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Abstract

We focus on a hybrid approach of feature selection. We begin our analysis with a
filter model, exploiting the geometrical information contained in the Minimum Span-
ning Tree (MST) built on the learning set. This model exploits a statistical test of
Relative Certainty Gain, used in a forward selection algorithm. In the second part of
the paper, we show that the MST can be replaced by the 1 Nearest-Neighbor graph
without challenging the statistical framework. This leads to a feature selection algo-
rithm belonging to a new category of hybrid models (filter-wrapper). Experimental
results on readily available synthetic and natural domains are presented and dis-
cussed.

Key words: Machine Learning, Data Mining, Information Theory, Feature
Selection, Wrapper Models, Filter Models.

1 Introduction

The problem of feature (attribute, or variable) selection, i.e. the selection of
relevant description variables in the data, has been historically a prerogative
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of statistical research. It is only recently that this problem has received a
growing attention in computer science. One of the main reasons to this trend
in Machine Learning and Data Mining has been to handle the rapidly growing
quantities of data, more or less noisy, collected thanks to new acquisition
technologies such as the World Wide Web [1-3].

Feature selection can be of great help to handle such a problem, primarily from
an algorithmic and complexity-theoretic point of view. Indeed, exploiting and
mining large data requires the help of powerful Machine Learning and Data
Mining algorithms, which can be highly time or space consuming [1]. Provided
feature selection is done in low complexity and reduces significantly the size
of data, it may provide an efficient preprocessing stage to reduce the time or
space practically required by these Machine Learning and Data Mining stages.
In contrast, from a pure classification standpoint, the selection of a good fea-
ture subset appears to be of little interest at first glance. Indeed, a Bayesian
classifier, i.e. realizing Bayes optimal error, is monotonic. This means that
adding features cannot decrease the model’s performance. Theoretically speak-
ing, in the feature selection framework, this statement postulates that remov-
ing features can be of no help to improve the model’s performance. However,
the monotonicity assumption rarely holds in practice [4]. The reason is that
most practical Machine Learning and Data Mining algorithms are not ideal,
and irrelevant or weakly relevant features may damage the accuracy of the
model built. As an illustration, a study in [5] shows that with the decision-
tree induction algorithm C4.5 [6], the non deletion of weakly relevant features
generates deeper decision trees with lower performances than those obtained
without these features. In [7], the author shows that the storage of the IB3
algorithm increases exponentially with the number of irrelevant features. Sim-
ilar conclusions are presented in [8].

Finally, feature selection can be of great help simply as a preprocessing step
to induction algorithms, for the objective to reduce the size of the formulas
found. [9] report results concerning techniques removing examples (and not
features), known as prototype selection algorithms. They show for example
that these algorithms can reduce by more than 25% the size of the trees found
by C4.5 when they are ran before C4.5, without challenging the accuracy on
the test. On many application where comprehensibility and visualization are
crucial issues, such a size reduction would be well worth the run of a data
reduction technique before any further induction algorithm.

To summarize, scientists have been encouraged to elaborate sophisticated fea-
ture selection methods to tackle three problems:

e Reduce classifiers cost and complexity.
e Improve model accuracy.
e Improve the visualization and comprehensibility of induced concepts.



The difference between the features kept and those left by a feature selection
algorithm can be characterized by a notion of relevance, a word we have al-
ready used, yet we have not provided a formal definition of what it is. Actually,
there are many definitions of relevance, each of which addressing from a par-
ticular point of view the (relevant) question itself: “relevant to what?” [10,11].
It is not the purpose of this paper to present the many answers which can
be found. The reader may find general issues about this problem in the two
aforementioned papers, and more specific computational issues about these
definitions in [12]. In all that follows, the problematic of our paper shall be
directed on the resolution of the three problems cited before, better than ad-
dressing the way our algorithm copes with the selection of features relevant
to some particular theoretical definition(s).

According to the terminology proposed in [11], two generic approaches are
available in feature selection: wrapper and filter models. The principle of filter
models is to evaluate, using statistical techniques over the data, the accuracy
of the future, induced classifier. Therefore, the method ”filters out” irrelevant
features before the induction process. In wrapper models, we search for a
good subset of features using the induction algorithm itself. The principle of
wrapper models is generally based on the optimization of the accuracy rate,
estimated by one of the following methods: holdout, cross-validation [13], or
bootstrap [14].

In this article, we begin our analysis with a new filter approach to find rele-
vant features. We exploit the characteristics of a neighborhood graph built on
the learning set, to compute a new estimation criterion based on a quadratic
entropy. The distribution of this criterion satisfies convenient normal proper-
ties, allowing the construction of a test to evaluate the quality of a feature
subset. We use this statistical test (more precisely the critical threshold) in
a forward selection algorithm. In order to reduce the computational costs of
the neighborhood graph’s construction, we propose a more general framework
exploiting the 1-Nearest-Neighbor (INN) graph. We show that this geometri-
cal structure is less expensive to compute and leads to the construction of an
original hybrid model of feature selection, presenting characteristics of both
filter and wrapper approaches. Finally, we present some experimental results
on benchmarks of the UCI database repository, or on taylor-made synthetic
domains, comparing the performances of the feature subsets selected by our
algorithms with those obtained in the original spaces, or with conventional
approaches of feature selection.



2 Feature Selection and Hybrid Models of Feature Selection

This part aims at presenting the general issues of feature selection, the prin-
cipal problems that are raised, the usual solutions proned in filter models, as
well as how our solution can be situated and motivated with respect to the
other ones. We first begin with some elementary notations. We are given a
p-dimensional representation space, where p is the number of features char-
acterizing a set S of |S| = n learning instances (or examples), where |.| de-
notes the cardinality. Each instance w; is represented by a p-dimensional in-
put vector X (w;) = (21, T2, .., Tip), and by a label (or class) YV(w;) € V)Y =
{y1,y2, ..., Yr}, where k = card(Y’) is the number of classes.

Three problems participate in complicating the feature selection problem.
First, elementary combinatorics show that feature selection should require the
testing of 2P different subsets to find the optimal one, which is a sufficiently
large exponential to prevent the practical feasibility of the procedure, even for
low-dimensional data.

Even worse, from a statistical point of view, even if we could guarantee the
testing of all combinations, the quality of the feature subsets could practically
only be estimated, on the sole basis of the potentially small set of instances
available. Indeed, the learning instances do not cover the entire set of all pos-
sible examples, a set to which we refer as the whole domain. It can even be the
case that the available examples scarcely cover a tiny portion of it. Therefore,
we cannot guarantee to be optimal in the sense of some definitions evaluating
relevance with respect to this whole domain.

Finally, to complete the picture, from a complexity theoretic point of view,
feature selection can be proven to be NP-hard for usual definitions of rel-
evance [12]. Even worse, it can be proven that approximating the minimal
relevant subset is hard up to very large factors [12]. Moreover, worst-case
bounds of [12] establish that the performances of feature selection algorithms
(even non necessarily polynomial time) can be almost as poor as the results
obtained without feature selection ! All these remarks show the necessity to
build heuristics to address feature selection.

According to the paper of [15], four basic issues determine the nature of the
heuristic search process:

e The starting point in the search space: with an empty feature set (forward
selection) or with all the features (backward selection).

e The organization of the search: addition or deletion of an attribute at each
stage, never reconsidering the previous choice.

e The strategy used to evaluate alternative subsets of attributes (filter or
wrapper model).



e The criterion for halting search through the space of feature subsets. The
simplest solution consists in fixing the size of the feature subset ad hoc.

With respect to these criteria, we basically consider in that paper a hybrid
filter /wrapper approach using a statistical criterion for halting search, adding
features one at a time, and starting from the empty feature subset.

If we drill down the concepts used for our approach and consider it more in
depth, the primary idea of our approach was to use, for theoretical statistical
reasons, a convenient topology over the examples to evaluate relevance. This
topology is, we prove, similar to the one built using Nearest-Neighbor (NN)
algorithms. Replacing this topology by the one of the 1-NN, we gain the ben-
efit of fast computation while giving a wrapper flavor to our algorithm. When
judged from a more practical point of view, this choice might appear quite
disputable. On one hand, when used as a preprocessing step for a particular
type of induction algorithm, a wrapper approach optimizing the accuracy dur-
ing feature selection while using the same kind of formulas as the induction
algorithm may be very convenient to improve its results [11]. On the other
hand, the type of feature subset selected depends highly on the concept used
during the wrapper algorithm. This is clearly not an advantage if an emphasis
is made on the explanation of the features obtained: in that case, an approach
less dependent on a specific classifier’s accuracy is desirable.

With respect to these observations, it is important to note that the wrapper
flavor in our algorithm is restricted with respect to basic wrapper approaches,
in which most computation time is used to induce a concept representation
(decision trees in many cases). Besides, the criterion which we optimize is not
the accuracy. In the light of the numerous definitions of relevance [10], this
is certainly an advantage : indeed, they establish that relevance is an intrin-
sic property of the concept represented by the attributes, thus imperfectly
estimable by a particular formula’s accuracy, subject to the representational
bias of some induction algorithm. This gives the filter behavior of our al-
gorithm, and make it an original alternative to traditional feature selection
algorithms, falling in either the filter, or the wrapper category.

To conclude this part on the general issues of feature selection, we now present
some of the criteria used to estimate the quality of feature subsets in fil-
ter models. Five principal categories of measures can be found throughout
the literature to evaluate feature’s relevance in feature weighting or selection
algorithms (Feature selection algorithms are weighting algorithms, where ir-
relevant or weakly relevant features have zero weight. For more details about
feature weighting see [16]).

e Interinstance distance: this criterion is used in Kira and Rendell’s RELIEF
[17]. This method selects a random training case w;, a similar positive case
we, and a similar negative case wy. It then updates the feature weight,



weight;, using:
weight; = weight; — diff(x i, ©4i) + diff(z i, Toi) (1)

where diff(., .) is a given metric. Based on this principle, Kononenko proposes
an extension of RELIEF in [18].

e Interclass distance: the average distance between instances belonging to
different classes is a good criterion to measure the relevance of a given
feature space. However, the use of this criterion is restricted to problems
without mutual class overlaps.

e Probabilistic distance: in order to correctly treat class overlaps, a better
approach consists in measuring distances between probability density func-
tions. This way to proceed often leads to the construction of homogeneity
tests [19].

e Class projection: this approach assigns weights using conditional probabili-
ties on features that can be indiscriminately nominal, discrete or continuous
[20].

e Entropy: feature selection can be understood in terms of information theory.
One can then assign feature weights using Shannon’s mutual information
[21]; see also [22] where the cross-entropy measure is used. This approach is
certainly the closest to ours.

We propose in the next section a new way to evaluate feature’s relevance.
We assume that a classifier’s ability to correctly label instances depends on
the existence in the feature space of wide geometrical structures of points
identically labeled. We first characterize these structures using the information
contained in a Minimum Spanning Tree. This information is used to apply a
statistical test measuring what we call a Relative Certainty Gain.

3 The Test of Relative Certainty Gain

3.1 Geometrical concepts

Our approach relies in searching characteristics of the learning sample in a
neighborhood graph. More precisely, we use a Minimum Spanning Tree over
the learning sample, which is a simple structure to build, and has interesting
geometrical properties. The construction of this neighborhood graph allows to
exploit local and global informations about the concept to learn. For the sake
of completeness, we first review some basic definitions about graphs. They
shall be completed in a next subsection to introduce our information theory
material.

Definition 1 A tree is a connected graph without cycles.



Definition 2 A subgraph that spans all vertices of a graph is called a spanning
subgraph.

Definition 3 A subgraph that is a tree and that spans all vertices of the orig-
wnal graph s called a spanning tree.

The following definition addresses weighted graphs, in which each edge is given
a real weight.

Definition 4 Among all the spanning trees of a weighted and connected graph,
the one(s) with the least total weight is(are) called the Minimum Spanning
Tree(s), abbreviated MST(s) for short.

Suppose we are given a metric over the p-dimensional representation space;
we can easily build a MST considering the weight of an edge as the distance
between its two vertices. The MST describes therefore a tree with the lowest
weight over the complete graph.

3.2 Metrics

Examples can be described using various types of features. While Nearest
Neighbor techniques can handle continuous and discrete features well (using
e.g the Euclidean distance), they are not suited to handle nominal attributes,
that is, symbolic attributes whose values do not reflect any linear order, such as
red, black, green, white for color values [23]. The problem becomes difficult
when all these attribute types coexist. Our approach to this problem is to use
specific metrics adapted to the nature of each feature. We sketch it here for
completeness. The main tool to adapt distances to nominal attributes is the
Value Difference Metric (VDM) [20] which defines the distance between two
values z and 2’ of an attribute X, as follows:

q
Nx,.z.c N Nx,,z c
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where

® ny, . is the number of instances in the training set S that have value z for
attribute X,

® nx, . is the number of instances in S that have value z for attribute X,
and output class c,

e [ is the number of output classes,



e ¢ is a constant, usually 1 or 2,
® Px, ;. is the conditional probability that the output class is ¢ given that
attribute X, has the value z, i.e., P(c|X, = z).

VDM cannot be used for any type of feature, even if it provides a convenient
solution for nominal attributes. The main problem of VDM is that it largely
ignores continuous attributes, and requires discretization to map these contin-
uous values into nominal values. But such continuous attributes are typically
handled by the usual Euclidean metric. The fact that VDM and the Euclidean
metric are complementary metrics has led to the creation of the the Hetero-
geneous Value Difference Metric (HVDM) [23]. This metric mixes the usual
Euclidean distance for linear (i.e. continuous or discrete) attributes, and VDM
on nominal attributes. The distance between two instances w; and wj; is then:

p
HVDM(wZ, w]') = \l Z d%(a (xia: xja)

a=1

where dx_ (x,z') returns the distance between the two values z and z’ for
attribute X,, and is defined as

1 if z or 2’ is unknown, otherwise...
dx,(z,2') = VDMY (z,2') if attribute X, is nominal

Euclidy, (z,2') if attribute X, is continuous or discrete

Here, Euclid_(z,2') represents a normalized Euclidean distance between z
and z', and VDMY_(z,2') represents a normalized version of the VDM seen
before for attribute X,. We refer the reader to [23] for further considera-
tions about this metric, not needed here. The paper [23] also provides other
heterogeneous distance functions for alternatives to HVDM in particular sit-
uations, i.e. when one needs to optimize the distances on a specific problem.
We refer the reader to [23] for further details. These heterogeneous distance
functions are called the Interpolated Value Difference Metric (IVDM) and the
Windowed Value Difference Metric (WVDM). The point is that most of the
distance functions in [23] properly handle nominal and continuous input at-
tributes, and allow the construction of a MST in mixed spaces. Therefore,
they can naturally be used as they are in our algorithms.

3.3 Entropy Notions

Definition 5 Suppose we are given



8k={(71,-,%,-,7k)€13’“ (Vj e {1,2,. k},%ZO)/\Z%-:l} (2)

=1

the k-dimensional simplex, where k is a positive integer. An entropy measure
is an application from Sy to IR, with the following properties (for more details
see [24]): Symmetry, Minimality, Mazimality, Continuity and Concavity

Definition 6 The Quadratic Entropy is a function QE from [0,1]% to [0, 1],

(Vla’fyk)_)QE( 71"17k 27]1_’7] (3)

3.4 Local and Total Uncertainties in the MST
Given the previous definitions, we use the quadratic entropy concept to mea-

sure local and total uncertainties in the MST built on the learning set.

Definition 7 We define the neighborhood N(w;) of a given instance w; be-
longing to S as follows:

N(w;)={w; € S : w; is linked by an edge to w; in the MST} U {w;} (4)

Definition 8 The local uncertainty Uyye(w;) for a given instance w; belonging
to S 1s defined as follows:

Uloc(wz) QE (E %: Ty %)

n;. ny, n;.

where n;, = card(N(w;)) and n;; = card({w; € N(w;) | Y(wi) = y,})

Definition 9 The total uncertainty Uy, in S is defined as follows:

Utot - Z Uloc wz
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The reason to use Uy, and the quadratic entropy to evaluate the quality of
some feature subset may not appear clear at first glance; however, Uy is a
natural measure of the impurity observed on the MST, that is, a measure
of the overlaps between classes at the level of each instance’s neighborhood.
Intuitively, the better the feature subset, the smallest the overlaps, and the
smallest Uy,;. Even more, at each instance’s level, the quadratic entropy be-
comes equivalent to Gini’s impurity criterion, used in decision tree induction
to evaluate the quality of a tree node in the well known CART™ package [24].
It is worthwhile to remark that Gini’s criterion, as well as more recent criteria
such as Schapire-Singer’s Z criterion [25] have been rigorously proven to be
very efficient measures to grow decision trees, in particular more accurate than
the accuracy itself [26]. Furthermore, in our case, a convenient statistical test,
which we now describe, allows to estimate with confidence whether a feature
subset can be preferred to another one in our algorithm.

3.5 The Statistical Test

The previous criterion Uy, allows to estimate the information level of the
learning sample in a given feature space. The statistical test proposed is based
on the following observation. In order to correctly estimate feature relevance,
a convenient approach consists in measuring the class overlap degree in the
probability density functions, and compare this one with the degree obtained
with a total overlap. This way to proceed consists in applying what is called
in inferential statistics an homogeneity test, with the following null hypothesis
Hy:

Hy: Fi(z) = F3(x) = ... = Fy(z) = F(x)

where F;(z) is the repartition function of the class i. To be able to apply this
test, we must know the law of the statistic used in the test (here, the total
uncertainty Uy, ) under the null hypothesis. Works proposed in [27] show that
the distribution of the relative quadratic entropy gain is a x* with (n—1)(k—1)
degrees of freedom. Rather than considering directly U,,;, we use the following
Relative Certainty Gain,

Uy — Ut

RCG = i

(7)

where U is the uncertainty of the learning set before the construction of the
MST:

10



where n; = card({w;|Y (w;) = y,}). According to [27],

n.RCG = X?n—l)(lc—l)
E(n.RCG)=(n—-1)(k—1)
V(n.RCG)=2(n—1)(k—1)

For reasonably large learning sets (n > 30), the distribution of n RCG is
approximately normal with expectation (n — 1)(k — 1) and variance 2(n —

1)(k - 1):

n. ROG~N((n—1)(k —1),2(n — 1)(k — 1)) 9)

The null hypothesis will then be rejected (up to risk «) if and only if:

n. RCG - (n—1)(k—1) U

(10)

V2 —1)(k—1)

or equivalently, whenever
n.ROG > (n— 1)(k — 1) + Uay/2(n — 1) (k — 1) (11)

where U, is the value of the repartition function of the normal law N(0,1)
having probability a to be exceeded. Instead of fixing the « risk in advance
(generally 5%), we can calculate the a, critical threshold necessary for reject-
ing Hy. Then, we can optimize «, as an estimation criterion to search for the
feature subset which allows to be the farthest from the Hy hypothesis. Actu-
ally, the smaller this risk is, the further from the Hy hypothesis we are. Then,
we use this risk a, in the following feature selection algorithm.

11



4 The Feature Selection Algorithm

The heuristic search, shown below, relies on a greedy forward selection algo-
rithm, optimizing the critical threshold of the test at each time.

g +— 1;
E « 0;
X« {Xl, X2, . Xp},
stop < false;
do
for each X; € X do
compute ., the critical threshold in the E' U X; feature space;
Xomin ¢ arg min; a.;
if apin < ap then
X« X — {Xmin};
F+ FU {Xmin};
Gy < Opin;
else
stop < true;
while stop = false;
return F;

5 Replacing the MST by the 1-NN Graph

In this section, we study how the MST can be replaced by the 1-NN graph, thus
shifting the behavior of our algorithm toward wrapper approaches of feature
selection. Comparing experimentally the two approaches is the subject of the
next sections.

5.1 1-NN graph is equivalent to the MST

Now, we show that the 1-NN graph is an adequate candidate to replace the
MST. In most cases, all connex parts of the 1-NN graph are in fact small
MSTs; in the remaining cases, they bear very close relationships with MSTs.

Definition 10 Let "nn(X(w), X(w'))” denote the relationship "X (w) is the
nearest neighbor of X (w')”.

In the case where one example might have more than one nearest neighbor,
the relationship is replaced by “X(w) is one nearest neighbor of X (w')”. The
1-NN graph may be represented using an oriented graph G = (S, A) where S

12



is the training set, and A is the nearest neighbor relationship. An arc comes
from some X (w) € S to some X (w') € S whenever nn(X(w), X (w')) holds,
which additionally means that X (w) would vote for X (w') in the 1-NN algo-
rithm. Before beginning the study of some properties of G, it is convenient to
note that A mainly depends on the current subset of features chosen.

We denote as G* = (S, F) the simple non-oriented graph built from G by
replacing each arc by an edge, and merging multiple edges between each cou-
ple of vertices X (w) and X(w'), a situation which occurs only when both
nn(X (w), X (w')) and nn(X(w'), X(w)) hold. In order to state the following
lemma, we make the simplifying hypothesis (which shall be relaxed later)
that for all examples in S their nearest neighbor is unique, which precludes
the random choice of one of the nearest neighbors to vote.

Lemma 1 G* is cycle-free. In other words, G* defines a forest.

PROOF. We first prove that G* is cycle-free iff G is circuit-free. Fix

VX(w') € S, di(X (W) = {X(w) €S :nn(X(w), X(w')) holds}|

VX (w) € S, we have d;(X(w)) < 1. Indeed, each example has exactly one
nearest neighbor. Fix as {X (w;), X (ws), ..., X(wy)} a subset of S defining a
cycle in G*. That means that Vj € {1,2,...,s — 1}, nn(X (w;), X (wj11)) V
nn(X (wjt1), X (w;)), and nn(X(w), X (wy)) V nn(X (wy), X (w)). Since no
vertex X (w) € {X(w1), X(w2), ..., X (wg)} can satisfy d;(X(w)) > 1, we get
that the cycle of G* necessarily satisfies exactly one of the following properties:

Vjie{l,2, .., =1}, nn(X(w;), X (wjt1)) Ann(X (wy), X (w1)) (12)

or

Vjie{l,2, .., =1}, nn(X(wjt1), X (w;)) Ann(X(w), X (wy)) (13)

In other words, if G* contains a cycle, G contains a circuit. The proof that G*
contains a cycle if G contains a circuit comes from the construction of G*.
We now prove that G does not contain any circuit by contradiction. Fix
as {X(w1), X (w2),..., X(ws)} a subset of S defining a circuit in G. With-
out loss of generality, we suppose that the following property is satisfied:
Vi e {1,2,...,s — 1}, nn(X(w;), X (wjt+1)) A nn(X (wys), X(w1)). If we note
as

D(X(w), X (w'")) the distance between X (w) and X (w') measured using the

13



currently selected features, we get that D(X (w;), X (wjt1)) < D(X (wj41), X (wjt2)),
Vj e {1,2,...s' — 2}, and

D(X (wg-1), X (we)) < D(X (wg), X (w1))
D(X (we), X (w1)) < D(X (w1), X (w2))

Our simplifying hypothesis implies that at least one of the inequalities is strict,
and we get a contradiction, as claimed.

Lemma 2 Any tree in the forest G* is a Minimum Spanning Tree.

PROOF. Again, the proof is obtained by contradiction. Fix some subset of
S, {X(w1), X(w2), ..., X (wyg)}, defining a tree T in G*. If it is not a MST,
define T°P" as one possible MST having smaller weight. Since 7" and T°"* are
trees, they contain exactly s’ — 1 vertices and any adding of one edge in them
breaks their tree structure by adding a cycle.

Summing-up, because T and T are necessary different, that means that
there exists a subset of vertices

{X (W), X(@}3), -r X (@)} € {X (1), X (wn), -y X (wy)} such that

(1) {X(wj,), X(wjy)5 -y X(wj,, } defines a chain in T,

(2) (X(wj), X (wj,,) is in T but not in T,

(3) Fi e {1,2,...,s" — 1} such that (X (wj,), X (wj,,,)) is in T but not in T,
(4) D(X(wj), X(sz,,)) < D(X(wji), X (wjig))-

We show that (1-3) render (4) impossible. Suppose without loss of generality
that nn(X(w;;), X (wj,,,)) holds.

Since no vertex X (w) € {X(w;,), X(wj,), ..., X (wj,,)} can satisfy d;(X (w)) >
1, we have

Vi € {jiy - Jor—1}, n(X (wy,), X (wj,,,)) holds

and we necessarily have the following chain of inequalities:

D(X(wji)’ X(wji+1)) < D(X(wji+1)ﬂ X(wji+2)) <..< D(X(szﬂ_l)’ X(szll))

Because of (2) however, and the fact that nn(X(w;, ,),X(w;,)) holds, we
also have

D(X (Wi ), X (wjp)) < DX (w5,), X (wj,))

The chain of inequalities and that latter one give
D(X (wj;), X (wj;,)) < D(X(wy,), X (wj,,)), a contradiction with (4), as claimed.

14



This ends the proof of lemma, 2.

For any graph (oriented or simple and non oriented) G = (V, A), and any
subset A’ C A, the graph G = (V, A’) is called the partial subgraph of G
induced by A" C A. A connex component of a simple non-oriented graph
G = (V,A) is a non-empty subgraph G' = (V', A") of G that satisfies the
following properties: (i) V' C V, (ii) Yo € V\V',Wo' € V', (v,0") ¢ A, (iii)
V(v,v') € V2, (v,v") € A= (v,v') € A". In the general case where the unicity
of the nearest neighbor is not ensured, lemma 2 can be easily generalized:

Lemma 3 The Minimum Spanning Tree T = (S, A") defined over the subset
of S containing the vertices S' of some connex component of G* is a partial
subgraph of this connex component (thus, induced by A').

PROOF. The proof of lemma 2 states that any MST defined over a subset of
vertices consisting of a connex component of G* cannot contain vertices that
are not in that connex component.

5.2 Complexity of computing the MST vs the 1-NN graph

In order to compare the building of the MST with that of the 1-NN graph,
we make the hypothesis that the distance matrix between examples is pre-
computed. That requires O(|S|2K) where K is the cost of computing the dis-
tance between two examples, a function essentially depending on the number
of features.

5.2.1 Building the MST using Kruskal or Prim’s algorithms

Both algorithms are made faster by the precomputation of the distance matrix
between examples, in order to sort them by increasing order. Their overall
complexity is of order O(]S]*log|S]).

5.2.2 Building the 1-NN graph

The computation of the 1-NN graph can be done without sorting the edges.
For any vertex, we only need to find its nearest neighbor, which requires
O(|S|) steps. The overall complexity is therefore O(|S|?) steps, and precludes
the O(|S|?log|S|) steps for sorting the edges in the MST algorithms. This
represents a clear advocacy for the use of the 1-NN graph instead of the MST.
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5.2.8 Reaching linear complexity for building the 1-NN graph

The MST could not be intuitively computed in less than |S|(]S| — 1)/2 steps
since it needs to explore in the worst case all edges, even if the precomputation
of the distance matrix also orders the distances, modulo a penalizing log|S|
factor for its complexity. However, the time complexity for computing the 1-
NN graph can easily be dropped down without additional costs. In order to
achieve it, we include in the precomputation of the distance matrix a test of
constant-time for each couple of instances, thus without increasing the overall
complexity in computing the matrix. We keep for each instance its current
nearest neighbor found, which can easily be done by checking it along for
the two currently explored instances whose distance is computed. Eventually,
multiple nearest neighbors are collected into a current list. The remaining task
for the 1-NN graph is simply to merge all lists or singletons for each instances,
which can be done in at most |S| steps.

5.8  Toward a hybrid approach to feature selection

The choice to build the 1-NN graph instead of the MST has a very impor-
tant side effect regarding the classification of feature selection algorithms. Our
algorithm becomes the optimization over a precise topology which is that of
the final classifier, of a criterion being not the accuracy. While it keeps the
filter behavior, that new approach shifts a little its behavior toward wrapper
algorithms, even though it does not suffer the drawback of time-consuming
concepts induction. Rather than keeping the filter’s term for the algorithm,
we now relate to it as a hybrid approach. Two experimental sections now fol-
low, studying respectively the MST and the 1-NN graph. The first one on the
MST evaluates the interest of our approach of feature selection versus no fea-
ture selection stage. In the following experimental section studying the 1-NN
graph, we provide some comparisons between (i) this hybrid approach, (ii) the
first one using the MST, and (iii) a conventional wrapper approach in which
the RCG is replaced by the accuracy.

6 Experimental Results on the MST

In order to show the interest of a new approach, an experimental study should
satisfy two criteria: relevance and insight [28]. Relevance measures the impli-
cations of the technique for problems on which the technique may be used
in practice, that is why this criterion is best satisfied by making experiments
on real world problems. Insight is aimed at testing explicit hypotheses on the
technique, by making experiments on tailor-made data; thus, this criterion is
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best satisfied by making experiments on synthetic problems. In this section,
we present some experimental results on the two types of problems. Some
experiments concern synthetic domains. In that case, we know a prior: the
number of relevant and irrelevant features. There are three synthetic domains:

e Syntl: 10 features, among which 7 have various degrees of relevance, and 3
are irrelevant (Xg, Xg, X10).

e Synt2: 10 features, among which three are redundant features (X1, Xs, X3),
and 7 are irrelevant (X, through Xy,).

e Synt3: 100 features, including seven identically distributed relevant features
(X, through X7), and 93 irrelevant (Xg through Xig9).

Irrelevant features in all these synthetic domains are i.i.d. N(0,1) random
variables.

The second type of problems concerns natural domains. We test our algorithm
on 10 datasets, among which 7 belong to the UCI database repository?.

Results of table 1 show that performances of our feature selection algorithm
are interesting, eliminating both irrelevant and redundant features. In the ma-
jority of cases, the accuracy estimates obtained with a 5-fold-Cross-Validation
using a 10-NN classifier are better in the selected feature subspace than with all
the attributes. Statistically speaking, a sign test gives in addition a threshold
probability p; & 10,94% for testing the hypothesis “the accuracy gives results
at least as good as those of the RCG criterion”, while the RC'G uses on av-
erage almost 80% less features than the accuracy. Given the relatively small
number of datasets to carry out this test, this represents an additional advo-
cacy for the use of the RCG criterion. Concerning the White House domain,
it is well known [29] that there exists one attribute (physician-fee-freeze)
which gives more than 95% accuracy on the test. This attribute is exactly
the one selected by our algorithm. Now, we investigate the replacement of the
MST by the 1-NN graph.

7 Experimental Results on the 1-NN

In order to analyze the performances of our new approach, our experiments
cope with two objectives:

(1) Check that our criterion built from the 1-NN graph allows to select a
good subset of features, as relevant as the one selected with the MST.

(2) Compare performances of our model with the wrapper model optimizing
the accuracy of the 1-NN. That amounts to comparing our hybrid model

2 http://www.ics.uci.edu/ mlearn/MLRepository.html
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with the equivalent wrapper model, that is, the wrapper model having
access to approximately the same “information” on the neighborhoods.

According to these objectives, our algorithm was run on 23 databases, most
of which come from the UCI database repository. Dataset LED is the classical
LED recognition problem [24], but to which the original ten classes are reduced
to two: even or odd. LED24 is LED to which seventeen irrelevant attributes
are added. Hard is a hard problem consisting of two classes and 10 features
per instance. There are five irrelevant features. The class is given by the XOR
of the five relevant features. Finally, each feature has 10% noise. The Xd6
problem was previously used by [30]: it is composed of 10 attributes, one of
which is irrelevant. The target concept is a disjunctive normal form over the
nine other attributes. There is also classification noise. Other problems were
used as they appeared in the UCI repository in the 1998 distribution [29]. For
each database, we used the following experimental set-up:

(1) A first feature subset is selected optimizing the information criterion
based on the 1-NN graph.

(2) A second feature subset is selected optimizing the accuracy of the 1-NN
rule at each step of the algorithm.

(3) In order to compare the relevance of the selected subsets, we use a posteri-
ort a 10-NN classifier in a 5-fold-Cross-Validation procedure. We applied
this strategy not only on the two selected subsets (RCG and Accuracy),
but also on the whole set of features (All attributes). The results are
presented in table 2.

A way to analyze the results consist in comparing performances of RCG vs
Accuracy, RCG vs All attributes, and Accuracy vs All attributes. We can note
that:

(1) Overall, our criterion built on the 1-NN graph allows to obtain results
similar to the MST. Among 9 common databases (tables 1 and 2) treated
by the two geometrical structures, 4 give the same selected feature subset,
3 are better for the MST, and 2 are better for the 1-NN.

(2) In the majority of cases, RCG presents better results than those obtained
by optimizing the accuracy. Among 23 databases, RCG allows 10 times
a better accuracy, is identical 8 times, and has only 5 times a smaller
accuracy. Globally, the mean gain of RCG is about +1.6%. A sign test
gives a threshold probability p; &~ 0.05, which is significant.

(3) The advantage of RCG is confirmed by analyzing the results of All at-
tributes. Actually, for 17 benchmarks, RCG allows a better accuracy (in
average +3.0%), with less features. A sign test gives a very low threshold
probability: p, ~ 0.0053, which is highly significant.

(4) The advantage of Accuracy against All attributes appears to be less sig-
nificant: a sign test gives now a greater threshold probability p; ~ 0.11.
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The preceding experimental results show that the accuracy is not an accurate
criterion to be optimized, since it is outperformed by the RCG. Such results
were previously observed and theoretically explained in decision-tree induc-
tion. In [26], a formal proof is given which explains why the Gini criterion and
the entropy should be optimized instead of the accuracy when a top-down
induction algorithm is used to grow a decision-tree. Their theoretical results
support the claim according to which maximizing the accuracy should be done
directly by maximizing the accuracy’s increasing using a highly concave crite-
rion, like Gini’s or the entropy. In addition, [26] provide an optimal criterion
which should give the maximal increase of the accuracy. This criterion was
later used in the AdaBoost boosting algorithm of [25], and we refer to it as
Schapire-Singer’s Z criterion. It is a function from [0, 1]* to [0, 1]:

k

(fyla- a’Yk)_)Z T -- 7716 z V 1_/)/; (14)
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The results of [26], along with our results on comparing the RCG’s and the
accuracy’s optimization on the 1-NN graph (that of the final classifier), are
advocacy for testing the optimization of Schapire-Singer’s Z criterion itself.
In the experiments of table 3, we give a comparison between its optimization
and that of the quadratic-entropy. We can note that among 15 databases, the
feature subsets are 11 times similar. If we except the Audiology dataset, the
optimization of Z does not bring advantages in feature selection. Nevertheless,
it is important to note that we do not dispose of a convergence in law’s result
for the Z criterion. This surely makes more hazardous a stopping rule for the
growing of the selected feature’s set.

8 Conclusion

Algorithms allowing to improve the reliability and interpretability of concept
construction in machine learning and data mining have become a central issue
of these fields, with the development of new data acquisition techniques, and
the increase in the size of databases. Feature selection algorithms are potential
candidates to address efficiently these problems. We have presented in this pa-
per a feature selection model based both on information theory and statistical
tests. A feature is selected if and only if the information given by this attribute
allows to statistically reduce class overlaps. Results on synthetic and natural
domains show that our tool is suited to treat irrelevant and redundant fea-
tures, even in very large feature spaces. In our approach, two parameters were
optimized. The first one concerns the geometrical structure to apply on the
learning set, on which is built our criterion. The analysis of the paper shows
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that the 1-NN graph presents a similar framework to that of the MST, and
allows to reduce the complexity of our algorithm. Second, we analyzed which
criterion to optimize in our algorithm. Our study shows that the quadratic en-
tropy (which has already shown its advantages in the decision tree field) seems
not only to be significantly better than the accuracy, but also, and more sur-
prising, better than the Z criterion of [25]. The analysis and explanation of
this phenomenon shall the subject of future works.
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Dataset P Accy | p' | Acco
Audiology 69 |70.2 |21 70.3
Breast 13 1662 |3 | 82.7
EchoCardiogram | 6 65.9 |1 | 64.9

Glass2 9 64.6 | 8 | 63.6

Hepatitis 19 | 785 [9 | 80.2
Iris 4 823 |2 | 93.5
Synt1 10 | 85.0 |4 |87.4
Synt2 10 (724 |5 | 73.0
Synt3 100 [ 75.3 |2 | 77.4
White House 16 | 915 |1 | 95.7

Table 1

Results on synthetic and natural domains: Acc; corresponds to the accuracy es-
timates with all the original features (recall that p is their cardinality) and Acce
presents results with the selected feature subset (p' is the subspace size). Best results
are indicated using bold faces.
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Dataset P S| | RCG | All | Acc
Audiology 69 | 226 |69.3 |70.2 | 77.1
Australian 14 | 690 | 84.6 | 76.4 | 84.6
BigPole 4 3481 | 62.9 | 62.2 | 62.9
Breast Cancer 9 699 | 93.3 | 95.8 | 95.0
EchoCardiogram | 6 131 | 66.8 | 65.9 | 60.1
German 24 | 1000 | 69.2 | 71.4 | 69.9
Glass2 9 163 | 65.6 | 64.6 | 63.1
Hard 10 | 256 | 52.4 | 49.0 | 48.8
Heart 13 | 270 | 746 | 77.6 | 74.7
Hepatitis 19 | 155 | 79.1 | 785 | 79.2
Horse 22 | 368 | 75.7 | 66.5 | 75.7
Iris 4 150 | 93.5 | 83.6 | 93.5
LED 7 500 | 87.0 | 88.0 779
LED24 24 | 200 | 84.7 |70.3 | 79.1
Monks 1 6 432 | 83.6 | 75.6 | 83.6
Pima 8 768 | 70.1 | 68.7 | 70.1
Synt1 10 | 300 | 87.4 | 85.0 | 86.0
Synt2 10 | 300 | 73.0 | 72.4 | 73.0
Synt3 100 | 300 | 77.4 | 753 | T7.4
Vehicle 18 | 846 | 72.2 | 68.4 | 70.5
Waves 21 | 501 | 79.3 | 78.1 | 79.1
White House 16 | 435 | 95.5 | 89.1 | 94.3
Xd6 10 | 600 | 74.4 | 74.4 | 61.8
Table 2

Results on 23 databases: the 3 last columns contain the a posteriori accuracy by
cross-validation in the 3 different feature spaces (All stands for All Attributes, and
Acc for Accuracy). Bold faces indicate the best result(s).
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Dataset RCG | Z
Audiology 69.3 | 72.2

BigPole 62.9 | 62.9

EchoCardiogram | 66.8 | 62.7

Glass2 65.6 | 65.6
Hard 524 | 524
Heart 74.6 | 74.6
Hepatitis 79.1 79.1
Horse 75.7 | 75.7
Iris 93.5 |93.5
LED 87.0 | 87.0
LED24 84.7 | 84.7
Pima 70.1 | 70.1
Vehicle 72.2 | 72.2

White House 95.5 | 94.5

Xd6 74.4 | 73.8
Table 3
Comparisons on 15 databases between RCG and the Schapire-Singer’s Z criterion.
When single, the best result is indicated using bold faces.
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