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Abstract

So far, boosting has been used to improve the quality of moderately accurate learning algorithms,
by weighting and combining many of theirweakhypotheses into a final classifier with theoretically
high accuracy. In a recent work (Sebban, Nock and Lallich, 2001), we have attempted to adapt
boosting properties to data reduction techniques. In this particular context, the objective was not
only to improve the success rate, but also to reduce the time and space complexities due to the
storage requirements of some costly learning algorithms, such as nearest-neighbor classifiers. In
that framework, eachweakhypothesis, which is usually built and weighted from the learning set,
is replaced by a single learning instance. The weight given by boosting defines in that case the
relevance of the instance, and a statistical test allows one to decide whether it can be discarded
without damaging further classification tasks. In Sebban, Nock and Lallich (2001), we addressed
problems with two classes. It is the aim of the present paper to relax the class constraint, and
extend our contribution to multiclass problems. Beyond data reduction, experimental results are
also provided on twenty-three datasets, showing the benefits that our boosting-derived weighting
rule brings to weighted nearest neighbor classifiers.

1. Introduction

Some of the earliest approaches to classification are also among the simplest: they do not induce
concept representations (decision trees, neural networks, etc.), but exploit simple structures of the
learning set, such as neighborhoods, to classify instances. Among them, the most popular is prob-
ably the 1-Nearest-Neighbor (NN) algorithm (Cover and Hart, 1967), and its generalization, the
k-NN rule, which classifies an unknown instance according to a local vote by itsk-nearest neigh-
bors. Its use was widely spread and encouraged by early theoretical results linking its generalization
error to Bayes risk. Under mild regularity assumptions on the underlying statistics, for any metric,
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the large-sample risk incurred is less than twice the Bayes risk. Even more, the risk paid off for
finite samples can be very reasonable under similar assumptions (Nock and Sebban, 2001b). How-
ever, from a practical point of view, this algorithm has several problems, as mentioned in Breiman
et al. (1984): (i) it is computationally expensive because it stores all the instances in memory; (ii)
it is intolerant to noisy instances; (iii) it is intolerant to irrelevant attributes and (iv) it is sensitive to
the chosen distance function.

The deletion of noisy instances and irrelevant attributes is addressed by data reduction tech-
niques. Recent complexity theoretic results show that some related optimization problems are very
hard to approximate (Nock and Sebban, 2000). This advocates for the use of heuristics for data
reduction. In this paper, we only focus on prototype selection, which consists of identifying and
eliminating irrelevant instances. Prototype selection concerns both storage complexity (first prob-
lem listed above) and noise tolerance (second problem). The last two problems are not discussed in
this paper. Many solutions have been proposed to select relevant features (John, Kohavi and Pfleger,
1994; Koller and Sahami, 1996; Sebban, 1999) and to define new distance functions (Wilson and
Martinez, 1997).

Many prototype selection methods have been suggested to improve the standard NN algorithm
using different strategies: removing correctly classified examples (Hart, 1968; Gates, 1972), iden-
tifying and eliminating mislabeled instances (Brodley and Friedl, 1996), deleting misclassified or
irrelevant instances (Wilson and Martinez, 2000; Sebban and Nock, 2000), identifying relevant
prototypes by Monte-Carlo sampling (Skalak, 1994), etc. Recently, we proposed an adaptation of
boosting to prototype selection (Nock and Sebban, 2001a) in the PSBOOST algorithm. Boosting,
as used in the well known ADABOOST algorithm (Freund and Schapire, 1997), generates a final
combined classifier whose error on the learning set is small by weighting and combiningT weak
hypotheses, each of which may have a large error. Here,T is the number of boosting rounds, a
parameter fixed in advance. Freund and Schapire (1996) proposed reducing the number of instances
used by each weak hypothesis to speed up the NN classifier. As far as we know, this work was
the first attempt to use boosting in prototype selection, although their goal was not to improve the
accuracy. The objective of PSBOOSTis to obtain a good balance between storage requirements and
generalization accuracy. Its principle is to use each instance as a weak hypothesis: the confidence
weight given by boosting becomes in our case an indication of the instance’s relevance. Experimen-
tal results indicate the efficiency of this approach (Nock and Sebban, 2001a). Inspired by boosting,
PSBOOSTsuffers from the same important drawback: the control of the number of boosting rounds,
that is, the sizeNp of the final prototype set in our framework. Nock and Sebban (2001a) studied
the balance between a small value ofNp which allows high storage reduction but decreases the ac-
curacy, and a large value which allows us to control the generalization accuracy but still needs high
storage requirements. The results obtained reveal the crucial need for a method fixing as accurately
as possible this parameter (Nock and Sebban, 2001a). A first attempt to cope with this problem is
provided by Sebban, Nock and Lallich (2001), but it holds only for problems with two classes.

In this paper, we relax the class constraint, thereby extending our framework to multiclass prob-
lems. We draw up a statistical test based on the normalization factorZ, the criterion minimized
in ADABOOST, and optimized in PSBOOST as well. Experimental results display the ability of
this criterion to obtain a significant size reduction, together, on average, with an increase of the
accuracy. This generalized version of PSBOOST, called PSBOOST2 MC, also displays experimen-
tally its ability to address the first two problems (storage requirement and noise tolerance) ofk-NN
classifiers.
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A significant drawback ofk-NN classifiers is that they require fixingk in advance. This is clearly
not an easy task in real-world domains. While a small value ofk is often sufficient for noise free
problems, thek-NN rule requires thorough investigations for complex problems, often leading to
the testing of many values ofk. To cope with this problem, in this paper, we extend our algorithm to
another kind of neighborhood-based classifier, whose geometry does not rely onad hocparameters.
The underlying neighborhood graph is called the Relative Neighborhood Graph (RNG) (Toussaint,
1980). Experimental results again display the ability of our algorithm to improve classifiers based
on the RNG, even in the presence of noise.

The final contribution of this paper is not restricted to data reduction. In Sebban, Nock and
Lallich (2001), it is argued that the instance’s weighting rule derived from boosting deserves inves-
tigations for its use in weighted nearest neighbors classifiers. We provide in this paper experimental
results on a body of twenty-three datasets. They display significant improvements obtained when
using boosting-derived weights.

In the rest of this paper, after having briefly recalled the main properties of boosting and PS-
BOOST in Section 2, we describe in Section 3 our statistical criterion for automatically halting the
selection procedure, and the new version of our algorithm, called PSBOOST2. In Section 4, we
describe the RNG, before presenting a large experimental study (Section 5). We make some obser-
vations in Section 6, and we explain why PSBOOST2 is suited for reducing storage while controlling
the classifier accuracy. In Section 7, we present the extension of the test to multiclass problems. The
use of the instance weights in weighted classifiers is discussed in Section 8, before our final conclu-
sion.

2. Adapting Boosting to Data Reduction

In this section, we recall the main properties of boosting and PSBOOST.

2.1 Properties of Boosting

Boosting resides in combining many (T) weakhypotheses produced from various distributions
Dt(e) over the learning set (LS). The pseudocode of the original boosting algorithm, called AD-
ABOOST (Freund and Schapire, 1997) is described in Figure 1. At each staget, ADABOOST de-
creases (resp. increases) the weight of learning instances,a priori labeledy(e), which are correctly
(resp. incorrectly) classified by the current weak hypothesisht . Boosting thus forces the weak
learner to learn the hardest examples. The weighted combinationH(e) of all the weak hypotheses
results in a better performing model. Schapire and Singer (1998) proved that, in order to mini-
mize learning error, one must seek to minimizeZt in each round of boosting, requiring the use of a
specific confidenceαt .

In order to present our adaptation of boosting to storage reduction with neighborhood-based
classifiers, we first introduce several notations proposed by Schapire and Singer (1998). Suppose
that y(e) ∈ {−1;1} and that the output of each weak hypothesisht is restricted to−1,0,+1. Let
W−1, W0 andW+1 be defined by

Wb = ∑
e∈LS:y(e)ht (e)=b

Dt(e) .
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ADABOOST( LS,W,T )
Initialize distribution D1(e) = 1/|LS|
for any e∈ LS;
For t = 1,2, ...,T

Train weak learner W on LS using Dt

and get a weak hypothesis ht ;
Compute the confidence αt = 1

2 log(1−εt
εt

);
Where εt = ∑y(e) 6=ht (e) Dt(e) is the error
of ht .
Update:

∀e∈ LS: Dt+1(e) = Dt(e)exp(−αt y(e)ht (e))
Zt

;
/∗Zt is a Normalization Factor ∗/

endFor
Return the classifier

H(e) = sign(
T

∑
t=1

αtht(e))

Figure 1:Pseudocode for ADABOOST.

Using symbols + and - for +1 and -1, we can calculate the normalization factorZ as:

Zt = ∑
e∈LS

Dt(e)exp(−αty(e)ht(e))

= ∑
b

∑
e∈LS:y(e)ht (e)=b

Dt(e)exp(−αtb)

= W0 +W−exp(αt)+W+ exp(−αt) .

Zt is then minimized when

αt =
1
2

log

(
W+

W−

)
. (1)

Freund and Schapire’s original ADABOOST algorithm would instead have made the more conser-
vative choice

αt =
1
2

log

(
W+ + 1

2W0

W−+ 1
2W0

)
,

giving a normalization coefficientZ which Freund and Schapire (1997) upper bound by

Zt ≤ 2

√
(W+ +

1
2
W0)(W−+

1
2
W0) .

2.2 PSBOOST

Suppose now that each weak hypothesisht is not a classifier produced from the whole learning set
(LS), but rather a given examplee. In ADABOOST, the confidenceαt is a function of the prediction
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error ofht on LS. Replacinght by e requires a more sophisticated error measure that we can call
the pseudo-loss, as used in Freund and Schapire (1996). While the loss of a classifierht is based
on its ability to correctly classifyall the instances, the pseudo-loss ofe must take into account its
influence onlyon its neighborhoodin LS.

Definition 1 Let N(e) be the neighborhood of an instance e of the learning set LS:
N(e) = {e′ ∈ LS: e′ is one of the k-nearest neighbors of e in the oriented k-NN graph}.

Note that the above definition can be extended to other neighborhood graphs.

Definition 2 Let R(e) be the reciprocal neighborhood of an instance e of the learning set LS:
R(e) = {e′ ∈ LS: e∈ N(e′)}.

Stated differently,R(e) represents the set of instances which havee in their neighborhood.
Whenever the neighborhood relationship can be represented by a directed graph, such as for the
k-NN rule, we generally haveR(e) 6= N(e). If we considere as a weak hypothesis, its output takes
three possible values in the case with two classes:

• y(e) ∈ {−1;1} for any instance inR(e),

• 0 for any instance not inR(e).

Let W+
e (resp.W−e ) be the fraction of instances inR(e) having the same class ase (resp. a

different class frome), and letW0
e be the fraction of instances to whichegives a null vote (those not

in R(e)). Then, the examplee we choose at each roundt of boosting should be the one minimizing
the following coefficient:

Ze = 2

√(
W+

e +
1
2

W0
e

)(
W−e +

1
2

W0
e

)
, (2)

and the confidenceαe can be calculated as

αe =
1
2

log

(
W+

e + 1
2W0

e

W−e + 1
2W0

e

)
. (3)

Note that we use here the less optimal quantities given by Freund and Schapire (1997) and not
those proposed by Schapire and Singer (1998). Our choice basically increases the influence ofW0

e ,
since parameterW0 is absent from the weighting coefficient in Equation 1. This choice is motivated
by the fact that in our case, many instances do not belong to the reciprocal neighborhoodR(e) of
some instancee, resulting in a value forW0

e eventually much higher than in the weak hypotheses that
abstain Schapire and Singer’s (1998) model. In our approach, a smallW0

e (of course combined with
a highW+

e ) indicates a high local influence ofe, and then is considered an interesting candidate for
the selection. Note that once a prototype is selected, it will still be considered as in other reciprocal
neighborhoods, but of course not as a candidate.

The pseudocode of our algorithm PSBOOST is described in Figure 2. Note that, in this section,
the confidenceαe is only used for selecting the prototypes and not for generating a weighted classi-
fier, which is the subject of the last section of this paper. This choice is motivated by the fact that our
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PSBOOST( LS,Np)
Initialize distribution D1(e) = 1/|LS|
for any e∈ LS;
Initialize candidates set LS∗ = LS;
Initialize LS′ = /0
For t = 1,2, ...,Np

e= argmine′∈LS∗ Ze′ ;
If αe < 0 Then EndLoop;
LS′ = LS′ ∪e
LS∗ = LS∗ −{e}
Update:
∀e′ ∈ R(e):

Dt+1(e′) = Dt(e′)exp(−αey(e′)y(e))
Ze

;

∀e′ ∈ LS\R(e): Dt+1(e′) = Dt (e′)
Ze

;
/∗Ze is a normalization coefficient ∗/

endFor
Return LS′

Figure 2:Pseudocode for PSBOOST. The output of this algorithm is the prototype subsetLS′.

k-NN CF PSRCG PSBOOST MC RT3 PSBOOST∗
DataSets Acc. Acc. % prot Acc. % prot Acc. Acc. Acc. % prot Acc.
AUDIOLOGY 73.40 73.80 69.8 73.70 86.1 73.84 72.21 69.40 10.7 70.00
AUSTRAL 80.55 79.55 84.2 78.41 58.5 80.27 75.41 70.67 10.9 71.68
BIGPOLE 59.94 60.23 69.8 59.92 88.1 58.91 59.94 58.89 17.5 57.29
BREAST 96.89 96.76 97.5 97.04 10.0 96.19 97.04 87.72 1.2 81.24
BRIGHTON 95.80 94.59 97.6 94.6 32.4 94.46 93.60 90.56 16.4 90.27
BUPA 62.67 65.31 73.0 66.76 79.0 68.77 65.90 63.35 10.8 62.45
ECHOCARDIO 60.00 69.18 68.0 62.58 60.3 61.87 62.63 58.30 5.8 61.87
GERMAN 72.85 72.05 77.8 70.87 73.7 72.65 69.88 69.87 10.6 72.65
GLASS2 72.65 73.31 81.5 72.10 72.7 74.49 70.88 55.07 11.7 60.29
HARD 47.12 45.36 63.4 44.91 90.9 47.85 46.32 48.27 13.4 50.55
HEART 74.21 73.15 81.0 74.56 52.1 79.92 73.13 74.91 6.9 72.72
HEPATITIS 81.73 82.38 88.6 81.20 46.6 76.63 77.95 68.25 9.6 76.56
HORSE 68.98 68.43 79.6 69.48 74.1 72.95 71.87 70.30 9.5 67.89
IONOSPHERE 75.75 74.12 86.4 71.46 65.0 76.73 74.61 74.06 8.4 76.20
LED+17 72.76 75.64 82.3 69.93 81.2 76.12 68.95 64.62 19.8 70.43
LED 89.79 89.20 91.3 87.63 36.9 89.20 86.83 66.79 4.4 74.68
PIMA 67.44 67.82 76.1 66.79 68.2 67.18 64.87 62.65 6.7 65.87
VEHICLE 70.99 70.30 78.8 70.17 69.2 69.95 68.70 58.82 7.8 68.51
WHITEHOUSE 90.76 89.91 93.7 91.47 30.0 90.57 92.60 81.52 4.5 90.11
XD6 80.60 80.46 85.5 80.29 72.0 80.63 80.00 72.26 14.6 74.70
AVERAGE 74.75 75.08 81.3 74.19 62.4 75.46 73.70 68.31 8.7 70.80

Table 1: Results (accuracyAcc.and percentage of selected instances% prot) for kNN (k = 5), CF, PSRCG,
PSboost, MC (Monte-Carlo), RT3, PSboost∗; PSboost (resp. PSboost∗) means that PSboost is run
with exactly the same number of prototypes than PSRCG (resp. RT3)

original goal is to select the most relevant instances fromLS. Once the selection is done, the output
LS′ can be then used as a standard learning set. In order to assess the efficiency of our selection

868



STOPPINGCRITERION FORBOOSTING

method, we compare the performances ofLSandLS′ without any other optimization strategy (for
instance by generating a weighted classifier).

Some useful observations can be made about the value ofZe and its contribution to removing
irrelevant instances inLS. First, if an instancee belongs to a region with very few instances, it will
not belong to many reciprocal neighborhoods, resulting in a largeW0

e , preventing the achievement
of smallZe. Secondly, if a prototype belongs to a region with evenly distributed instances,W+

e and
W−e tend to be balanced, and this again, prevents to obtain smallZe. Note that with our strategy,
a cluster of instances of the same class could be all picked forLS′, resulting in a redundancy in
the final subset. A way to solve this drawback would consist in applying a post-process to remove
redundancy. For example, Sebban and Nock (2000) proposed, in another context, to compute an
information measure from a(k+ 1)-NN graph. Only instances at the center of clusters keep a
null uncertainty withk+ 1 neighbors. Removing such instances allows the deletion of the useless
instances from the clusters.

Note in Figure 2 that the user must provide a value forNp, the number of prototypes. In this
paper, we provide a theoretical framework for automatically determiningNp using a statistical test.
Nock and Sebban (2001a) carried out a large comparative study between PSBOOST and the state-
of-the-art prototype selection algorithms for which we recall the main results (obtained by cross-
validation) in Table 1. CF corresponds to the Consensus Filter (Brodley and Friedl, 1996), PSRCG

was proposed by Sebban and Nock (2000), RT3 by Wilson and Martinez (2000), and MC corre-
sponds to Monte-Carlo sampling as proposed by Skalak (1994) (for more details see Nock and
Sebban (2001a)). Although these results are interesting, the parameterNp must be fixed in advance,
and that constitutes a drawback for PSBOOST in its original version.

3. Theoretical Stopping Criterion

In this section, we describe our statistical criterion for automatically halting the selection procedure.

3.1 A Random Framework for Test Construction

In this section, we propose a theoretical framework for determining the number of weak hypotheses
Np. Our strategy is based on a statistical test. LetH0 be the null hypothesis of this test, which
expresses the idea that a givene does not statistically contribute to give information about the
labelling of its reciprocal neighborhood. Informally, as long asH0 can be kept, such an instance
can be removedwithoutreasonably endangering further classification tasks. This requires a statistic
that assesses for a given candidatee the validity ofH0, and for which we provide the statistical law
underH0. For a given riskθ, we stop the selection if and only if all the candidates have ap-value
higher thanθ. Stated differently, the algorithm stops if the best current candidate does not allow
the rejection ofH0 with a risk smaller thanθ. We provide here a theoretical framework for binary
problems. The extension to multiclass problems is discussed in Section 7.

A possible way of proceeding consists in considering underH0 that, in the reciprocal neighbor-
hoodR(e), the true classY is randomly distributed with a given probabilityπ0 (if y(e) = 1) or 1−π0

(if y(e) =−1). Two ways are possible to fixπ0:

1. Chooseπ0 equal to the global proportion inLSof positivelearning instances (those for which
y(e) = 1) .
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2. Useπ0 = 0.5 to satisfy a majority vote rule for a 2-class problem, often used in classification
tasks. Stated differently, we test ifeclassifies instances inR(e) better than a simple coin toss.

Let H0(π0) be the corresponding null hypothesis. UnderH0(π0), an instance of the reciprocal
neighborhoodR(e) belongs to the same class asewith probabilityπ0 (resp. 1−π0) if y(e) = 1 (resp.
y(e) =−1).

3.2 Law ofW+
e under H0

In our approach, an instancee is selected by minimizing the quantityZe, while ensuring a positive
confidenceαe (which avoids the selection of mislabeled instances).

Ze = 2

√
(W+

e +
1
2

W0
e )(W−e +

1
2
W0

e )

= 2

√
(W+

e +
1
2

W0
e )(1−W+

e − 1
2

W0
e ) ,

becauseW+
e +W−e +W0

e = 1. Then,Ze depends on the value ofW+
e in R(e):

W+
e = ∑

e′∈R(e):y(e′)=y(e)
Dt(e′)

= ∑
e′∈R(e)

Dt(e′)I{y(e′)=y(e)} ,

where the boolean variableI{y(e′)=y(e)} is 1 iff y(e′) = y(e), and 0 otherwise. IfH0(π0) is true,
I{y(e′)=y(e)} follows a binomial lawB(1, p), wherep = π0 if Y(e) = 1 elsep = 1−π0. Considering
that W+

e depends on examplesi, i = 1,2, .., |R(e)| (the size of the reciprocal neighborhood), we
propose the following simplification:

W+
e =

|R(e)|
∑
i=1

Dt(i)Ii .

There are two different ways to construct the distribution ofW+
e underH0 to compute the critical

value ofW+
e , calledW+

1−θ
. We recall here that the critical value defines the bound of the rejection

region ofH0, and corresponds to the(1− θ)-percentile of the distribution ofW+
e underH0. In the

two following approaches, we assume that theDt(i) are not random variables, even if in theory,
they depend on the labels of the examples. First, the distribution can be assessed by anormal
approximation. In this case, underH0(π0), W+

e is a weighted sum of|R(e)| variablesIi, where the
Ii are independently and identically distributed. The mean and variance ofW+

e are:

E(W+
e /H0) =

|R(e)|
∑
i=1

Dt(i)E(Ii)

= p
|R(e)|
∑
i=1

Dt(i)

Var(W+
e /H0) =

|R(e)|
∑
i=1

D2
t (i)Var(Ii)

= p(1− p)
|R(e)|
∑
i=1

D2
t (i) .

870



STOPPINGCRITERION FORBOOSTING

The other way to proceed would consist ofsimulating the distributionof W+
e , which can deal with

cases where the approximation constraints are not satisfied. For balanced weights (whenW+
e and

W−e are close),|R(e)| > 10 is enough to satisfy these constraints. In an unbalanced case,W+
e must

be larger.

3.3 Statistical Test

Without a criterion for halting the selection, PSBOOST requires the provision of the numberNp

of weak hypotheses. Such a strategy may lead to the selection of an instance for which the null
hypothesisH0 would not be rejected. By introducing a statistical test using the critical valueW+

1−θ
,

we keep only instancese for whichW+
e is exceptionally high underH0 (i.e., W+

e > W+
1−θ

). Among
these, we choose at a given stage of the selection the one that minimizesZ, or equivalentlyZ2. The
procedure is stopped if for all the instancese, W+

e < W+
1−θ

.

3.3.1 ASSESSING THECRITICAL VALUE OF W+
e

We assessW+
1−θ

either by normal approximation or by simulation, which is computationally expen-
sive, but sometimes necessary if the approximation conditions are not satisfied. By approximation,
W+

1−θ
is easily defined as follows:

W+
1−θ

= p
|R(e)|
∑
i=1

Dt(i)+u1−θ

√√√√p(1− p)
|R(e)|
∑
i=1

D2
t (i) ,

whereu1−θ is the (1−θ)-percentile of the normal lawN(0,1). If the approximation constraints are
not satisfied, we can artificially construct a distribution ofW+

e , by simulating|R(e)| independent

observationsIi according toB(1, p), and computing the weighted sum∑|R(e)|
i=1 Dt(i)Ii . By repeating

this procedureN times, an estimate ofW+
1−θ

is the (1−θ)-percentile of theN samples.

3.3.2 DECISION RULE

An instancee is selected by minimizingZe:

Ze = 2

√
(W+

e +
1
2
W0

e )(W−e +
1
2
W0

e ) ,

while ensuring a positive confidenceαe:

αe =
1
2

log

(
W+

e + 1
2W0

e

W−e + 1
2W0

e

)
.

At each stage of the selection, our procedure minimizes the quantityZ2 = 4F(1−F), whereF =
W+

e + 1
2W0

e . The critical value ofF with the riskθ is directly deduced fromW+
1−θ

:

F1−θ = W+
1−θ +

1
2
W0

e

= p
|R(e)|
∑
i=1

Dt(i)+
1
2

W0
e +u1−θ

√√√√p(1− p)
|R(e)|
∑
i=1

D2
t (i) .
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UnderH0(π0), F1−θ can in theory be smaller than 0.5 whenp < 0.5. In this case, if two candidates
satisfy the first condition (W+

e > W+
1−θ

), their confidences are then negative, and paradoxically we
will choose the candidateewhich presents the smaller valueFe (Fe∈ [F1−θ,0.5]), by minimizingZe.
This situation, possible whenp is very close to 0, in fact rarely occurs because there is almost always
a candidatee′ for which F1−θ > 0.5 andFe′ > F1−θ (Fe′ ∈ [F1−θ,1]), often resulting inZe′ < Ze. This
fact has been confirmed by an experimental study. Actually, on 18 datasets, using a 5-fold cross-
validation resulting in 90 different databases, we noted that this situation never occurred. However,
the neighborhood-based classifiers, such as thek-nearest-neighbors, usually use a majority decision
rule with a threshold 0.5 (in the case of 2 classes). In such a context, it is more suitable to test
the null hypothesisH0(0.5), which means that we select only the instancee that classifies, in the
reciprocal neighborhoodR(e), significantly better than a simple toss. In this case,F > 1−F, and
thenα > 0. UnderH0(0.5), we have alwaysp = 0.5, and the previous formulae forF1−θ can be
simplified:

F1−θ =
1
2

(|R(e)|
∑
i=1

Dt(i)+W0
e

)
+

1
2

u1−θ

√√√√|R(e)|
∑
i=1

D2
t (i)

=
1
2

+
1
2

u1−θ

√√√√|R(e)|
∑
i=1

D2
t (i) .

We deduce the critical values ofZ2 andα with the riskθ, calledcθ andα1−θ:

cθ = (2
√

F1−θ(1−F1−θ))2

= 1−u2
1−θ

|R(e)|
∑
i=1

D2
t (i)

α1−θ =
1
2

log
F1−θ

1−F1−θ

=
1
2

log

1+u1−θ

√
|R(e)|

∑
i=1

D2
t (i)

1−u1−θ

√
|R(e)|

∑
i=1

D2
t (i)

.

Then, we select the instancee if and only if Z2
e < cθ or αe > α1−θ . Note that, while we select the

instancee for which Ze is minimum, we use in the decision rule the law ofZe and not the one of
mineZe. According to the level of dependence ofZ′es, the risk is in fact contained betweenθ and
(θ.|LS|). A simulation procedure would allow us to have more information about this problem.
Then, note thatθ is more a control parameter than the probability of type 1 error. The new version
of our algorithm, called PSBOOST2, is described in Figure 3.

4. The Relative Neighborhood Graph

While PSBOOST2 was originally proposed for improving thek-NN algorithm, our theoretical frame-
work is independent of the geometrical structure used for the construction of the reciprocal neigh-
borhoodR(e). So, let us consider another neighborhood graph, called the Relative Neighborhood
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PSBOOST2( LS)
Initialize D1(e) = 1/|LS| for any e∈ LS;
Initialize candidates set LS∗ = LS;
Initialize LS′ = /0
Repeat

Temp= {e′ ∈ LS∗ : W+
e > W+

1−θ
}

e= argmine′∈TempZe′ ;
If αe > α1−θ Then

Stop ← False
LS′ = LS′ ∪e
LS∗ = LS∗ −{e}
Update:
∀e′ ∈ R(e):

Dt+1(e′) = Dt(e′)e−αey(e′)y(e)
Ze

;

∀e′ ∈ LS\R(e): Dt+1(e′) = Dt (e′)
Ze

;
Else Stop ← True
endIf

Until Stop=True
Return LS′

Figure 3:Pseudocode for PSBOOST2.

Graph (RNG). Introduced by Toussaint (1980), the RNG is a connected graph in which, if two
instances are linked by an edge, then they satisfy the following property:

d(a,b) ≤ min
c∈LS,c6=a,b

max(d(a,c),d(b,c)).

This definition means thatLa,b, which corresponds to the intersection of two hyperspheres, with
centersa andb and with radius equal to the distance betweena andb, does not contain any other
point of the learning setLS (Figure 4 describes an example). The RNG can naturally be used in a
neighborhood-based classifier. We present here a general framework for problems with an arbitrary
number of classes and an arbitrary geometrical structure used for building the neighborhood graph.

Definition 3 Let Ci be the set of learning instances belonging to the i-th class:∀i = 1, ..,c, Ci =
{e∈ LS: y(e) = i} where c is the number of classes.

Definition 4 Let O(e′) be the c-dimension vector whose components are noted Oi(e′), i = 1, ..,c,
each being the proportion of instances in the neighborhood of e′ belonging to the i-th class:

Oi(e′) =
|N(e′)∩Ci|
|N(e′)| ,∀i = 1,2, ..,c ,

where N(e′) is the set of neighbors of e′ (linked by an edge to e′) in the neighborhood graph.

Note that definition 4 also applies to new instances, not belonging to the learning set.
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Definition 5 Letφ(e′) be the class given to e′ by the classifierφ from the neighborhood graph (RNG
or k-NN):

φ(e′) = argmax
i

Oi(e′) .

According to these definitions, the new instancee′ in Figure 4 would be labeled “black” from its
neighbors 1, 2 and 3.

e’

1

2

3

Figure 4: Relative Neighborhood Graph: the intersection of the two hyperspheres does not contain any
instance of the learning set.

5. Experimental Results

In this section, we assess the efficiency of PSBOOST2 according to the two following performance
measures:generalization accuracyand storage reduction. We used 18 datasets, most of which
come from the UCI database repository (Merz and Murphy, 1996). The experimental method was
the following: a f -fold cross-validation (heref = 5) was performed on each database to obtain
estimates of the true performance of the classifier. We used two neighborhood-based classifiers
according to the geometrical structures listed above (k-NN, herek = 3, and the RNG). The decision
rule used for classifying an instance consists of a majority vote of the neighbors. Each database
DB is divided into f disjoint setsDBi. PSBOOST2 is applied on each combinationDB−DBi. The
classifier uses the resulting subset of instances(DB−DBi)subsetfor classifying the instances inDBi.
For each classifier, we obtain an accuracy estimate by averaging results over thef sets.

Note that we did not conduct a large comparative study between PSBOOST2 and the state-of-
the-art prototype selection algorithms because it was already carried out for PSBOOSTby Nock and
Sebban (2001a), of which the main results are described in Table 1. These results have shown the
difficulties that the standard prototype selection algorithms have in controlling the two performance
measures. From the results described in Table 2, we can make the following remarks:

1. The learning set size is highly reduced (nearly 45% of the original size on average), while
controlling the generalization accuracy. While the accuracy is slightly reduced for the Rel-
ative Neighborhood Graph by an amount that is not significant using a Student pairedt-test
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kNN PSBOOST2 RAN RNG PSBOOST2 RAN

Dataset Acc. Acc. % pr Acc. Acc. Acc. % pr Acc.
ECHO 59.2 63.4 37 64.9 56.3 62.7 37 61.9
HEPAT. 83.1 79.9 57 79.3 73.0 75.5 58 71.8
HEART 78.1 82.1 48 74.4 74.1 74.8 54 74.2
AUDIO 75.2 71.2 60 71.2 70.9 60.3 39 62.5
BIGPOLE 59.5 60.2 40 57.2 54.6 58.2 26 47.7
HORSE 72.3 73.4 46 71.0 64.3 67.5 38 67.8
IONO 80.4 80.4 51 78.8 72.5 73.5 36 68.2
XD6 79.8 79.1 77 77.3 79.5 71.0 57 72.0
BREAST 96.7 96.9 68 95.6 95.5 94.5 88 95.0
W.H. 91.4 92.0 68 90.9 91.1 89.5 80 88.8
GLASS2 71.9 72.0 40 64.5 67.7 66.5 34 54.5
HARD 50.0 48.3 26 45.9 54.8 64.8 13 65.7
LED24 73.5 76.5 48 69.6 74.0 68.1 43 62.8
LED2 83.9 88.1 31 88.7 88.7 85.1 41 83.5
PIMA 69.8 69.3 30 68.0 69.6 69.1 40 70.0
AUSTRAL 79.7 76.8 58 78.7 76.8 73.9 57 72.8
GERMAN 69.9 71.3 47 68.3 70.0 70.6 51 69.3
VEHICLE 70.9 70.3 40 68.1 71.9 71.7 47 71.1
AVERAGE 74.7 75.2 47 72.9 72.5 72.1 47 70.0

Table 2: Effect of PSBOOST2 on learning set size and generalization accuracy on 18 datasets;k-NN, RNG
correspond respectively to the accuracy onDBi , using the whole learning set, with a 3-NN classifier
and a voting rule based on the RNG; PSBOOST2 is described by its accuracy (Acc.) and its storage
requirement (% pr); RAN corresponds to the accuracy achieved from a learning subset of same size
(LS′) randomly selected in|LS|.

over accuracies, the predictive accuracy of the post-PSBOOST2 nearest neighbor classifier is
increased (74.7% vs. 75.2%), even though this superiority is not significant with ap-value
near 0.5. Therefore, it seems to confirm experimentally that PSBOOST2 is suited to control
the generalization accuracy while significantly reducing the data.

2. A simple strategy for assessing the relevance of PSBOOST2 consists in comparing the se-
lected subset (LS1) with another one (LS2) of the same size but randomly selected fromLS.
Such a procedure allows one to estimate thequality of the selected prototypes. We made this
comparison (columnsPSBoost2/Acc.andRan in Table 2). Our strategy achieves a signif-
icantly higher accuracy than a random one, and this also tends to confirm the efficiency of
PSBOOST2.

6. Some Insights into the Performances of PSBOOST2

In this section, we explain why PSBOOST2 is suited for reducing storage while controlling the
classifier accuracy.
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6.1 PSBOOST2 and Margin Maximization

A partial explanation of PSBOOST2’s performances may rely on the margin maximization principle.
This principle is in fact not recent, and was originally suggested in Vapnik (1982) for support vector
machines (SVMs) with optimal margins. Even though the objective in both approaches consists in
finding classifiers which maximize margins on learning data, a detailed study of their mechanisms
shows that they slightly differ (Schapire et al., 1998). In SVMs the sum of squared outputs of the
base hypotheses and the sum of the squared weights are both assumed to be bounded (l2 norm),
while in boosting the maximum value of the base hypotheses (l∞ norm) and the sum of the absolute
values of the weights (l1 norm) are assumed to be bounded. Support vector machines give rise to
a quadratic programming problem, whereas the optimization in boosting can be seen as a linear
programming problem.

In Schapire et al. (1998), the authors prove that achieving a large margin onLS results in an
improved bound on the generalization. They also prove that ADABOOST is suited to maximizing
the number of learning examples with large margin. They define classificationmargin as the dif-
ference between the weight assigned to the correct label and the maximal weight assigned to any
single incorrect label. The margin is then a number in the range [-1,+1] and an example is correctly
classified if it has a positive margin. The margin also corresponds to a degree of confidence in the
classification. In order to assess the effect of PSBOOST2 for maximizing margins, we computed
for thek-NN classifier the margin gaingi for each dataseti over the 5 folds (before and after PS-
BOOST2). We first observe that over the 18 datasets, the average margin gainG = 1

18 ∑gi = 0.24.
This might be an experimental explanation for the accuracy’s control in PSBOOST2. Even more,
a second observation displays the ability of PSBOOST2 to increase margins, as all datasets have a
margin gaingi > 0.

6.2 The Filter Precision of PSBOOST2

Brodley and Friedl (1996) provided a method for evaluating the ability of a data reduction technique
to identify and eliminate mislabeled instances (calledfilter precision). This procedure in a way
assesses the sensitivity to noise. Consider a learning set artificially corrupted by a given percentage
of noise. One defines the 3 following sets: the setD of instances discarded, the setM of instances
a priori corrupted, the setM∩D of corrupted instances discarded by the data reduction technique.
Brodley and Friedl definedP(E) as an estimate of the probability of retaining bad data:

P(E) =
|M|− |M∩D|

|M| .

While the original 18 datasets probably already contain noisy data, we decided to calculateP(E)
for different artificial noise levels. We corrupted the original data successively with 5, 10, ..., 35%
noise. Table 3 reportsP(E) averaged over all datasets and all folds for thek-NN and theRNG
classifiers.

In the presence of noise, the subset of instances (described by its accuracyAcca f t) selected
by PSBOOST2 is always better than the original learning set (Accbe f). The accuracy is actually
improved after prototype selection and this trend seems to speed up with the noise level. This
phenomenon is not really surprising. Indeed, noise smoothes class distributions near their frontiers.
These “dangerous regions” tend precisely to be discarded by PSBOOST2.
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NOISE P(E) WITH kNN P(E) WITH RNG
Accbe f Acca f t P(E) Accbe f Acca f t P(E)

5% 71.7 72.5 0.07 68.6 68.7 0.15
10% 67.9 69.3 0.08 65.9 66.7 0.15
15% 64.1 67.6 0.07 62.5 63.9 0.17
20% 63.5 66.0 0.08 59.1 60.6 0.16
25% 61.2 64.1 0.08 58.5 59.5 0.17
30% 58.7 61.1 0.08 56.4 58.3 0.19
35% 56.3 60.1 0.09 54.1 56.1 0.18

Table 3:PSBOOST2’s filter precision

7. Extension to Multiclass Problems

In this section, we present the extension of the test to multiclass problems.

7.1 Test onZe

So far, we have only treated binary problems. Many real-world learning problems are in fact mul-
ticlass with many more possible labels. Two main strategies have been proposed to deal with this
extension to multiclass problems. The first one consists in creating one binary problem for each
of the c classes. Then, we test one classj against all the other classes, answering the following
question: “Does the example belong to thejth class or not?” This approach is calledone-against-all
(Allwein, Schapire and Singer, 2000). The second one consists in testing all pairs of classes (Hastie
and Tibshirani, 1998). For each distinct pair of classesc1,c2, the examples labeledc1 are consid-
ered positive, those labeledc2 are negative. All other examples are ignored. This approach is called
all-pairs. An interesting comparison is presented in Allwein, Schapire and Singer (2000). In our
approach, we decided to choose the first method (one-against-all) which requires the construction
of c binary problems.

In the test proposed for solving binary problems (see Section 3.3), a candidate is selected when
the correspondingZe = 2

√
Fe(1−Fe) is minimum (whereFe = W+

e + 1
2W0

e ), while Fe > F1−θ.
We recall thatF1−θ is the critical value ofFe at the riskθ underH0(π0), the hypothesis that the true
class is randomly attributed with a given probabilityπ0, in the reciprocal neighborhoodR(e).

In this section, for multiclass problems, we denote byFj,e the value ofFe when the classj
is tested against the others. We propose to select the candidatee for which the quantityZe =
2
√

Fe(1−Fe) is minimum, whenFe is defined as follows:

Fe =
1
c

c

∑
j=1

Fj,e .

The suspensive condition to selecte is the following: Fe > F1−θ, whereF1−θ is the critical value
of Fe at the riskθ under the null hypothesis. When the classj is tested against the others, the
null hypothesis, denoted byH0(π j0), means that the classj is randomly distributed with a given
probability π j0 in Rj(e), the reciprocal neighborhood ofe when the classj is tested against the
others. Then, note thatRj(e) changes with the valuej. In order to find the critical valueF1−θ, we
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have to defineµ andσ2 such as:

µ = E(Fe)

=
1
c

c

∑
j=1

E(Fj,e)

=
1
c

c

∑
j=1

( ∑
e′∈Rj (e)

pjD jt (e′)+
1
2
W0

j,e)

σ2 = Var(Fe)

=
1
c2

c

∑
j=1

Var(Fj,e)

=
1
c2

c

∑
j=1

∑
e′∈Rj (e)

pj(1− pj)D2
jt (e
′) ,

whereDjt (e′) is the distribution at the staget of the boosting, when the classj is tested against all
the others. We notepj = π j0 if Y(e) = j elsepj = 1−π j0. According to the simplification proposed
in Section 3.2,

µ =
1
c

c

∑
j=1

(
|Rj (e)|
∑
i=1

pjD jt (i)+
1
2
W0

j,e)

σ2 =
1
c2

c

∑
j=1

|Rj (e)|
∑
i=1

pj(1− pj)D2
jt (i) .

We assume in the calculation ofσ2 the independence of theFj,e. Said differently, we consider that
the knowledge ofRj(e), from whichFj,e is computed, does not contain information about the nature
of the reciprocal neighborhoodRl(e), when j 6= l . Actually, even if the quantity|Rj(e)| remains the
same∀ j, the labels and the weights of the neighbors inRj(e) will differ according to the tested class
j. From this point of view, covariances can be considered as insignificant.

Moreover, note that variablesFj,e are computed from independent variables, then they are not
too far from a normal distribution. Furthermore, as mentioned before, they are approximately inde-
pendent. Then, we can claim thatFe is very close to a normal distribution. We can determine the
critical valuesF1−θ andcθ for Fe andZ2

e:

F1−θ = µ+u1−θσ
cθ = 4F1−θ(1−F1−θ) .

Note that for the special case wherepj = 0.5 (for satisfying an absolute decision rule), the previous
formulae are highly simplified. Actually,

|Rj (e)|
∑
i=1

pjD jt (i)+
1
2

W0
j,e =

1
2
(W+

j,e+W−j,e)+
1
2

W0
j,e

=
1
2

.
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PSBOOST2 MC( LS)
Initialize Dj1(e) = 1/|LS| for any e∈ LS;
Initialize candidates set LS∗ = LS;
Initialize LS′ = /0
Repeat

Temp= {e′ ∈ LS∗ : W
+
e > W

+
1−θ
}

e= argmine′∈TempZe′ ;
If αe > α1−θ Then

Stop ← False
LS′ = LS′ ∪e
LS∗ = LS∗ −{e}
Update:
For j=1, 2, ..,c
∀e′ ∈Rj(e):

Dj,t+1(e′) = Djt (e′)e−αeM(y(e′ ), j)M(y(e), j)

Ze
;

∀e′ ∈ LS\Rj(e): Dt+1(e′) = Dt(e′)
Zj,e

;
EndFor

endIf
Else Stop ← True

Until Stop=True
Return LS′

Figure 5:Pseudocode for PSBOOST2 MC.

Then,

µ =
1
c

c

∑
j=1

(
1
2
)

=
1
2

.

And,

σ2 =
1

4c2

c

∑
j=1

|Rj (e)|
∑
i=1

D2
jt (i) .

The pseudocode of our extended algorithm, called PSBOOST2 MC, is described in Figure 5. Note
that we use in this algorithm the coding matrixM(y(e), j) which was originally given by Dietterich
and Bakiri (1995). For theone-against-allapproach,M is a c× c matrix in which all diagonal
elements are positive (+1) and all other elements are negative (−1). When a classj is tested against
the others, the current label of the instancee is the valueM(y(e), j), wherey(e) ∈ {1,2, ..,c}.

7.2 Experimental Results

Table 4 presents the properties (name, number of classes, learning set size and number of features)
of the eight tested datasets. In order to assess the relevance of our multiclass statistical test, we
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DATASET # CLASSES |LS| # FEATURES

WAVES 3 500 21
ABALONE 3 1000 8
GLASS 6 214 9
BALANCE 3 625 4
IRIS 3 150 4
LED 10 500 7
LED+17 10 500 24
DERMATOLOGY 6 366 34

Table 4:Multiclass classification problems.

1          2          3          4          5          6          7          8          9          10

72

70

68

71

69

k

Accuracy

Figure 6: Contribution of PSBOOST2 MC on multiclass problems: the solid line corresponds to the accu-
racy of a standardk-NN classifier, built from the whole learning sample; the dashed-line represents
the success rate computed from the reduced learning set.

used many values ofk (k = 1,2, ..,10) in thek-nearest neighbor classifier. Except for this detail, the
experimental method remains the same as the previous study, namely the 5-fold cross-validation.
A graphic synthesis of the results is presented on Figure 6. Each point of this figure is the average
over the eight datasets, each of them tested five times during the cross-validation. Therefore, one
point corresponds to the average of forty accuracies. Beyond data reduction, the results display
the positive contribution of PSBOOST2 MC to the accuracy’s increase: for all values ofk, the
accuracies achieved from the reduced learning set are indeed higher than without data reduction.
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8. Weighted Classifiers using Instance Confidences

Beyond prototype selection, this section aims at exploring an issue that was raised by Sebban, Nock
and Lallich (2001): the use of boosting-derived weights for weighted nearest neighbor rules. In
such a context, the classification rule (as defined in Section 4) must be slightly modified, since the
classification rule does not handle classes anymore, but real weights in favor of each class. The
following definition forO(e′) replaces Definition 4:

Definition 6 Let O(e′) be the c-dimension vector whose components are noted Oi(e′), i = 1,2, ..,c,
each being the sum of weights of the instances in the neighborhood of e′ belonging to the i-th class:

Oi(e′) = ∑
e∈N(e′):y(e)=i

αe,∀i = 1,2, ..,c .

Note thatαe is still the confidence of the instancee whene is selected, but we end up selecting all
instances. The weighting algorithm is a slight variant of PSBOOST2 MC, in which the condition
W+

e >W−e is removed. This little algorithmic difference is crucial, as some instances may now have
a negative weight. This still makes sense, because the new rule leverages the neighborhood vote in
favor of some classes, or in disfavor of others when negative weights abound.

Experimental studies have been conducted with ak-nearest neighbor classifier, fork= 1,2, ..,20.
We applied our approach on twenty-three datasets. Rather than presenting the twenty-three curves
(one for each dataset), we synthesize the results in one figure, where each point is the average of
5 (folds)× 23 (datasets) = 115 accuracies. Results are presented in Figure 7. It appears that the
performance of the standardk-NN rule is almost systematically improved by leveraging votes with
the boosting weights. Even more, a Student pairedt-test reveals that the difference between the
standardk-NN and our weightedk-NN is significant for all valuesk= 1,2, ..,11. Fork large enough
(k≥ 12), the difference becomes insignificant. This can be explained by the fact that large values
of k tend to smooth neighborhood distributions (ultimately, they become the whole sample’s), for
which weighting brings no significant difference.

Another concise way to display the results consists in putting separately the results for each
dataset, as an average over the different values ofk. Instead of identifying the good values ofk,
we identify the good datasets, candidate for an improvement with our weighted nearest neighbor
rule. We choose to take into account only the values ofk < 12, for which weighting brings on
average a statistical advantage. The results are presented in Table 5 and graphically represented in
Figure 8. We can note that for 17 datasets, a weighted decision rule provides better results than the
unweighted rule. Among them, 7 datasets (Balance, Echocardiogram, German, Horse Colic, Led,
PimaandVehicle) see important improvements, ranging from 1% to> 5%. In contrast, only one
dataset sees significant accuracy decrease (Car, 96.0% vs. 93.9%).

9. Conclusions and Future Research

This paper explores a method for prototype selection based on boosting, and gives statistical criteria
for stopping the selection of instances, a crucial problem for the approach (Nock and Sebban, 2001a)
as well as for usual boosting algorithms. The whole approach is cast into multiclass classification
problems, thereby relaxing the class cardinality constraint of Sebban, Nock and Lallich (2001).
So far, the framework proposed in this paper holds only for neighborhood-based classifiers. An
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k

Figure 7: Comparison between a standardk-NN classifier (solid line) and a weighted classifier using the
relevance of each instance (dashed-line).

interesting direction of research consists in finding such a method tailored to processing data for
induction algorithms, such as, for example, decision tree induction.

Furthermore, we have shown that instead of reducing the learning set size, the boosting-derived
weights can be experimentally used in weighted nearest neighbor rules, with statistical advantage
compared to the usual, unweighted rules. Because it boils down to making boosting with instances
as weak learners that abstain, and because nearest neighbor rules are among the earliest, simplest
and still widely used classifiers, this algorithm certainly deserves theoretical investigations to cast,
among all, the boosting theory and results (Freund and Schapire, 1997; Schapire and Singer, 1998).
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