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Abstract

Voting rules relying on k-nearest neighbors (k-NN) are an effective tool in countless many machine learning techniques.
Thanks to its simplicity, k-NN classification is very attractive to practitioners, as it enables very good performances in
several practical applications. However, it suffers from various drawbacks, like sensitivity to “noisy” instances and poor
generalization properties when dealing with sparse high-dimensional data.
In this paper, we tackle the k-NN classification problem at its core by providing a novel k-NN boosting approach. Namely,
we propose a supervised learning algorithm, called Universal Nearest Neighbors (UNN), that induces a leveraged k-NN
rule by globally minimizing a surrogate risk upper bounding the empirical misclassification rate over training data.
Interestingly, this surrogate risk can be arbitrary chosen from a class of Bregman loss functions, including the familiar
exponential, logistic and squared losses. Furthermore, we show that UNN allows to efficiently filter a dataset of instances
by keeping only a small fraction of data.
Experimental results on the synthetic Ripley’s dataset show that such a filtering strategy is able to reject “noisy”
examples, and yields a classification error close to the optimal Bayes error. Experiments on standard UCI datasets show
significant improvements over the current state of the art.

Keywords: Boosting, k-NN classification, surrogate risks.

1. Introduction

k-NN classification is nowadays a crucial tool widely
used in several areas of computer science, like pattern
recognition, computer vision and data mining [1]. Namely,
in the context of machine learning, nearest neighbor meth-
ods have been applied to a variety of supervised problems.
In spite of its simplicity and the lack of theoretical guaran-
tees for training sets of finite size [2], k-NN classifiers have
been observed to perform very well in practice, often even
outperfoming far more sophisticated techniques. However,
it is an endeavor algorithmic challenge to speed-up k-NN
queries and design schemes that scale up well with large di-
mensional datasets. Moreover, reducing the classification
error of the k-NN rule [1] is yet another crucial challenge,
relying on two main issues that may significantly influence
the performances. The first one is related to the similar-
ity criterion, which depends on the underlying distance
measure as well as on the selection criterion, e.g., fixing
the value of k. This problem has been often addressed by
learning an appropriate metric in the feature space, e.g.,
exploiting pairwise distance contraints between training
points [3]. The second issue is how to combine the labels of
the neighbors, i.e., which voting rule to use for predicting
unknown classes. The simple uniform majority vote may
penalize k-NN classification, e.g., when dealing with high-
dimensional data and a large number of classes. This issue

has been usually tackled by data reduction techniques [4].
Furthermore, in a number of works, the classification

problem has been reduced to tracking ill-defined categories
of neighbors, interpreted as “noisy” [5]. Most of these
recent techniques are in fact partial solutions solving a
larger problem related to nearest neighbors’ error, which
does not have to be the discrete prediction of labels, but
rather a continuous estimation of class membership proba-
bilities [6]. This problem has been reformulated by Marin
et al [7] as a strong advocacy for the formal transposi-
tion of boosting to nearest neighbor classification. This
is challenging, as nearest neighbor rules are indeed not
induced, while all formal boosting algorithms induce so-
called strong classifiers by combining weak (also induced)
classifiers. (Along the paper, the word “induction” is used
in a statistically-inferential sense, as originally proposed
by Quinlan [8].)
In this paper, we describe a novel solution to the prob-

lem of k-NN boosting in its most general setting, i.e., mul-
ticlass classification. In particular, we propose a Univer-
sal Nearest Neighbors (UNN) algorithm, which induces
a leveraged k-nearest neighbor rule generalizing the uni-
form k-NN rule. We show that UNN converges to the
global minimum of any chosen classification calibrated sur-
rogate1. Our framework thus handles most popular losses

1A surrogate is a function that is a suitable upperbound for
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already met in the literature: exponential loss, logistic
loss, squared loss, etc. We prove a specific convergence
rate for the exponential loss (used in our experiments)
far better than the general rate. We validated UNN on
the synthetic Ripley’s dataset [10] and several standard
UCI datasets. Experiments display significant accuracy
improvements with UNN over classic k-NN classification,
with the additional advantage of considerably reducing the
classification time. Furthermore, our algorithm often out-
performs a state-of-the-art method relying on k-NN metric
learning.
Sec. 2 presents key definitions for boosting; Sec. 3 de-

scribes our leveraged k-nearest neighbor rule and ourUNN

learning algorithm, analyzing its properties; Sec. 4 details
our experiments; Sec. 5 discusses results and mention fu-
ture work. In order not to laden the body of the paper,
proofsketches of our theorems have been postponed to the
appendices.

2. Empirical and surrogate risks

Unless otherwise stated, bold-faced variables like w de-
note column vectors (components are wi, i = 1, 2, ...), cal-
ligraphic upper-cases like S denote sets, small capitals like
m denote matrices and their entries are indicated by dou-
ble indices like mij ; blackboard faces like X denote subsets
of R, the set of real numbers. We let X denote a domain
(Rn, [0, 1]n, etc., where n is the number of description
variables), whose elements are observations. An example
is an ordered pair (xi,yi) ∈ X × {−1,+1}C. For any
c = 1, 2, ..., C, yic denotes the membership of the example
to class (or category) c: it is +1 (resp. −1) iff the exam-
ple belongs to c (resp. does not belong to c). In the most
general multilabel setting, an example may belong to more
than one class.
We suppose given a set of m examples:

S = {(xi,yi), i = 1, 2, ...,m} . (1)

In the most basic framework of supervised classification,
one wishes to train a classifier on S, i.e. build a function
h : X → R

C with the objective to minimize its empirical
risk on S, defined as:

ε0/1(h,S)
.
=

1

mC

C∑
c=1

m∑
i=1

1[�(h,i,c)<0] , (2)

with 1[.] the indicator function, called here 0/1 loss, and

�(h, i, c)
.
= yichc(xi) (3)

the edge of classifier h on example (xi,yi) for class c (anal-
ogous to the classification margin: see [11] for details).
The sign of hc in {−1,+1} is taken as its membership

another function (here, the non-convex non-differentiable empirical
risk). See [9] for details.
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Figure 1: A toy example of direct (left) and reciprocal (right) k-
nearest neighbors (k = 1) of an example j. Squares and circles
represent examples of positive and negative classes. Each arrow con-
nects an example to its 1-NN.

prediction for class c, thus the edge is positive (resp. neg-
ative) when the membership predicted by classifier and
the actual example’s membership agree (resp. disagree).
Therefore, (2) averages over all classes the number of mis-
matches for the membership predictions. Instead of ad-
dressing the empirical risk minimization (2), the current
trend of supervised learning, led by boosting and support
vector machines, involves minimizing a so-called surrogate
risk [12]. E.g., boosting relies on summing (or averag-
ing) over classes and examples a so-called real-valued sur-
rogate loss ψ. Surrogates are upper bounds of the em-
pirical risk with desirable convexity properties. Namely,
they provide a convenient primer for the maximization
of edges, which roughly amounts to finding the “true”
predictions (�(h�, i, c)) > 0) with large “confidence” val-
ues (|�(h�, i, c))| � 0). Therefore, the minimization of
surrogates remarkably impacts on that of the empirical
risk, thus enabling to provide optimization algorithms with
good generalization properties.
In this paper we follow this approach and constrain ψ

to meet the following conditions:

(i) ψ(z) > 0, ∀z ∈ R;

(ii) ∇ψ(0) < 0 (∇ψ is the conventional derivative);

(iii) ψ is strictly convex and differentiable.

Conditions (i) and (ii) imply that ψ is classification-
calibrated : its local minimization is roughly tied up to that
of the empirical risk. (iii) implies convenient algorithmic
properties for the minimization of the surrogate risk [9].
We end up with the following replacement for (2):

εψ(h,S)
.
=

1

mC

C∑
c=1

m∑
i=1

ψ(�(h, i, c)) . (4)

Some important choices available for ψ include exponen-
tial loss, squared loss and logistic loss. Their definitions
are displayed in the first column of Table 1.

3. Leveraging k -nearest neighbors

3.1. Leveraged k-NN for surrogate risk minimization
We suppose given a non-negative real-valued function,

which quantifies to which extent two examples x and x′
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differ from each other. (For simplicity of notation, we omit
index i in xi.) NNk(x) is defined to be the set of k > 0
nearest neighbors for observation x ∈ X : it contains the
indexes of the k examples of S whose observations are the
closest to x. (Ties are broken at random.) Similarly, the
reciprocal nearest neighbors RNNk(x

′) of an observation
x′ ∈ X are those examples in S for which x′ belongs to
NNk(.). See the illustration in Fig. 1.
The k-nearest neighbors (k-NN) rule is based on a sim-

ple majority vote [1], and is defined as the following clas-
sifier h (k is implicit):

h(x)
.
=

∑
j∈NNk(x)

yj =
∑

j∈NNk(x)

diag(1y�j ) , (5)

where 1 ∈ R
C is the all-1 vector, and diag(m) denotes

the diagonal vector of a square matrix m. In this paper
we propose a leveraged k-NN rule h�, that consists in the
following generalization of (5):

h�(x)
.
=

∑
j∈NNk(x)

diag(αjy
�
j ) , (6)

where αj ∈ R
C is the leveraging coefficient vector for ex-

ample (xj ,yj), for j = 1, ...,m. We let r(c) ∈ R
m×m (c =

1, 2, ..., C) denote the k-NN edge matrix for class c:

r
(c)
ij

.
=

{
yicyjc if j ∈ NNk(xi)
0 otherwise

. (7)

The name of r(c) is justified by an immediate parallel
with (3), as each example (xj ,yj) serves as a classifier
for each example (xi,yi), predicting 0 if j �∈ NNk(xi) and

yjc otherwise for the membership to class c. Thus r
(c)
j

(the jth column of r(c)), which we assume different from
0, collects all edges of “classifier” (xj ,yj) for class c. It
finally comes that the edge of the leveraged k-NN rule on
example (xi,yi) for class c is:

�(h�, i, c) = (r(c)α(c))i , c = 1, 2, ..., C , (8)

where α(c) collects all leveraging coefficients for class c:

α
(c)
i

.
= αic (i = 1, 2, ...,m). Since choosing k > 0 is suf-

ficient for building a meaningful r(c) (c = 1, 2, ..., C), the
induction of the leveraged k-NN h� amounts to fitting all
α(c)s to minimize (4), after replacing the argument of ψ(·)
in (4) by (8).

3.2. A boosting algorithm to learn h�: UNN

We propose a novel classification algorithm, calledUNN

(Universal Nearest Neighbor rule), whose theoretical basis
grounds on recent work of Nielsen and Nock [9] gener-
alizing the boosting approach for the case of linear sep-
arators. We tailor our UNN algorithm to the induc-
tion of h� (Eq. 6) in the most general multiclass, mul-
tilabel classification framework. (Pseudo-code is shown in
Alg. 1.) In particular, UNN operates on a set of weights

Algorithm 1: Universal Nearest Neighbors

UNN(S, ψ)

Input: S = {(xi,yi), i = 1, ...,m, xi ∈ X , yi ∈
{−1,+1}C}, ψ meeting (i), (ii), (iii) (Sec. 2)

∀i, j = 1, ...,m, c = 1, ..., C, set:

r
(c)
ij

.
=

{
yicyjc if j ∈ NNk(xi)
0 otherwise

(9)

Let αj ← 0 ∈ R
m for c = 1, 2, ..., C do

Set w ← −∇ψ(0)1 ∈ Rm+∗ for t = 1 to T do
[I.0] Let j ←Wic({1, 2, ...,m}, t, c)
[I.1] Let δj ∈ R solution of:

m∑
i=1

r
(c)
ij ∇ψ

(
δjr

(c)
ij +∇−1

ψ (−wi)
)
= 0 (10)

[I.2] ∀i = 1, 2, ...,m, set:

wi ← −∇ψ

(
δjr

(c)
ij +∇−1

ψ (−wi)
)

(11)

(Only wi for which j ∈ NNk(xi) are updated)
[I.3] Let αjc ← αjc + δj

Output: h�(x)
.
=

∑
j∈NNk(x)

diag(αjy
�
j )

W
.
= −im(∇ψ) ⊆ R in surjection with all possible lever-

aged k-NN rules. (im denotes the “image” set.) The train-
ing algorithm repeatedly updates a weight vector w ∈ W

in order to fit each α(c) (c = 1, 2, ..., C). At each iteration
t, index j ∈ {1, 2, ...,m} of the example to leverage is ob-
tained by a call to a weak index chooser oracle Wic(., ., .),
whose implementation is postponed to steps [I.0.a] and
[I.0.b] below. Roughly speaking, learning the leverag-
ing coefficient of an example for a given class amounts
to compute its relevance as a prototype of that class, i.e.,
its significance when voting for an unlabeled observation.
Hence, the most relevant prototypes are expected to have
large αjc (in absolute value), and vice-versa.

The depiction of UNN is simple, but its implementa-
tion has been obviously optimized: e.g., we do not store
matrices r(c), c = 1, 2, ..., C, as (10) only involves indexes
i of the reciprocal k-nearest neighbors of example (xj ,yj),
and so on.

The main bottleneck of UNN is step [I.1], as (10) is a
non-linear equation. However, it always admits a solution,
finite under mild assumptions [9]: namely, δj is guaranteed
to be finite when there is no total matching or mismatch-
ing of example (xj ,yj)’s memberships with its reciprocal
neighbors’, for the class at hand. The second column of
Table 1 contains the solutions to (10) for surrogate losses
mentioned in Sec. 2. The following notation is used there:

w
(c)+
j

.
=

∑
i:r

(c)
ij

=1

wi, w
(c)−
j

.
=

∑
i:r

(c)
ij

=−1

wi . (12)
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Table 1: Three losses and the corresponding solutions δj of (10) and wi of (11). (Vector r
(c)
j designates column j of R(c) and ||.||1 the L1

norm.) The rightmost column says whether it is (A)lways the solution, or whether it is when weights of the reciprocal neighbors RNNk(xj )
(Sec. 3.1) are the (S)ame.

loss function δj in (10) wi in (11) Opt

ψexp .
= exp{−x} 1

2 log
w

(c)+
j

w
(c)−
j

wi exp
{
−δjr

(c)
ij

}
A

ψsqu .
= (1− x)2

w
(c)+
j

−w
(c)−
j

2||r
(c)
j
||1

wi − 2δjr
(c)
ij A

ψlog .
= log(1 + exp {−x}) log

w
(c)+
j

w
(c)−
j

wi exp
{
−δjr

(c)
ij

}

1−wi

(
1+exp

{
−δjr

(c)
ij

}) S

Those solutions are always exact for the exponential loss
(ψexp) and squared loss (ψsqu); for the logistic loss (ψlog) it
is exact when the weights in the reciprocal neighborhood of
(xj ,yj) are the same, otherwise it is approximated. Since
the starting weights are all the same, exactness can be
guaranteed during a large number of inner rounds depend-
ing on the order in the choice of the examples.
Table 1 also helps to formalize the finiteness condition

on δj mentioned above: when either sum of weights w
(c)+
j ,

w
(c)−
j is zero, the solutions in the first and third line are not

finite. A simple strategy to cope with numerical problems
arising from such situations is that proposed by Schapire
and Singer [13]. Namely, in order to compute solutions of
δj for ψexp and ψlog (first and third line) we suggest to
replace:

w
(c)+
j ← w

(c)+
j +

1

m
, w

(c)−
j ← w

(c)−
j +

1

m
. (13)

Smoothing out δj , this guarantees its finiteness without
impairing convergence. Indeed, this corresponds to trans-
lating the same objective function (4) by a constant regu-
larization offset that guarantees the solution to exist, while
still being unique.
Furthermore, Table 1 also shows what the weight update

rule (11) specializes to for the mentioned losses.

To finish up, we propose two main alternatives to im-
plement oracle Wic(., ., .) in step [I.0]:

[I.0.a] a lazy approach: we let Wic({1, 2, ...,m}, t, c)
.
= t,

setting T = m;

[I.0.b] the boosting approach: we pick T ≤ m, and let
Wic choose some j for which δj is large enough. Each
j can be chosen more than once.

Schemesmixing [I.0.a] and [I.0.b]may also be considered:
for example, we may pick T = m, choose j as in [I.0.b],
but exactly once as in [I.0.a]. Notice that setting T < m
amounts to automatically discarding some examples in S,
thus retaining only a subset of annotated data for classifi-
cation. In the following experiments, we always considered
the boosting approach, which generally provides the best
precision using less prototypes.

3.3. Properties of UNN

In this section we enunciate two fundamental theorems
for UNN. The first one is very general, as it states that the
time spent in the induction buys the optimal decrease of
the surrogate risk at hand (whatever it is) as T increases.
The second theorem refers to the exponential loss min-
imization, by providing an effective convergence bound.
(Proofs for these theorems are given in the appendices.)

Theorem 3.1. As T increases, UNN converges to h� re-
alizing the global minimum of the surrogate risk at hand
(4), for any ψ meeting conditions (i), (ii) and (iii) above.

This is the first result of this type known for k-nearest
neighbor rules. Although we have proved the boosting
ability of UNN for all applicable surrogate losses, we
choose to show its behaviour only for the exponential loss
ψexp, which features far better convergence bound than
the general one [9].
Computing this bound is based on defining a weak index

assumption (WIA), which is to nearest neighbors what
the conventional weak learning assumption is to general
induced classifiers [13]:

(WIA) let p
(c)
j

.
= w

(c)+
j /(w

(c)+
j + w

(c)−
j ). There exist

some γ > 0 and η > 0 such that the following holds
for index j returned by Wic(., ., .):

|p
(c)
j − 1/2| ≥ γ , (14)

(w
(c)+
j + w

(c)−
j )/||w||1 ≥ η . (15)

Theorem 3.2. If the WIA holds for τ ≤ T steps in
UNN (for each c), then ε0/1(h�,S) ≤ exp(−2ηγ2τ).

Inequality (14) is the usual weak learning assumption
[13], when considering examples as weak classifiers. But a
weak coverage assumption (15) is needed as well, because
insufficient coverage of the reciprocal (or symmetrized)
neighbors could easily wipe out even the surrogate risk
reduction potentially due to a large γ. In addition, even
when classes are significantly overlapping, choosing k not
too small is enough for the WIA to be met for a large
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number of boosting rounds τ , thus determining a poten-
tial harsh decrease of ε0/1(h�,S). This is important, as
there are at most m different weak classifiers available to
Wic(., ., .), even when each one may be chosen more than
once under the WIA. Last but not least, Theorem 3.2
also displays the fact that classification (14) may be more
important than coverage (15).

4. Experiments

In this section we present experimental results of UNN

on both synthetic and real datasets. Our experiments
aim to carefully quantify and explain the gains brought
by boosting on nearest neighbor voting [7]. First, we per-
formed experiments on synthetic data to drill down into
the performances of UNN (Sec. 4.1). Then, we carried out
experiments on some standard UCI datasets that are com-
monly employed for testing nearest neighbors-based tech-
niques [14]. We present a comparison on these datasets
with both regular k-NN and a state-of-the-art metric learn-
ing method (Sec. 4.2). For both synthetic and real data we
used UNN with the exponential loss ψexp smoothed out
with Eq. (13). In the following, we replace parameter T by
θ = T

m
, i.e., the proportion of training examples that are

selected during the training phase in order to form the final
UNN classifier. Thus, parameter θ implicitely determines
a cut-off value for coefficients αjc when filtering out the
least relevant examples. In all the reported experiments,
we fixed the value of θ before running our algorithm, then
we evaluated the classification performances as a function
of it. (Results of UNN on UCI data refer to the best θ
determined by cross-validation.)

4.1. Synthetic data

We have drilled down into the experimental behaviour of
UNN using the synthetic Ripley’s dataset [10] with C = 2
classes. Each population of this dataset is an equal mix-
ture of two two-dimensional normally distributed popu-
lations, and the two populations are equally likely. Fol-
lowing the classic setting for this dataset, training and
test dataset consist of 250 and 1000 points, respectively,
whereas the best theoretical error rate of the Bayes rule is
8.0% [10].
Two main conclusions can be drawn from classification

experiments shown in Fig. 2, where performances of UNN

are compared to those of k-NN with random sampling, for
k = 5 (k-NN results are averaged over five of runs). First,
UNN consistently outperforms the uniform voting for any
value of θ, i.e., the proportion of examples retained for
classification, thus confirming UNN as a far more effec-
tive data selection technique than random sampling. Sec-
ond, training a sparse subset of annotated examples with
UNN does not degrade classification performances, rather
significantly improves them. Namely, notice the points at
θ = 0.6 and θ = 0.7, where a sharp performance degrada-
tion occurs, due to forcing classification via less and less

reliable prototypes, which are instead discarded at lower
thresholds. In particular, decreasing θ down to values as
small as θ = 0.1 reduces the test error, until reaching mis-
classification rate very close to Bayes’. (Notice the 3% gap
between using all the examples and retaining the smallest
subset.)
Indeed, assuming standard sampling assumptions [15],

filtering actually benefits from two positive effects. The
first is a margin effect, well known for induced classifiers
[15]. The goodness-of-fit of the k-NN rule is driven by the
most accurate examples, i.e. those surrounded by exam-
ples of the same class, getting the largest αjc. The least
accurate ones, e.g. those located in overlapping regions be-
tween two classes, get the smallest (see expressions for δj
in Table 1). Discarding these latter examples tends to in-
crease a gap between class clouds, but each cloud may shel-
ter examples of different classes. Fortunately, filtering with
boosting is accompanied by a subtle local repolarization of
predictions which, as explained in Figure 3(c), makes that
this gap maximization translates to margin maximization,
for which positive effects on learning are known. The sec-
ond effect is structural: in nearest neighbor rules, the fron-
tier between classes stems from the Voronoi cells of those
least accurate examples. Their discarding separates better
the classes, as witnessed by Fig. 3(c). Above all, it reduces
the number of Voronoi cells involved in the class frontiers,
thus reducing structural parameters (vc-dimension) of the
classifier, possibly buying a reduction of the test error as
well.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 18

9

10

11
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14

15

θ

er
ro

r r
at

e 
[%

]

UNN

k−NN

Figure 2: Test error for UNN and k-NN (random sampling)
on the Ripley’s dataset as a function of the proportion θ of
examples retained for classification. Bayes rule (the optimal
classifier) achieves 8% error.

4.2. UCI datasets

We carried out classification experiments with UNN on
standard UCI datasets, and compared our method with
both regular k-NN classification (with respect to the Eu-
clidean distance) and ITML [3], that is a state-of-the-art
metric learning algorithm. Both UNN and ITML aim at
improving the generalization ability of the k-NN rule, but
they address this issue from two complementary points of
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Figure 3: Maps of Ripley’s training data and learned prototypes for k = 3 and (a) θ = 0.75, (b) θ = 0.5, (c) θ = 0.25. Examples
of class 1 (filled circles) and those of class 2 (filled squares) with the largest αjc are retained as prototypes, thus providing the
shown boundary.

view. On the one hand, ITML aims at selecting a suit-
able distance measure for k-NN search, thus not modify-
ing the uniform voting scheme among neighbor examples.
In particular, ITML learns a “Mahalanobis distance” in
an information-theoretic framework, where pairwise con-
straints between training data are incorporated. Then, the
labels of nearest neighbors are combined following the reg-
ular majority voting rule. On the other hand, our UNN

algorithm aims at selecting the most reliable instances to
be combined in a weighted voting scheme, without the
need to modify the underlying distance measure in the
feature space. As a result, the time complexity of UNN

is generally much lower than that of metric learning-based
approaches, both in training and classification stage. Re-
sults of our experiments show that, in most cases, rejecting
the less reliable instances from the training dataset, as car-
ried out by UNN, outperforms expensive optimizations of
the distance metric provided by ITML.

Results of ITML were produced using the Matlab code
provided by the authors [3], using the same settings as
in their paper. We evaluated classification performances
on five runs of two-fold cross-validation. In Table 2 we
present average results over all cross-validation runs, as
well as the values used for k. (We found the optimal k
value on each dataset by cross-validation.) The same re-
sults are presented as histograms in Fig. 4, where the Bi-
nomial confidence intervals at the 95% level are shown as
well. Globally, UNN outperforms both ITML and k-NN.
In particular, UNN outperforms regular k-NN classifica-
tion (except for the “glass” dataset), with the additional
advantage of considerably reducing the time complexity
of the classification phase, thanks to data filtering. Fur-
thermore, the accuracy improvement of our method over
ITML is significant (according to the confidence intervals
computed) on some medical datasets, like “liver” (6% im-
provement), “diabetes” (3%) and “cancer” (1%). Indeed,
such data are expected to be more subject to “noisy” ex-
amples, due to the high inter-patient variability of medical
measurements. All reported results refer to choosing the

Table 2: Classification accuracies for UNN, ITML and regular k-NN
on various UCI data sets. For each dataset, the best performing
method is highlighted by bold digits.

Dataset k UNN ITML k-NN

Iris 4 3.07 3.47 5.73

Balance Scale 4 12.77 11.46 19.71

Ionosphere 4 12.36 12.65 14.07

Glass 1 3.83 3.18 2.52
Liver 8 32.41 38.49 33.62

Cancer 6 6.15 7.21 7.84

Diabetes 5 25.44 28.78 28.10

value of θ by cross-validation. (In most cases, no more
than 40% of the training data were retained.)

5. Discussion and conclusion

In this paper, we contribute to fill an important void of
nearest neighbor methods [7], showing the way boosting
can be transfered to k-NN classification. Experiments on
both synthetic and real datasets display that our UNN

algorithm provides significant performance improvements
not only over regular k-NN, but also over a state-of-the-art
metric learning technique (ITML). Furthermore, UNN al-
lows consistent data reduction, which results in significant
speed-up while improving the classification accuracy. Fi-
nally, our ongoing work focuses on incorporating metric
learning into UNN, which is expected to further improve
performances.

Appendix A. Proofsketch of Theorem 3.1

We show that UNN converges to the global optimum
of any surrogate risk (Sec. 2). So, let us consider the sur-
rogate risk (4) for any class c = 1, 2, ..., C (inner sum).
wt denotes the tth weight vector inside the “for c” loop

6



Iris Scale Ionosphere Glass Liver Cancer Diabetes0

5

10

15

20

25

30

35

40

45

Er
ro

r r
at

e 
[%

]
UNN
ITML
k−NN

Figure 4: Classification error rates for UNN, ITML and regu-
lar k-NN classification. The 95% confidence intervals are also
shown.
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Figure A.5: A geometric view of how UNN converges to the global
optimum of (4) (see Appendix for details and notations).

(assuming w0 is the initialization of w); similarly, h�t de-
notes the tth leveraged k-NN rule obtained after the up-
date in [I.3]. The following identity holds, whose prove
follows from [9]:

ψ(�(h�t , i, c)) = g +Dψ̃ (0||wti) , (A.1)

where g(m)
.
= −ψ̃(0) does not depend on the k-NN rule.

(A.1) makes the connection between the real-valued clas-
sification problem and a geometric problem in the non-
metric space of weights. Here, we have made use of the
following notations:

• ψ̃(x)
.
= ψ�(−x), where ψ�(x)

.
= x∇−1

ψ (x)−ψ(∇−1
ψ (x))

is the Legendre conjugate of ψ, also strictly convex
and differentiable.

• Dψ̃(wi||w
′
i)

.
= ψ̃(wi)− ψ̃(w′i)− (wi−w′i)∇ψ̃(w

′
i) is the

Bregman divergence with generator ψ̃. ψ� is related
to ψ in such a way that ∇ψ̃(x) = −∇

−1
ψ (−x).

(A.1) proves in handy as one computes the difference
εψc (h

�
t+1,S) − εψc (h

�
t ,S). Indeed, using (A.1) in (4), and

computing δj in (10) so as to bring h�t+1 from h�t , we ob-
tain:

εψc (h
�
t+1,S)− εψc (h

�
t ,S)=−

1

m

m∑
i=1

Dψ̃

(
w(t+1)i||wti

)
. (A.2)

Since Bregman divergences are non negative and meet the
identity of the indiscernibles, (A.2) implies that steps [I.1]
— [I.3] guarantee the decrease of (4) as long as δj �= 0.
But (4) is lowerbounded, hence UNN must converge. In
addition, it converges to the global optimum of (4). Since
predictions for each class are independent, the prove con-
sists in showing that the inner sum in (4) converges to its
global minimum for each c. Assume this convergence for
the current class, c. Then, following [9], (10) and (11) im-
ply that, when any possible δj = 0, the weight vector, say

w∞, satisfies r(c)�w� = 0, i.e., w∞ ∈ kerr(c)�, and w∞

is unique. But the kernel of r(c)� and W, the closure of
W, are provably Bregman orthogonal, thus yielding:

m∑
i=1

Dψ̃ (0||wi)

︸ ︷︷ ︸
mε

ψ
c (h�,S)−mg

=
m∑
i=1

Dψ̃ (0||w∞i)

︸ ︷︷ ︸
mε

ψ
c (h�

∞
,S)−mg

+

+
m∑
i=1

Dψ̃ (w∞i||wi)

︸ ︷︷ ︸
≥0

, ∀w ∈W . (A.3)

Underbraces use (A.1) in (4), and h� is a leveraged k-NN

rule corresponding to w. One obtains that h�∞ achieves
the global minimum of (4), as claimed.

The proofsketch is graphically summarized in Fig. A.5.
In particular, two crucial Bregman orthogonalities are
mentioned. The red one symbolizes:

m∑
i=1

Dψ̃ (0||wti) =

m∑
i=1

Dψ̃

(
0||w(t+1)i

)
+

+
m∑
i=1

Dψ̃

(
w(t+1)i||wti

)
, (A.4)

which is equivalent to (A.2). The black one on w∞ is
(A.3).

Appendix B. Proofsketch of Theorem 3.2

Using developments in [9], UNN can be shown to be
equivalent to AdaBoost in which m weak classifiers are
available, each one being an example. Each weak classi-
fier returns a value in {−1, 0, 1}, where 0 is reserved for
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examples outside the reciprocal neighborhood. Theorem 3
of [13] brings in our case:

ε0/1(h�,S) ≤
1

C

C∑
c=1

T∏
t=1

Z
(c)
t , (B.1)

where Z
(c)
t

.
=

∑m

i=1 w̃
(c)
it is the normalizing coefficient for

each weight vector in UNN. (w̃
(c)
it denotes the weight of

example i at iteration (t, c) of UNN, and the Tilda nota-
tion refers to weights normalized to unity at each step.) It
follows that:

Z
(c)
t = 1− w̃

(c)+−
jt

(
1− 2

√
p
(c)
jt (1− p

(c)
jt )

)

≤ exp

(
−w̃

(c)+−
jt

(
1− 2

√
p
(c)
jt (1− p

(c)
jt )

))

≤ exp
(
−η

(
1−

√
1− 4γ2

))
≤ exp(−2ηγ2) ,

(B.2)

where:

w̃
(c)+−
jt

.
= w̃

(c)+
jt + w̃

(c)−
jt

p
(c)
jt

.
= w̃

(c)+
jt /w̃

(c)+−
jt = w

(c)+
jt /w

(c)+−
jt .

The first inequality in (B.2) uses 1 − x ≤ exp(−x), and
the second the WIA. Since even when the WIA does not
hold, we still observe Z

(c)
t ≤ 1, plugging the last inequality

in (B.1) yields the statement of the Theorem.
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