift ratio ranges from 8% to 12%. Again, the results ob-
tained follow the theory, since the choice �′ = � − � always 35
yield maximum recall. What is more interesting is that this
time, the choice �′ = � yields significantly worse results for 37
almost all iterations. Finally, again, the difference between
the two choices �′ = � − � and �′ = � increases during the 39
drift periods.

5. Related works 41

A significant body of previous works has addressed the
accurate storing of the data stream history. This storage 43
problem consists in finding compact data structures to re-
duce the size of the data kept out of the stream, while guar- 45
anteeing with high probability that the items observed as
frequent from the stream are still observed frequent inside 47
the data structure [11,13,5]. The first approach was pro-
posed by [7] where they define the first single-pass algo- 49
rithm. Li et al. [4] use a top-down frequent itemset discov-
ery scheme. A regression-based algorithm is proposed in 51
[22] to find frequent itemsets in sliding windows. Chi et al.
[23] consider closed frequent itemsets. In [24], they propose 53
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a FP-tree-based algorithm [25] to mine frequent itemsets at1
multiple time granularities by a novel tilted-time windows
technique. It should be more convenient, from a data mining3
standpoint, to try to reduce the storage uncertainty with an
accurate forecasting on the data stream, rather than reducing5
it to the portion observed. This is the main difference with
our framework.7

A previous Chernoff-type analysis, due to [26], may be
fit to handling data streams as well, but for slightly more9
restricted problems; in particular, while some of the bounds
would typically not be applicable for large S∗, the others11
would be mainly addressed at controlling the precision of the
support estimation, and not the maximization of our criteria13
(precision or recall). Finally, such results (and ours) do not
rely on optimizing the estimation of these criteria (utility15
functions), like for example in [27,28].

Perhaps the works closest to ours are some that have17
specifically focused in forecasting some properties on data
due to a lack of information, either because the data are19
noisy [29], or because a constraint exists on the data storage
that prevents to keep all the information [30]. A first differ-21
ence with these works is that they focus on approximating
(Pb1) from Section 3 without emphasis on the components23
of the solution’s accuracy (precision and recall). Thus, they
somewhat rely on the sole statistical hardness of the estima-25
tion task [15], without drilling down into its components.
A second difference, very technical, is that all their bounds27
are pointwise, i.e. hold for a single itemset, and typically
do not yield properties that hold uniformly, i.e. for a whole29
set of itemsets. That latter case makes it necessary to bring
some additional material, such as approximating cardinals31
or the concept of (�, �)-covers, but at this price, we are able
to show the statistical near-optimality of our approach (an33
important issue, not discussed in [30,29]). Finally, the case
of distribution drift is not discussed in, or not the subject of,35
these approaches.

6. Conclusion37

There are five main contributions in this paper. First, we
discuss the replacement of the conventional minimal sup-39
port requirement for finding frequent patterns by a statistical
support, in cases where storing the entire data is impossible41
(such as for data streams), so as to keep some convenient
properties over the data kept. Then, we provide a method to43
compute this statistical support, while keeping those rele-
vant properties. The method exploits concentration inequal-45
ities for random variables, a tool that has previously been
to be helpful from both the theoretical and practical stand-47
points in other domains [31]. We provide a proof that this
method is near-optimal from the statistical estimation stand-49
point. Then, we validate experimentally our approach. A
large number of experiments tend to display good points in51
favor of the applicability and scalability of the method, even
under distribution drifts.53

There are a number of possible extensions to this work.
The most promising extensions to this work certainly con- 55
cern the application of the technique to relevant data min-
ing subfields, such as incremental mining for computing 57
the near optimal minimal support of semi-frequent patterns
[32]. One very promising research direction would also be 59
to integrate our approach with those exploring data struc-
tures to maintain items that are observed as frequent with 61
maximal recall [5]. In the framework of data streams, where
they are particularly relevant, it would be much more effi- 63
cient from a statistical standpoint to keep the patterns that
are truly frequent, better than simply observed as frequent, 65
thus killing two birds in one shot for minimizing approxi-
mation errors. Because of the technical machinery used in 67
these papers (e.g. Blum filters [5]), mixing the approaches
into a global technique for reducing the error in maintain- 69
ing frequent itemsets out of data streams may be more than
simply interesting: it seems to be very natural. 71

Appendix A.

We prove Theorem 3. We make the assumption that X∗
� 73

is a singleton, and � will be chosen in (1/2, 1]: there exists
a single �-frequent itemset T . We also suppose that there 75
are two itemsets in X with respective weight � (this is T )
and 1−�. Given that we sample independently in S the data 77
stream for m itemsets, there is a probability �� to observe
�S(T ) < �X(T ) − �, with 79

� =
(

m

m(� − �)

)
(1 − �)m(1−�+�)�m(�−�), (13)

and (
m
k
)=m!/((m− k)!k!) the binomial coefficient. In fact, 81

we could have used for � the tail of the binomial distribution
from the terms k < m(� − �), and this would yield a bound 83
for � stronger than that of Eq. (13). For the sake of readabil-
ity, we abbreviate f (m, �, �) the right-hand side of Eq. (13). 85
We make use of the following well-known Stirling-type in-
equalities: 87
√

2n�(n/e)n �n!� exp(1/(12n))
√

2n�(n/e)n.

We obtain the following lowerbound on f (m, �, �): 89

f (m, �, �)� exp

(
− 1

12my(1 − y)
− 1

2
ln(2�my(1 − y))

−m

[
(1 − y) ln

1 − y

1 − �
+ y ln

y

�

])
.

Here, we have made use of the shorthand y=�−�, which we 91
suppose to be ∈ [0, 1]. The quantity inside the brackets is a
Kullback–Leibler divergence, which can be upperbounded 93
with the relationship ln(x)�x − 1 by

(1 − y) ln
1 − y

1 − �
+ y ln

y

�
� (� − y)2

�(1 − �)
. (14) 95
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Provided m is not too small (in particular, m� max{4�2, 1+1
1/(3y(1 − y))}), we may obtain:

f (m, �, �)� exp

(
−m

�2

�(1 − �)
− ln m

)
.3

Now, provided

��
√

�(1 − �)

m
ln m, (15)5

we finally obtain f (m, �, �)� exp(−2m�2/(�(1 − �))). We
shall clearly have f (m, �, �)�� provided7

� =
√

�(1 − �)

2m
ln

1

�
, (16)

which satisfies Eq. (15) whenever ��1/m2. Choosing �9
close to 1

2 brings the statement of Theorem 3.
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