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Abstract

So far, boosting has been used to improve the quality of moderately accurate learning algorithms,

by weighting and combining many of theweakhypotheses into a final classifier with theoretically

high accuracy. In a recent work (Sebban, Nock and Lallich, 2001), we have attempted to adapt

boosting properties to data reduction techniques. In this particular context, the objective was not

only to improve the success rate, but also to reduce the time and space complexities due to the
storage requirements of some costly learning algorithms, such as nearest-neighbor classifiers. In
that framework, eactveakhypothesis, which is usually built and weighted from the learning set,

is replaced by a single learning instance. The weight given by boosting defines in that case the

relevance of the instance, and a statistical test allows one to decide whether it can be discarded
without damaging further classification tasks. In Sebban, Nock and Lallich (2001), we addressed

problems with two classes. It is the aim of the present paper to relax the class constraint, and

extend our contribution to multiclass problems. Beyond data reduction, experimental results are

also provided on twenty-three datasets, showing the benefits that our boosting-derived weighting

rule brings to weighted nearest neighbor classifiers.

1. Introduction

Some of the earliest approaches to classification are also among the simplest: they do not induce
concept representations (decision trees, neural networks, etc.), but exploit simple structures of the
learning set, such as neighborhoods, to classify instances. Among them, the most popular is prob-

ably the 1-Nearest-Neighbor (NN) algorithm (Cover and Hart, 1967), and its generalization, the
k-NN rule, which classifies an unknown instance according to a local vote lyngsrest neigh-

bors. Its use was widely spread and encouraged by early theoretical results linking its generalization

error to Bayes risk. Under mild regularity assumptions on the underlying statistics, for any metric,
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the large-sample risk incurred is less than twice the Bayes risk. Even more, the risk paid off for
finite samples can be very reasonable under similar assumptions (Nock and Sebban, 2001b). How-
ever, from a practical point of view, this algorithm has several problems, as mentioned in Breiman
et al. (1984): (i) it is computationally expensive because it stores all the instances in memory; (ii)

it is intolerant to noisy instances; (iii) it is intolerant to irrelevant attributes and (iv) it is sensitive to
the chosen distance function.

The deletion of noisy instances and irrelevant attributes is addressed by data reduction tech-
nigues. Recent complexity theoretic results show that some related optimization problems are very
hard to approximate (Nock and Sebban, 2000). This advocates for the use of heuristics for data
reduction. In this paper, we only focus on prototype selection, which consists of identifying and
eliminating irrelevant instances. Prototype selection concerns both storage complexity (first prob-
lem listed above) and noise tolerance (second problem). The last two problems are not discussed in
this paper. Many solutions have been proposed to select relevant features (John, Kohavi and Pfleger,
1994; Koller and Sahami, 1996; Sebban, 1999) and to define new distance functions (Wilson and
Martinez, 1997).

Many prototype selection methods have been suggested to improve the standard NN algorithm
using different strategies: removing correctly classified examples (Hart, 1968; Gates, 1972), iden-
tifying and eliminating mislabeled instances (Brodley and Friedl, 1996), deleting misclassified or
irrelevant instances (Wilson and Martinez, 2000; Sebban and Nock, 2000), identifying relevant
prototypes by Monte-Carlo sampling (Skalak, 1994), etc. Recently, we proposed an adaptation of
boosting to prototype selection (Nock and Sebban, 2001a) in tlse@8ST algorithm. Boosting,
as used in the well known BaBoosT algorithm (Freund and Schapire, 1997), generates a final
combined classifier whose error on the learning set is small by weighting and combinirggk
hypotheses, each of which may have a large error. Helis,the number of boosting rounds, a
parameter fixed in advance. Freund and Schapire (1996) proposed reducing the number of instances
used by each weak hypothesis to speed up the NN classifier. As far as we know, this work was
the first attempt to use boosting in prototype selection, although their goal was not to improve the
accuracy. The objective of B®0STIs to obtain a good balance between storage requirements and
generalization accuracy. Its principle is to use each instance as a weak hypothesis: the confidence
weight given by boosting becomes in our case an indication of the instance’s relevance. Experimen-
tal results indicate the efficiency of this approach (Nock and Sebban, 2001a). Inspired by boosting,
P SoosTsuffers from the same important drawback: the control of the number of boosting rounds,
that is, the sizeé\, of the final prototype set in our framework. Nock and Sebban (2001a) studied
the balance between a small valueNpfwhich allows high storage reduction but decreases the ac-
curacy, and a large value which allows us to control the generalization accuracy but still needs high
storage requirements. The results obtained reveal the crucial need for a method fixing as accurately
as possible this parameter (Nock and Sebban, 2001a). A first attempt to cope with this problem is
provided by Sebban, Nock and Lallich (2001), but it holds only for problems with two classes.

In this paper, we relax the class constraint, thereby extending our framework to multiclass prob-
lems. We draw up a statistical test based on the normalization fActibre criterion minimized
in ADABOOST, and optimized in PSoosT as well. Experimental results display the ability of
this criterion to obtain a significant size reduction, together, on average, with an increase of the
accuracy. This generalized version of B@® ST, called P800sT12_MC, also displays experimen-
tally its ability to address the first two problems (storage requirement and noise tolerakesdNof
classifiers.
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A significant drawback ok-NN classifiers is that they require fixikgn advance. This is clearly
not an easy task in real-world domains. While a small valuk isfoften sufficient for noise free
problems, thek-NN rule requires thorough investigations for complex problems, often leading to
the testing of many values &f To cope with this problem, in this paper, we extend our algorithm to
another kind of neighborhood-based classifier, whose geometry does not ezljnooparameters.
The underlying neighborhood graph is called the Relative Neighborhood Graph (RNG) (Toussaint,
1980). Experimental results again display the ability of our algorithm to improve classifiers based
on the RNG, even in the presence of noise.

The final contribution of this paper is not restricted to data reduction. In Sebban, Nock and
Lallich (2001), it is argued that the instance’s weighting rule derived from boosting deserves inves-
tigations for its use in weighted nearest neighbors classifiers. We provide in this paper experimental
results on a body of twenty-three datasets. They display significant improvements obtained when
using boosting-derived weights.

In the rest of this paper, after having briefly recalled the main properties of boosting and P S-
BOOSTIn Section 2, we describe in Section 3 our statistical criterion for automatically halting the
selection procedure, and the new version of our algorithm, callegbbPST12. In Section 4, we
describe the RNG, before presenting a large experimental study (Section 5). We make some obser-
vations in Section 6, and we explain why @& s12 is suited for reducing storage while controlling
the classifier accuracy. In Section 7, we present the extension of the test to multiclass problems. The
use of the instance weights in weighted classifiers is discussed in Section 8, before our final conclu-
sion.

2. Adapting Boosting to Data Reduction

In this section, we recall the main properties of boosting andd@&T.

2.1 Properties of Boosting

Boosting resides in combining many ) weak hypotheses produced from various distributions

D¢ (e) over the learning selL§). The pseudocode of the original boosting algorithm, called A
ABOOST (Freund and Schapire, 1997) is described in Figure 1. At each st&#geaBOOST de-
creases (resp. increases) the weight of learning instaaqe®ri labeledy(e), which are correctly
(resp. incorrectly) classified by the current weak hypothbsisBoosting thus forces the weak
learner to learn the hardest examples. The weighted combindiienof all the weak hypotheses
results in a better performing model. Schapire and Singer (1998) proved that, in order to mini-
mize learning error, one must seek to minimien each round of boosting, requiring the use of a
specific confidence;.

In order to present our adaptation of boosting to storage reduction with neighborhood-based
classifiers, we first introduce several notations proposed by Schapire and Singer (1998). Suppose
thaty(e) € {—1;1} and that the output of each weak hypothésiss restricted to-1,0,+1. Let
W1 WO andw*1 be defined by

wb = > Di(e) .
ecLSy(e)hk (e)=b
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ADABOOST(LSW,T)
Initialize distribution Di(e) =1/|LS
for any ee€lLS
For t=12..T
Train weak learner W on LS using D¢
and get a weak hypothesis h;
Compute the confidence ot = %Iog(lg—f‘);

Where & = Y y(e)n () Dt(€) is the error

of h.
Update:
Vee LS Diii(e) = Dt(e)exp(*z?ty(e)ht(e));
/+Z; is a Normalization Factor */
endFor

Return the classifier

.
H(el — s
(€) Slgn(t;Gtht(e))

Figure 1:Pseudocode for BABOOST.

Using symbols + and - for +1 and -1, we can calculate the normalization fActer

Z = ZDt(e)eXp(—th(e)ht(e))
ecTs

= % g D (e) exp(—ai¢b)
ecLSy(e)hi(e)=b
= WO W exp(ar) +WTexp(—ay) .

N
o = %Iog(x\/i). (1)

Freund and Schapire’s originalbABoosT algorithm would instead have made the more conser-

vative choice
o — 1IO W+ 2wo
t = 3 W-Iwo )

Z; is then minimized when

giving a normalization coefficier which Freund and Schapire (1997) upper bound by

4 < 2\/(W+ + %WO)(W— + %WO) :

2.2 PSBOOST

Suppose now that each weak hypothdsiis not a classifier produced from the whole learning set
(LS), but rather a given exampke In ADABOOST, the confidencet; is a function of the prediction
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error ofh; on LS. Replacingh; by e requires a more sophisticated error measure that we can call
the pseudo-loss, as used in Freund and Schapire (1996). While the loss of a classifleased

on its ability to correctly classifyll the instancesthe pseudo-loss & must take into account its
influence onlyon its neighborhoodh LS.

Definition 1 Let N(e) be the neighborhood of an instance e of the learning set LS:
N(e) = {€ € LS: € is one of the k-nearest neighbors of e in the oriented k-NN graph

Note that the above definition can be extended to other neighborhood graphs.

Definition 2 Let Re) be the reciprocal neighborhood of an instance e of the learning set LS:
R(e) ={€ € LS:ec N(¢)}.

Stated differently,R(e) represents the set of instances which hava their neighborhood.
Whenever the neighborhood relationship can be represented by a directed graph, such as for the
k-NN rule, we generally havB(e) # N(e). If we considere as a weak hypothesis, its output takes
three possible values in the case with two classes:

e y(e) € {—1;1} for any instance ifR(e),
e 0O for any instance not iR(e).

Let W;" (resp.W;") be the fraction of instances iR(e) having the same class aqresp. a
different class frone), and let\2 be the fraction of instances to whielgives a null vote (those not
in R(e)). Then, the example we choose at each rounaf boosting should be the one minimizing
the following coefficient:

1 1
7. — 2\/ <vve+ + évvg) (we + EWeO> , @
and the confidence. can be calculated as
1, W+ 3w
de = =log| ——2=|. 3
e 2 g <We_ +%Weo ( )

Note that we use here the less optimal quantities given by Freund and Schapire (1997) and not
those proposed by Schapire and Singer (1998). Our choice basically increases the infliréhice of
since parametai?® is absent from the weighting coefficient in Equation 1. This choice is motivated
by the fact that in our case, many instances do not belong to the reciprocal neighbB(epad
some instance, resulting in a value fow)? eventually much higher than in the weak hypotheses that
abstain Schapire and Singer’s (1998) model. In our approach, a\&fé&iif course combined with
a highW;") indicates a high local influence ef and then is considered an interesting candidate for
the selection. Note that once a prototype is selected, it will still be considered as in other reciprocal
neighborhoods, but of course not as a candidate.

The pseudocode of our algorithm P&osTis described in Figure 2. Note that, in this section,
the confidencer, is only used for selecting the prototypes and not for generating a weighted classi-
fier, which is the subject of the last section of this paper. This choice is motivated by the fact that our

867



SEBBAN, NOCK AND LALLICH

PS300ST( LS Np)
Initialize distribution Di(e) =1/|LS
for any ee€lLS
Initialize candidates set LS. =LS

Initialize LS =0
For t=1,2,...,Np
e=argminyeLs Ze;
If ae< O Then EndLoop;
LS =LSuUe
LS. =LS. —{e}
Update:
Ve e R(e):
Desa(€) = Dt(e’)exp(zey(e’)y(e)).

ve € LS\R(e):  Dyii(€) = 24,

/*Ze is a normalization coefficient */
endFor
Retun LS

Figure 2:Pseudocode for BE®0sT. The output of this algorithm is the prototype subisgt

k-NN CF Pkcae PSBoosT | MC RT3 P3o0sST
DataSets Acc. Acc. % prot | Acc. % prot Acc. Acc. Acc. % prot Acc.
AuUDIOLOGY 73.40| 73.80 69.8 73.70 86.1 73.84 72.21| 69.40 10.7 70.00
AUSTRAL 80.55| 79.55 84.2 78.41 58.5 80.27 75.41 | 70.67 10.9 71.68
BiGPOLE 59.94 | 60.23 69.8 59.92 88.1 58.91 59.94 | 58.89 17.5 57.29
BREAST 96.89 | 96.76 97.5 97.04 10.0 96.19 97.04 | 87.72 1.2 81.24
BRIGHTON 95.80 | 94.59 97.6 94.6 32.4 94.46 93.60 | 90.56 16.4 90.27
BurA 62.67 | 65.31 73.0 66.76 79.0 68.77 65.90 | 63.35 10.8 62.45
EcHoOCcARDIO | 60.00 | 69.18 68.0 62.58 60.3 61.87 62.63 | 58.30 5.8 61.87
GERMAN 72.85| 72.05 77.8 70.87 73.7 72.65 69.88 | 69.87 10.6 72.65
GLASS2 72.65| 73.31 815 72.10 72.7 74.49 70.88 | 55.07 11.7 60.29
HARD 47.12| 45.36 63.4 | 4491 90.9 47.85 46.32 | 48.27 13.4 50.55
HEART 74.21| 73.15 81.0 74.56 52.1 79.92 73.13 | 74.91 6.9 72.72
HEPATITIS 81.73| 82.38 88.6 81.20 46.6 76.63 77.95| 68.25 9.6 76.56
HORSE 68.98 | 68.43 79.6 69.48 74.1 72.95 71.87| 70.30 9.5 67.89
IONOSPHERE | 75.75| 74.12 86.4 71.46 65.0 76.73 74.61 | 74.06 8.4 76.20
LED+17 72.76 | 75.64 82.3 69.93 81.2 76.12 68.95| 64.62 19.8 70.43
LED 89.79 | 89.20 91.3 87.63 36.9 89.20 86.83 | 66.79 4.4 74.68
PIMA 67.44| 67.82 76.1 66.79 68.2 67.18 64.87 | 62.65 6.7 65.87
VEHICLE 70.99 | 70.30 78.8 70.17 69.2 69.95 68.70 | 58.82 7.8 68.51
WHITEHOUSE | 90.76 | 89.91 93.7 91.47 30.0 90.57 92.60 | 81.52 4.5 90.11
XD6 80.60 | 80.46 85.5 80.29 72.0 80.63 80.00 | 72.26 14.6 74.70
AVERAGE 74.75| 75.08 81.3 74.19 62.4 75.46 73.70 | 68.31 8.7 70.80

Table 1: Results (accuracicc. and percentage of selected instareprot) for kNN (k = 5), CF, PRCG,
PSboost, MC (Monte-Carlo), RT3, PShdg$2Sboost (resp. PSbotstmeans that PSboost is run
with exactly the same number of prototypes thamBE& (resp. RT3)

original goal is to select the most relevant instances ft&nOnce the selection is done, the output
LS can be then used as a standard learning set. In order to assess the efficiency of our selection
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method, we compare the performanced 8fandLS without any other optimization strategy (for
instance by generating a weighted classifier).

Some useful observations can be made about the valde arfd its contribution to removing
irrelevant instances ibS. First, if an instance belongs to a region with very few instances, it will
not belong to many reciprocal neighborhoods, resulting in a Mtfiepreventing the achievement
of smallZ.. Secondly, if a prototype belongs to a region with evenly distributed instangesind
W; tend to be balanced, and this again, prevents to obtain gtmaNote that with our strategy,
a cluster of instances of the same class could be all picketdSomresulting in a redundancy in
the final subset. A way to solve this drawback would consist in applying a post-process to remove
redundancy. For example, Sebban and Nock (2000) proposed, in another context, to compute an
information measure from &+ 1)-NN graph. Only instances at the center of clusters keep a
null uncertainty withk+ 1 neighbors. Removing such instances allows the deletion of the useless
instances from the clusters.

Note in Figure 2 that the user must provide a valueNgr the number of prototypes. In this
paper, we provide a theoretical framework for automatically determiNngsing a statistical test.
Nock and Sebban (2001a) carried out a large comparative study betweeroBSand the state-
of-the-art prototype selection algorithms for which we recall the main results (obtained by cross-
validation) in Table 1. CF corresponds to the Consensus Filter (Brodley and Friedl, 19868)¢PS
was proposed by Sebban and Nock (2000), RT3 by Wilson and Martinez (2000), and MC corre-
sponds to Monte-Carlo sampling as proposed by Skalak (1994) (for more details see Nock and
Sebban (2001a)). Although these results are interesting, the parapeterst be fixed in advance,
and that constitutes a drawback for&®sTin its original version.

3. Theoretical Stopping Criterion

In this section, we describe our statistical criterion for automatically halting the selection procedure.

3.1 A Random Framework for Test Construction

In this section, we propose a theoretical framework for determining the number of weak hypotheses
Np. Our strategy is based on a statistical test. Hgtbe the null hypothesis of this test, which
expresses the idea that a giverdoes not statistically contribute to give information about the
labelling of its reciprocal neighborhood. Informally, as longtgscan be kept, such an instance
can be removedithoutreasonably endangering further classification tasks. This requires a statistic
that assesses for a given candidatke validity ofHp, and for which we provide the statistical law
underHp. For a given risk@, we stop the selection if and only if all the candidates hapevalue
higher thanB. Stated differently, the algorithm stops if the best current candidate does not allow
the rejection oHp with a risk smaller tha®. We provide here a theoretical framework for binary
problems. The extension to multiclass problems is discussed in Section 7.

A possible way of proceeding consists in considering uihiigihat, in the reciprocal neighbor-
hoodR(e), the true clasy¥ is randomly distributed with a given probability (if y(e) = 1) or 1— 1
(if y(e) = —1). Two ways are possible to fix:

1. Chooset, equal to the global proportion oS of positivelearning instances (those for which
y(e)=1).
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2. Userp = 0.5 to satisfy a majority vote rule for a 2-class problem, often used in classification
tasks. Stated differently, we testtlassifies instances IR(e) better than a simple coin toss.

Let Ho(T) be the corresponding null hypothesis. Un#f1p), an instance of the reciprocal
neighborhoodR(e) belongs to the same classeasith probability T (resp. 1- 1) if y(e) = 1 (resp.

y(e) = —1).
3.2 Law of W;" under Ho

In our approach, an instaneds selected by minimizing the quantiBg, while ensuring a positive
confidencen (which avoids the selection of mislabeled instances).

1 1

1 1
= 2\/(We++§Weo)(1—We+— EWeO) ;

becaus&\V;" +W; +W?2 = 1. Then,Z, depends on the value @, in R(e):
W = > Di(€)
eeR( )'y(e’):y(e)

= ZQ ~y(e)} -

gecR(e
where the boolean variablgye—y(e) is 1 iff y(€/) = y(e), and 0 otherwise. IHo(To) is true,
l{y(¢)=y(e)) follows a binomial lawB(1, p), wherep = Ty if Y(€) = 1 elsep = 1— 1. Considering
that W~ depends on examples = 1,2, ..,|R(e)| (the size of the reciprocal neighborhood), we
propose the following simplification:

R@)
3 Dilih

There are two different ways to construct the distributiomgf underHy to compute the critical
value ofW;", calledW,",. We recall here that the critical value defines the bound of the rejection
region ofHo, and corresponds to th@ — 6)-percentile of the distribution d\;~ underHy. In the

two following approaches, we assume that Byéi) are not random variables, even if in theory,
they depend on the labels of the examples. First, the distribution can be assessedrmah
approximation In this case, undetly(p), W, is a weighted sum dgiR(e)| variablesl;, where the

li are independently and identically distributed. The mean and variatg afre:

E(W'/Ho) = ZDt

- ZQ

Var(\W,t /Ho) = Z DZ(i)Var(l

:mkm;wm
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The other way to proceed would consistsihulating the distributiorof W;", which can deal with
cases where the approximation constraints are not satisfied. For balanced weights\{whad
W, are close)|R(e)| > 10 is enough to satisfy these constraints. In an unbalancedwgsmust
be larger.

3.3 Statistical Test

Without a criterion for halting the selection, BSOST requires the provision of the numbki,

of weak hypotheses. Such a strategy may lead to the selection of an instance for which the null
hypothesisHy would not be rejected. By introducing a statistical test using the critical w;ge

we keep only instancesfor whichW;" is exceptionally high undefo (i.e., Ws" > W.".). Among

these, we choose at a given stage of the selection the one that minnimesquivalentlyZ2. The
procedure is stopped if for all the instaneg¥V;" <W.* .

3.3.1 ASSESSING THECRITICAL VALUE OF W;"

We asses®/ " either by normal approximation or by simulation, which is computationally expen-
sive, but sometimes necessary if the approximation conditions are not satisfied. By approximation,
W, is easily defined as follows:

IR(e)|

IR(e)]
W' = p Z Dt(i)+Ule¢ p(1—-p) Zl DA(i)

whereu;_g is the (1— 6)-percentile of the normal laM (0, 1). If the approximation constraints are
not satisfied, we can artificially construct a distributionVgf, by simulating|R(e)| independent

observationd; according toB(1, p), and computing the weighted s ii(le” D¢ (i)li. By repeating
this procedureN times, an estimate M/:e is the (1— 6)-percentile of theN samples.
3.3.2 DecISION RULE

An instancee is selected by minimizinge:

1 1
Ze = 2\/ (We" -+ EWeO)(Wef + §We0 )
while ensuring a positive confidenog:
1, W+ Wy
Oe = £log e_+7§e .
2 We + W2

At each stage of the selection, our procedure minimizes the quatity4F (1—F), whereF =
W+ %Wg. The critical value of with the risk@ is directly deduced frorV." :

1
Fl—e = Wlte"_éwg

IR(®)] IR(e)|

=y Dt<i>+§wb9+ule¢ PlL-p) 3 DF()
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UnderHo(1o), F, , can in theory be smaller than®whenp < 0.5. In this case, if two candidates
satisfy the first conditionV;~ > \A/:e)’ their confidences are then negative, and paradoxically we
will choose the candidatewhich presents the smaller valtg (Fe € [F, 4, 0.5]), by minimizing Ze.

This situation, possible whemis very close to Qin fact rarely occurs because there is almost always

a candidateg’ for whichF,_, > 0.5 andFy > F, , (Fy € [F, ,,1]), often resulting inZy < Z. This

fact has been confirmed by an experimental study. Actually, on 18 datasets, using a 5-fold cross-
validation resulting in 90 different databases, we noted that this situation never occurred. However,
the neighborhood-based classifiers, such ag-earest-neighbors, usually use a majority decision
rule with a threshold & (in the case of 2 classes). In such a context, it is more suitable to test
the null hypothesiddy(0.5), which means that we select only the instaedéat classifies, in the
reciprocal neighborhooR(e), significantly better than a simple toss. In this cdse; 1—F, and

thena > 0. UnderHp(0.5), we have alway$ = 0.5, and the previous formulae fé1_, can be
simplified:

1 IR(e)| ) 0 1
Fo = 5 Zl De(i) +We' | +5u1-o
=

1 1 IR(e)|
DE(i) .
2,

= ptple
We deduce the critical values @f anda with the risk®, calledcg anda_g:
o = (2/Fe(1-Fi0))

) IR(e)| )
= 1-ui e » Df(i)
2"

F

1-6

1-F

1-6

a —1Io

R
1+uig th(l)
i=1

= =log
2 IR(e)|

1-upg _Zl D?(i)

Then, we select the instanedf and only if Z2 < ¢ or ae > a, ,. Note that, while we select the
instancee for which Ze is minimum, we use in the decision rule the lawZxfand not the one of
mineZe. According to the level of dependence Zffs, the risk is in fact contained betweé&nand
(6.|LS]). A simulation procedure would allow us to have more information about this problem.
Then, note tha® is more a control parameter than the probability of type 1 error. The new version
of our algorithm, called P&00s12, is described in Figure 3.

4. The Relative Neighborhood Graph

While PS300s12 was originally proposed for improving tlkeNN algorithm, our theoretical frame-
work is independent of the geometrical structure used for the construction of the reciprocal neigh-
borhoodR(e). So, let us consider another neighborhood graph, called the Relative Neighborhood
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PSB00sT12(LS
Initialize Di(e) =1/|LS for any eclLS
Initialize candidates set LS, =LS
Initialize LS=0
Repeat

Temp={€ € LS, :W;" >W" }
e=arg mirb’eTempZe';
If oe>oa, 4 Then
Stop « False
LS =LSue
LS. =LS. —{e}
Update:
Ve € R(e):
Dy 1(¢) = DU,
Ve € LS\R(e):  Dyya() = 2,
Else Stop « True
endlf
Until Stop=True
Return LS

Figure 3:Pseudocode for BE®0ST12.

Graph (RNG). Introduced by Toussaint (1980), the RNG is a connected graph in which, if two
instances are linked by an edge, then they satisfy the following property:

d(a,b) < Cel_rgégabmax(d(a,c),d(b,c)).
This definition means thdt,p, which corresponds to the intersection of two hyperspheres, with
centersa andb and with radius equal to the distance betwaeandb, does not contain any other
point of the learning sdtS (Figure 4 describes an example). The RNG can naturally be used in a
neighborhood-based classifier. We present here a general framework for problems with an arbitrary
number of classes and an arbitrary geometrical structure used for building the neighborhood graph.

Definition 3 Let G be the set of learning instances belonging to the i-th cl&$s= 1,...c, G =
{e€ LS:y(e) =i} where c is the number of classes.

Definition 4 Let O(€¢') be the c-dimension vector whose components are nat@) O = 1,..,c,
each being the proportion of instances in the neighborhood lbékenging to the i-th class:

o) = M%%%ﬁw_Laﬂg

where N€) is the set of neighbors of @linked by an edge td'ein the neighborhood graph.

Note that definition 4 also applies to new instances, not belonging to the learning set.
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Definition 5 Let@(€') be the class given td by the classifiepfrom the neighborhood graph (RNG
or k-NN):

o€) = argmia>Oi(e’).

According to these definitions, the new instamtén Figure 4 would be labeledbtack’ from its
neighbors 1, 2 and 3.

Figure 4: Relative Neighborhood Graph: the intersection of the two hyperspheres does not contain any
instance of the learning set.

5. Experimental Results

In this section, we assess the efficiency oBPSsT12 according to the two following performance
measures:generalization accuracynd storage reduction We used 18 datasets, most of which
come from the UCI database repository (Merz and Murphy, 1996). The experimental method was
the following: af-fold cross-validation (herd = 5) was performed on each database to obtain
estimates of the true performance of the classifier. We used two neighborhood-based classifiers
according to the geometrical structures listed ab&ws N, herek = 3, and the RNG). The decision
rule used for classifying an instance consists of a majority vote of the neighbors. Each database
DB is divided intof disjoint setsDB;. PS00s12 is applied on each combinati@B — DB;. The
classifier uses the resulting subset of instariBEs— DB; )sypseifor classifying the instances DB;.
For each classifier, we obtain an accuracy estimate by averaging results ofesetise

Note that we did not conduct a large comparative study betwe@oBS12 and the state-of-
the-art prototype selection algorithms because it was already carried outsard®$by Nock and
Sebban (2001a), of which the main results are described in Table 1. These results have shown the
difficulties that the standard prototype selection algorithms have in controlling the two performance
measures. From the results described in Table 2, we can make the following remarks:

1. The learning set size is highly reduced (nearly 45% of the original size on average), while
controlling the generalization accuracy. While the accuracy is slightly reduced for the Rel-
ative Neighborhood Graph by an amount that is not significant using a Student p&esd
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KNN PS00s12 RAN | RNG P300S12 RAN
Dataset Acc. Acc. %pr Acc.| Acc. Acc. %pr Acc.
EcHO 59.2 63.4 37 64.956.3 62.7 37 61.9
HEPAT. 83.1 799 57 79.373.0 755 58 71.8
HEART 78.1 821 48 744741 74.8 54 74.2
AuDIO 75.2 71.2 60 71.2 70.9 60.3 39 62.5
BicpOLE | 59.5 60.2 40 57.254.6 582 26 47.7
HORSE 72.3 73.4 46 71.064.3 67.5 38 67.8

IloNO 80.4 804 51 78.§725 735 36 68.2
XD6 79.8 79.1 77 773795 71.0 57 720
BREAST | 96.7 96.9 68 95. 95.5 945 88 95.0
W.H. 91.4 920 68 90.991.1 895 80 88.8
GLASS2 71.9 720 40 64.567.7 66,5 34 54.9
HARD 50.0 48.3 26 45.954.8 64.8 13 65.7

LED24 73.5 76.5 48 69. 74.0 68.1 43 62.8
LED2 83.9 88.1 31 88.7 88.7 85.1 41 83.5
PimA 69.8 69.3 30 68.0 69.6 69.1 40 70.0
AUSTRAL | 79.7 76.8 58 78.71 76.8 73.9 57 72.8
GERMAN | 69.9 71.3 47 68.3 70.0 70.6 51 69.3
VEHICLE | 70.9 70.3 40 68.1 71.9 71.7 47 71.1
AVERAGE | 74.7 75.2 47 72.9 725 72.1 47 70.0

Table 2: Effect of P800s712 on learning set size and generalization accuracy on 18 datkdéis; RNG
correspond respectively to the accuracypd, using the whole learning set, with a 3-NN classifier
and a voting rule based on the RNG;BR%s12 is described by its accuracigc) and its storage
requirement (% pr); RN corresponds to the accuracy achieved from a learning subset of same size
(LS) randomly selected ifLS|.

over accuracies, the predictive accuracy of the poseR$12 nearest neighbor classifier is
increased (74.7% vs. 75.2%), even though this superiority is not significant vaitbahie
near 0.5. Therefore, it seems to confirm experimentally tha&de$12 is suited to control
the generalization accuracy while significantly reducing the data.

2. A simple strategy for assessing the relevance add$12 consists in comparing the se-
lected subsetl(S;) with another onel(S;) of the same size but randomly selected frof
Such a procedure allows one to estimateghality of the selected prototypes. We made this
comparison (column®SBoost2/Accand Ranin Table 2). Our strategy achieves a signif-
icantly higher accuracy than a random one, and this also tends to confirm the efficiency of
PS00sT12.

6. Some Insights into the Performances of PSBOOST?2

In this section, we explain why B®0sT2 is suited for reducing storage while controlling the
classifier accuracy.
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6.1 PSBOOST2 and Margin Maximization

A partial explanation of P&00s12’s performances may rely on the margin maximization principle.
This principle is in fact not recent, and was originally suggested in Vapnik (1982) for support vector
machines (SVMs) with optimal margins. Even though the objective in both approaches consists in
finding classifiers which maximize margins on learning data, a detailed study of their mechanisms
shows that they slightly differ (Schapire et al., 1998). In SVMs the sum of squared outputs of the
base hypotheses and the sum of the squared weights are both assumed to be bgunaded, (
while in boosting the maximum value of the base hypothdsesdrm) and the sum of the absolute
values of the weightd{ norm) are assumed to be bounded. Support vector machines give rise to
a quadratic programming problem, whereas the optimization in boosting can be seen as a linear
programming problem.

In Schapire et al. (1998), the authors prove that achieving a large mardi® msults in an
improved bound on the generalization. They also prove tltBOOST is suited to maximizing
the number of learning examples with large margin. They define classificagogin as the dif-
ference between the weight assigned to the correct label and the maximal weight assigned to any
single incorrect label. The margin is then a number in the range [-1,+1] and an example is correctly
classified if it has a positive margin. The margin also corresponds to a degree of confidence in the
classification. In order to assess the effect oBBSsT2 for maximizing margins, we computed
for the k-NN classifier the margin gaig; for each datasedtover the 5 folds (before and after PS-
BOOST2). We first observe that over the 18 datasets, the average margithaifg S0 = 0.24.
This might be an experimental explanation for the accuracy’s control BA®ST12. Even more,
a second observation displays the ability ofB@®s72 to increase margins, as all datasets have a
margin gaing; > 0.

6.2 The Filter Precision of PSBOOST?2

Brodley and Friedl (1996) provided a method for evaluating the ability of a data reduction technique
to identify and eliminate mislabeled instances (calfit#r precisior). This procedure in a way
assesses the sensitivity to noise. Consider a learning set artificially corrupted by a given percentage
of noise. One defines the 3 following sets: the Baif instances discarded, the $étof instances

a priori corrupted, the sé¥l N D of corrupted instances discarded by the data reduction technique.
Brodley and Friedl defineB(E) as an estimate of the probability of retaining bad data:

M| —[MND|

P(E) M|
While the original 18 datasets probably already contain noisy data, we decided to caRfiiate
for different artificial noise levels. We corrupted the original data successively with 5, 10, ..., 35%
noise. Table 3 reportB(E) averaged over all datasets and all folds for kildN and theRNG
classifiers.

In the presence of noise, the subset of instances (described by its actu@ey selected
by PS00sT2 is always better than the original learning s&td,f). The accuracy is actually
improved after prototype selection and this trend seems to speed up with the noise level. This
phenomenon is not really surprising. Indeed, noise smoothes class distributions near their frontiers.
These “dangerous regions” tend precisely to be discarded BpBSi2.
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NoISE P(E) wiTH KNN RE) wiTH RNG
ACGet AcGit P(E) AcCGer AcGu P(E)
5% 71.7 72.5 0.07 68.6 68.7 0.15
10% 67.9 69.3 0.08 65.9 66.7 0.15
15% 64.1 67.6 0.07 625 63.9 0.17
20% 63.5 66.0 0.08 59.1 60.6 0.16
25% 61.2 64.1 0.08 58.5 59.5 0.17
30% 58.7 61.1 0.08 56.4 58.3 0.19
35% 56.3 60.1 0.09 54.1 56.1 0.18

Table 3:PSB00sT2’s filter precision

7. Extension to Multiclass Problems

In this section, we present the extension of the test to multiclass problems.

7.1 TestonZe

So far, we have only treated binary problems. Many real-world learning problems are in fact mul-
ticlass with many more possible labels. Two main strategies have been proposed to deal with this
extension to multiclass problems. The first one consists in creating one binary problem for each
of the c classes. Then, we test one clgsagainst all the other classes, answering the following
question: “Does the example belong to fffeclass or not?” This approach is callede-against-all
(Allwein, Schapire and Singer, 2000). The second one consists in testing all pairs of classes (Hastie
and Tibshirani, 1998). For each distinct pair of classes;, the examples labeletjy are consid-
ered positive, those labeled are negative. All other examples are ignored. This approach is called
all-pairs. An interesting comparison is presented in Allwein, Schapire and Singer (2000). In our
approach, we decided to choose the first metlwe-{against-ajl which requires the construction
of ¢ binary problems.

In the test proposed for solving binary problems (see Section 3.3), a candidate is selected when
the correspondinge = 2/Fe(1— Fe) is minimum (whereFe = W~ + 3WY2), while Fe > Fy_g.
We recall that;_g is the critical value of at the riskB underHy (1), the hypothesis that the true
class is randomly attributed with a given probability; in the reciprocal neighborhod®(e).

In this section, for multiclass problems, we denoteFyy the value ofF. when the clasg
is tested against the others. We propose to select the candidatewhich the quantityZ, =
2y/Fe(1—Fg) is minimum, wherf is defined as follows:

C
Fio.
;1 e

The suspensive condition to seleds the following: Fe > F1_g, WhereF_g is the critical value
of Fe at the risk® under the null hypothesis. When the clgsis tested against the others, the
null hypothesis, denoted Il (T1j0), means that the clagsis randomly distributed with a given
probability 1m0 in R;(e), the reciprocal neighborhood efwhen the clasg is tested against the
others. Then, note th&;(e) changes with the valug In order to find the critical valu€1_g, we

E:

ol
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have to defingl ando? such as:

p = E(Ee)

TS pDk(e)+ W)

= 33 3 @i,

c2
|=1€eRj(e)

whereDj; (€¢/) is the distribution at the stageof the boosting, when the clagss tested against all
the others. We notp; = 1o if Y(e) = j elsep; = 1— 0. According to the simplification proposed
in Section 3.2,

l C ‘RJ 0
H = PiDjt (i) + W e)
] 1 |21

c IRj(e

o’ = sz lell pJD()

We assume in the calculation of the independence of thfg . Said differently, we consider that
the knowledge oR;(e), from whichF; ¢ is computed, does not contain information about the nature
of the reciprocal neighborhodg (), whenj # |. Actually, even if the quantityR; (e)| remains the
sameY j, the labels and the weights of the neighborRj(e) will differ according to the tested class

j. From this point of view, covariances can be considered as insignificant.

Moreover, note that variablds ¢ are computed from independent variables, then they are not
too far from a normal distribution. Furthermore, as mentioned before, they are approximately inde-
pendent. Then, we can claim tHatis very close to a normal distribution. We can determine the
critical valuesF;_g andcg for Fe andz2:

Fi1¢ = P+U1g0
Cp = 4?1,9(1—31,9).

Note that for the special case whgye= 0.5 (for satisfying an absolute decision rule), the previous
formulae are highly simplified. Actually,

IRj(e)l _ 1 0 1 0
Zl ijjt(|)+§V\/j,e = (ij—,i_e""vvj,_e)‘i‘ﬁvvj,e
i=

Nl NI
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PSB00s12.MC(LY
Initialize Dji(e) =1/|LY for any eeclS

Initialize candidates set LS, =LS
Initialize LS =0
Repeat

Temp={€¢ €LS.:W, >W/ }
e=arg mirb’eTempZe';
If oe>oa, 4 Then

Stop « False

LS =LSue
LS. =LS. —{e}
Update:
For =1, 2, ..c
Ve € Rj(E)Z
Dj,t+1(e() _ Djt(e()e—aeMZt(e’),J)M(y(e),J) ;
ve cLS\Rj(e):  Dpa(e) = %,
EndFor '
endIf

Else Stop « True
Until Stop=True

Return LS
Figure 5:Pseudocode for BE®0sT12_MC.
Then,
1c1
=253
cCeH 2
1
= 5
And,

L 1 ¢ Ri@) .
=1 i=
The pseudocode of our extended algorithm, callee ®&T12_MC, is described in Figure 5. Note
that we use in this algorithm the coding matkiy(e), j) which was originally given by Dietterich
and Bakiri (1995). For thene-against-allapproach,M is a c x ¢ matrix in which all diagonal
elements are positiveHl) and all other elements are negativel§. When a clas$§ is tested against
the others, the current label of the instards the valueM (y(e), j), wherey(e) € {1,2,..,c}.

7.2 Experimental Results

Table 4 presents the properties (name, number of classes, learning set size and number of features)
of the eight tested datasets. In order to assess the relevance of our multiclass statistical test, we
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DATASET # CLASSES| |LS | #FEATURES
WAVES 3 500 21
ABALONE 3 1000 8
GLASS 6 214 9
BALANCE 3 625 4
IRIS 3 150 4
LED 10 500 7
LED+17 10 500 24
DERMATOLOGY 6 366 34

Table 4:Multiclass classification problems.

Accuracy
72

71

70

69

68

Figure 6: Contribution of P800s12_.MC on multiclass problems: the solid line corresponds to the accu-
racy of a standark-NN classifier, built from the whole learning sample; the dashed-line represents

the success rate computed from the reduced learning set.

used many values ¢f(k = 1,2, ..,10) in thek-nearest neighbor classifier. Except for this detalil, the
experimental method remains the same as the previous study, namely the 5-fold cross-validation.
A graphic synthesis of the results is presented on Figure 6. Each point of this figure is the average
over the eight datasets, each of them tested five times during the cross-validation. Therefore, one
point corresponds to the average of forty accuracies. Beyond data reduction, the results display
the positive contribution of PEB0s12 MC to the accuracy’s increase: for all valueslofthe
accuracies achieved from the reduced learning set are indeed higher than without data reduction.
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8. Weighted Classifiers using Instance Confidences

Beyond prototype selection, this section aims at exploring an issue that was raised by Sebban, Nock
and Lallich (2001): the use of boosting-derived weights for weighted nearest neighbor rules. In
such a context, the classification rule (as defined in Section 4) must be slightly modified, since the
classification rule does not handle classes anymore, but real weights in favor of each class. The
following definition forO(€') replaces Definition 4:

Definition 6 Let O(€') be the c-dimension vector whose components are nqi@) = 1,2,..,c,
each being the sum of weights of the instances in the neighborhobtealbaging to the i-th class:

Gi(¢) = Z Oe,Vi=1,2,...C.
ecN(€):y(e)=i

Note thata, is still the confidence of the instaneavhene is selected, but we end up selecting all
instances. The weighting algorithm is a slight variant of P®BT12_MC, in which the condition
W;" > W is removed. This little algorithmic difference is crucial, as some instances may now have
a negative weight. This still makes sense, because the new rule leverages the neighborhood vote in
favor of some classes, or in disfavor of others when negative weights abound.

Experimental studies have been conducted wi¢maarest neighbor classifier, for=1,2, .., 20.
We applied our approach on twenty-three datasets. Rather than presenting the twenty-three curves
(one for each dataset), we synthesize the results in one figure, where each point is the average of
5 (folds) x 23 (datasets) = 115 accuracies. Results are presented in Figure 7. It appears that the
performance of the standakeNN rule is almost systematically improved by leveraging votes with
the boosting weights. Even more, a Student paireskt reveals that the difference between the
standardk-NN and our weighte®-NN is significant for all valuek = 1,2, ..,11. Fork large enough
(k > 12), the difference becomes insignificant. This can be explained by the fact that large values
of k tend to smooth neighborhood distributions (ultimately, they become the whole sample’s), for
which weighting brings no significant difference.

Another concise way to display the results consists in putting separately the results for each
dataset, as an average over the different valuds dfistead of identifying the good values kf
we identify the good datasets, candidate for an improvement with our weighted nearest neighbor
rule. We choose to take into account only the valuek ef 12, for which weighting brings on
average a statistical advantage. The results are presented in Table 5 and graphically represented in
Figure 8. We can note that for 17 datasets, a weighted decision rule provides better results than the
unweighted rule. Among them, 7 dataséBal@nce, Echocardiogram, German, Horse Colic, Led,
Pimaand Vehiclg see important improvements, ranging from 1%t&%. In contrast, only one
dataset sees significant accuracy decre@se 06.0% vs. 93.9%).

9. Conclusions and Future Research

This paper explores a method for prototype selection based on boosting, and gives statistical criteria
for stopping the selection of instances, a crucial problem for the approach (Nock and Sebban, 2001a)
as well as for usual boosting algorithms. The whole approach is cast into multiclass classification
problems, thereby relaxing the class cardinality constraint of Sebban, Nock and Lallich (2001).
So far, the framework proposed in this paper holds only for neighborhood-based classifiers. An
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Accuracy
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Figure 7: Comparison between a stand&\N classifier (solid line) and a weighted classifier using the
relevance of each instance (dashed-line).

interesting direction of research consists in finding such a method tailored to processing data for
induction algorithms, such as, for example, decision tree induction.

Furthermore, we have shown that instead of reducing the learning set size, the boosting-derived
weights can be experimentally used in weighted nearest neighbor rules, with statistical advantage
compared to the usual, unweighted rules. Because it boils down to making boosting with instances
as weak learners that abstain, and because nearest neighbor rules are among the earliest, simplest
and still widely used classifiers, this algorithm certainly deserves theoretical investigations to cast,
among all, the boosting theory and results (Freund and Schapire, 1997; Schapire and Singer, 1998).
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