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161, rue Ada, 34392 Montpellier, France

{nock,jappy,js}@lirmm.fr

Abstract. In this paper, we study the possibility of Occam’s razors
for a widely studied class of Boolean Formulae : Disjunctive Normal
Forms (DNF). An Occam’s razor is an algorithm which compresses the
knowledge of observations (examples) in small formulae. We prove that
approximating the minimally consistent DNF formula, and a generaliza-
tion of graph colorability, is very hard. Our proof technique is such that
the stronger the complexity hypothesis used, the larger the inapprox-
imability ratio obtained. Our ratio is among the first to integrate the
three parameters of Occam’s razors : the number of examples, the num-
ber of description attributes and the size of the target formula labelling
the examples. Theoretically speaking, our result rules out the existence
of efficient deterministic Occam’s razor algorithms for DNF. Practically
speaking, it puts a large worst-case lower bound on the formulae’s sizes
found by learning systems proceeding by rule searching.

1 Introduction

The learnability of Disjunctive Normal Form formulae (disjunctions of conjunc-
tions) is a central problem in machine learning [27]. In 1984, Valiant studies the
learnability of this class, and remarks that “the attraction of this class is that
humans appear to like it for representing knowledge as is evidenced, for example,
by the success of the production system paradigm and of Horn clause logics”[35].
He proves that a subclass of DNF is learnable, and leaves as an open problem
whether the whole class is learnable. Since then, many theoretical studies have
investigated the learnability of DNF or subclasses [19,27,2,1,4,5,8,15,20,23,28].

Simultaneously, many programs for machine learning were designed to learn
efficiently from examples. In each of these programs, the algorithms has access
to a learning sample and tries to build a small function approximating as best
as possible the observed examples. According to [10], systems that learn sets of
rules (DNF in the Boolean framework) have a number of desirable properties :
they are easy to understand, they can outperform decision-tree learning algo-
rithms on many problems, they have a natural and familiar first-order version
(Prolog predicates), and techniques for learning propositional rule sets can often
be extended to the first-order case [29]. Many learning algorithms either build
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rules, or have a stage consisting in searching for rules that are postprocessed,
or are aimed at producing formulae that can be easily translated into rules,
[7,10,9,12,21,24,25,26,31,30,29,32,33,36] and many others.

Practical and theoretical results often focus on an aspect of approximation
they both share : given a set of examples (e.g. description of animals for which
we know if they have or not some illness), can we devise an efficient algorithm
which can find a small formula (i.e. a mean of classifying observations) consis-
tent with all examples (making no errors)?
Theoretically speaking, this aspect is often related to the principle of Occam’s
razors [6]: an Occam’s razor for a class (i.e. a set) of concept representations C
(each of which is a function mapping observations to classes) is an algorithm
that, given a learning sample LS whose labels are given by some unknown tar-
get concept t ∈ C, can produce in time polynomial in |LS|, n (the number
of description variables), |t| a formula h ∈ C satisfying to the two following
conditions : h is consistent with LS (it does not make errors) and has size
satisfying |h| ≤ |LS|a(n|t|)b (with 0 ≤ a < 1 and b ≥ 0). The principle of Oc-
cam’s razors [18] states that in order to learn, a system should compress the
information contained in the examples. This principle was originally stated by
philosoph William of Occam (1285-1349), and led to theoretical results in the
PAC-learning model of Valiant [34] : learning is in fact equivalent to finding
Occam’s razors [18].
Practically speaking, machine learning algorithms producing rules are almost
always aimed at producing small sets of rules, because they are easy to under-
stand for the non-expert, and they appear to be sufficient on many problems [17].

The principal result on the inapproximability of DNF comes from [19]. They
show that DNF is as hard to approximate as a proglem related to a generaliza-
tion of Graph Colorability (which does not have commonpoints with ours). [13]
prove that Graph Colorability is hard to approximate to within nδ (∀0 < δ < 1).
Using the reduction of [19], we are able to show that the consistent DNF with
minimal size is not approximable (in size) to within nδ (∀0 < δ < 1), where n is
the number of description variables of the examples, a measure of the problem’s
complexity. In this paper, we first prove that the upperbound of δ can be re-
moved : the result holds in fact ∀δ > 0. We go further into negative results, and
prove that size-|t| DNF cannot be approximated by DNF having size not greater
than |LS|anb|t|c. a, b, c are any constants satisfying 1

19 > a ≥ 0, b ≥ 0, and
1+ 1

145 > c ≥ 0. |t| is the number of monomials (conjunctions) of the target con-
cept. This proof is stated under the hypothesis NP �⊂ZPP , where ZPPdenotes
the class of langages decidable by a random expected polynomial-time algorithm
that makes no errors [3].

In order to achieve our result, we firstly prove an equivalence of approximat-
ing DNF with a generalization of graph colorability. We then prove our result
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on the inapproximability of DNF by proving an inapproximability result on the
generalization of Graph Colorability.

2 Equivalence between Approximating DNF and a
Generalization of Graph Colorability

In this paper, we are interested in approximating optimization problems. An
optimization problem contains an instance, the definition of a feasible solution,
and a cost function defined for any feasible solution. The aim of any approxima-
tion algorithm is to find feasible solutions whose cost (e.g. number of colors for
coloring a graph) is as close as possible from the problem’s optimum. We also
use the cost notion for instances : the cost of an instance is the optimal cost
among all feasible solutions for this instance.

Let F be a class of Boolean formulae; any of its elements, f , is a function
f : {0, 1}n → {0, 1}. An element x ∈ {0, 1}n is an example. It is composed
of n binary variables {x1, ..., xn} assigned in {0, 1} (the negative and positive
literals). The value f(x) is the class ∈ {0, 1} that f assigns to x (the negative and
positive class). The size of any formula f is denoted |f |. We investigate the class
of DNF, set of formulae described as a disjunction of monomials. A monomial is
a conjunction (∧) of literals (a literal is a Boolean descriptor, taking value either
True or False). We are interested by the possibility, for some efficient (Ptime)
algorithm, to approximate the following minimization problem:

– Name : Opt(DNF)
– Instance : A learning sample LS
– Feasible Solutions : Formulae from DNF consistent with LS
– Cost Function : Size of the formula (number of monomials)

It is well-known [19] that this problem is as hard as the problem Opt
(Independant-set cover) (this is the same as the graph-coloring problem [14];
however, this name is convenient for our proofs). We show in this paper that it
is in fact as hard as a generalization of the Opt(Independant-set cover) problem
(for any integer k > 0, [k] denotes the set {1, 2, ..., k}):
Definition 1 Opt(Multi independent-set cover)

– Name : Opt(Multi independent-set cover)
– Instance : G⊕ = (X⊕, E⊕), a graph presenting the following form : for

some positive integer d, X⊕ is partitionned into X1, ..., Xd such that if d > 1,
∀1 ≤ i < j ≤ d, none of the edges between Xi and Xj are in E⊕.

– Feasible Solutions : a cover of X⊕ in subsets s1, ..., sk such that :
1. ∀1 ≤ i ≤ k, ∀1 ≤ j ≤ d, si ∩ Xj �= ∅ and induces an independent set

in Xj.
2. ∀(x1, x2, ..., xd) ∈

∏d
i=1 Xi, ∃j ∈ [k] : ∀l ∈ [d], xl ∈ sj

– Cost Function : k, that is, the number of subsets used to cover X⊕.
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Note that every graph can be represented according to the preceeding definition,
but the uniqueness of the representation is not ensured for a given graph. The
cost of a graph G instance of Opt(Independant-set cover) is usually written χ(G).
We note χg(G⊕) as the cost of a graph G⊕ instance of Opt(Multi independent-
set cover). The following proposition states the equivalence between these two
problems (proof omitted due to space limitations).

Proposition 1 Equivalence of approximating Opt(Multi independent-
set cover) and Opt(DNF) : For any graph G⊕ = (X⊕, E⊕) instance of
Opt(Multi independent-set cover), we can create in time polynomial in |X⊕|
a set of examples LS such that if there exists a feasible solution to Opt(Multi
independent-set cover) whose cost is k, then we can create in Ptime a DNF hav-
ing no more than k monomials and consistent with LS. Reciprocally, if there
exists a DNF of size k consistent with LS, then (i) we can suppose without loss
of generality that it is monotonous (no negative literals), and (ii) we can gener-
ate in Ptime a feasible solution to Opt(Multi independent-set cover) whose cost
does not exceed k.

3 Opt(Multi Independent-Set Cover) is Hard to
Approximate

This section is devoted to the proof of the following theorem.

Theorem 1 Unless NP⊆ZPP , Opt(Multi independent-set cover) is not ap-
proximable to within

ρ⊕ =
(

max
1≤i≤n

{|Ei| + |Vi|}
)da (

d max
1≤i≤n

{|Vi|}
)b

(χg(G⊕))c−1

where Gi = (Xi, Ei) is the subgraph of G⊕ induced by Xi. The result holds

– ∀b ≥ 0,
– ∀ 1

19 > a ≥ 0,
– ∀1 + 1

145 > c ≥ 0.

This theorem means that no polynomial-time (Ptime) algorithm can guarantee
to find, from an instance G⊕ of Opt(Multi independent-set cover), a solution
whose cost does not exceed χg(G⊕) × ρ⊕. The proof technique basically relies
on multiplying d instances (or stairs) of Opt(Independant-set cover) to form an
instance of Opt(Multi independent-set cover), without linking each stair (graphs
instance of Opt(Independant-set cover)) to the others. Ideally, we would like to
obtain a relationship such as

χg(G⊕) = χ(G)d (1)

which would ease a lot the proof since it would also blow up any inapproximabil-
ity ratio ρ for Opt(Independant-set cover) to ρ⊕ = ρd for Opt(Multi independent-
set cover). However, this relationship is not true for any graph instance of
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Opt(Independant-set cover), that is why we need to build particular, very hard to
solve instances of Opt(Independant-set cover). Figure 1 presents the building of
a hard instance G of Opt(Independant-set cover), from two reductions τ1 and τ2.
Reduction τd

3 is the stacking-up of d instances of Opt(Independant-set cover) to
form an instance of Opt(Multi independent-set cover). The main theorem we

“SAT” G′′

Instance of Opt(Independant set cover)

Instance of Opt(Independant set)

G′ G G⊕
τ1 τ2 τd

3

Fig. 1. Scheme of the reduction τ1 ◦ τ2 ◦ τd
3 .

need in this part is the following:

Theorem 2 (From [16]) Unless NP⊆ZPP , ∀0 ≤ δ < 1, Opt(Independent set)
is not approximable to within ρ′′ = n(G′′)δ.

We suppose for the sake of simplicity, as it is pointed out in [13,16], that theo-
rem 2 is proven from the decision problem “SAT”. It means that there exists a
reduction from “SAT” to Opt(Independent set) such that

– Any graph G′′ obtained from a satisfiable instance of “SAT” satisfies
α(G′′) = g.

– Any graph G′′ obtained from an unsatisfiable instance of “SAT” satisfies
α(G′′) < g/n(G′′)δ, ∀0 < δ ≤ 1.

We now describe the two first reductions, τ1 and τ2. Define as Kr the complete
graph over r vertices.

Definition 2 τ1 [22] From G′′, we create the graph product G′ = Kr ×G′′ with
r ≥ α(G′′) as follows. Each vertex of G′ is a pair < i, v > where i = 1, ..., r is
a vertex from Kr and v is a vertex from G′′. Sets of vertices with the same first
component induce a clique in G′. Two vertices < i, v >,< j, w > from different
cliques are adjacent iff their second components v and w are equal or adjacent
vertices in G′′.

(In that follows, we fix r = n(G′′)). As pointed out in [22], Section 2.1, we have
α(G′′) = α(G′). Let Zp be the field of integers modulo p.

Definition 3 τ2 [22] Let G′ be a graph whose vertices are partitionned into
cliques C1, ..., Cr. Let p be a prime at least as large as

max{max
i

|Ci|, r/α(G′),
√
r}
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The image of G′ by τ2, G, has vertices described as quadruplets < i, k, y, w >,
where i = 1, ..., r, k ∈ Zp, y ∈ Z2

p , and w ∈ Z2
p . Let uA =< iA, kA, yA, wA >

and uB =< iB, kB , yB, wB > be two vertices of G. The two vertices are not
adjacents iff (∃s ∈ Zp)(∃z ∈ Z2

p) such that:

– < iA, kA − s >∈ G′, < iB, kB − s >∈ G′ and they are not adjacent.
– wA = (kA − s)yA + z and wB = (kB − s)yB + z.

Like [22], we apply transformations τ1 and τ2 to any graph G′′ instance of
Opt(Independent set). We have

Proposition 2 G satisfies:

1. n(G) = rp5 ([22], part 2.1)
2. α(G) = p2α(G′) ([22], corollary 2.2)
3. If G is built from a satisfiable instance of “SAT”, then χ(G) = n(G)/α(G)

([22], theorem 2.3)
4. p2χ(G) ≤ n(G)

(proof of [4] omitted due to space limitations). The third reduction, τd
3 , with

d > 0 an integer, simply consists in stacking-up d times G without linking each
“stair” to the others. Let G⊕ = τd

3 (G). Since there are n(G)d d-tuples containing
one vertex from each X1, ..., Xd, since any set from any solution to Opt(Multi
independent-set cover) contains at most α(G)d of these d-tuples, and since any
of these d-tuples are covered, it comes χg(G⊕) ≥ n(G)d

α(G)d . Furthermore, making
the d-times cross-product of the independent sets of a solution to Opt(Graph col-
orability) lead to a feasible solution to Opt(Multi independent-set cover) whose
cost satisfies χg(G⊕) ≤ χ(G)d. Consequently,

n(G)d

α(G)d
≤ χg(G⊕) ≤ (χ(G))d (2)

We refine these inequations. Any graph G⊕ corresponding to a satisfiable in-
stance of “SAT” leads by proposition 2 to χ(G) = n(G)/α(G). Therefore,
χg(G⊕) = χ(G)d. Any graph G⊕ corresponding to an unsatisfiable instance
“SAT” leads by theorem 2 and proposition 2 to ∀0 ≤ δ < 1, χg(G⊕) >(
p3n(G′′)δ

)d
. From proposition 2, we also get ∀0 ≤ δ < 1, p3n(G′′)δ ≥

χ(G)p5n(G′′)δ

n(G) . But n(G)/p5 = r = n(G′′). Therefore ∀0 ≤ δ < 1, p3n(G′′)δ ≥
χ(G)

n(G′′)1−δ . Therefore, for any graph G⊕ corresponding to instances of “SAT”
either satisfiable or not, we have:

∀0 ≤ δ < 1,
(

χ(G)
n(G′′)1−δ

)d

≤ χg(G⊕) ≤ (χ(G))d (3)

This relationship is central for our proof; although it is much weaker than equa-
tion 1, it is still sufficient to prove theorem 1. However, there are two problems
left : how can we use 3 to prove ρ⊕, and can we choose d constant, so that τd

3 is
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Ptime ? We first solve the first problem. From any “SAT” instance (theorem 2)
transformed in a graph G using reductions τ1 and τ2, depending on whether it is
satisfiable or not, there exists g > 0 (it is a function of the “SAT” instance, [22])
such that either χ(G) = p3, or χ(G) > p3n(G′′)δ, ∀0 < δ ≤ 1.
For any satisfiable instance of “SAT”, we get from inequations 3 : χg(G⊕) ≤
χ(G)d = (p3)d. For any unsatisfiable instance of “SAT”, we get from inequa-

tions 3 : χg(G⊕) ≥
(

χ(G)
n(G′′)1−δ

)d

≥ (p3)d × (n(G′′)2δ−1)d. In order to prove

theorem 1, it is sufficient to show a “gap” greater than ρ⊕ between (p3)d and
(p3)d × (n(G′′)2δ−1)d. That is, we need to find d such that

(n(G′′)2δ−1)d > ρ⊕ ⇒ d >
log ρ⊕

log(n(G′′)2δ−1)
(4)

under the constraint δ > 1/2. And we need to show that d is constant.

We now check the constant value for d satisfying inequation 4. [22] choose
for p a prime at least as large as max

{
maxi |Ci|, r

α(G′′) ,
√
r
}

, which is n(G′′) in
our case. We also have

Proposition 3 [11] There exists a constant 0 < α < 1 such that for any
positive integer M , there exists a prime falling in the interval [M ;M1+α]. Fur-
thermore, we can fix α = 11/20.

In our case, we can therefore suppose that n(G′′) ≤ p ≤ n(G′′)1+α. We fix
49
50 < δ < 1 if c ≤ 1, and 49

50 + 113(c−1)
40 < δ < 1 otherwise (remark that 1

2 < δ < 1).
Fix

d = �f(a, b, c, α, δ) + (6 + 5α)b
2δ − 1

� (5)

with

f(a, b, c, α, δ) = 2 ×
[

1
a(12+10α)+max{0;(c−1)(4+3α)} − 1

2δ−1

]−1

×
[

(6+5α)b
2δ−1 + 1

]

Arithmetic calculation gives

Fact 1 The choice of δ leads that f(a, b, c, α, δ) is positive. Furthermore,

f(a, b, c, α, δ) − d (a(12 + 10α) + max{(c− 1)(4 + 3α); 0}) > 0

Fact 1 leads to db < n(G′′)f(a,b,c,α,δ)−d(a(12+10α)+(c−1)(4+3α)), at least for suffi-
cient large-sized graphs. Proposition 2 leads to

χg(G⊕) ≤ χ(G)d ≤
(
n(G)
p2

)d

= (rp3)d ≤ n(G′′)d(4+3α) (6)
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The fact that vertices of G can be partitionned into independent sets of size p2

(proposition 2) leads to (for convenience, we fix e(G) and n(g) to be respectively
the number of edges and the number of vertices of G) : e(G) ≤ p4 (rp3)!

(rp3−2)!2! =
rp7(rp3−1)

2 . From this and the fact that n(G) = rp5 ≤ n(G′′)6+5α, we get e(G) +

n(G) ≤ rp7(rp3−1)
2 + rp5, and therefore e(G) + n(G) < r2p10 = n(G′′)12+10α.

Putting it altogether, we get that

ρ⊕ =
(

max
1≤i≤n

{|Ei| + |Vi|}
)da (

d max
1≤i≤n

{|Vi|}
)b

(χg(G⊕))c−1

implies whenever c ≥ 1

ρ⊕ < n(G′′)(12+10α)ad × n(G′′)f(a,b,c,α,δ)−(12+10α)ad−d(c−1)(4+3α)

×n(G′′)(6+5α)b × n(G′′)d(c−1)(4+3α)

and therefore ρ⊕ < n(G′′)f(a,b,c,α,δ)+(6+5α)b. When c < 1, similar calculation
leads again to ρ⊕ < n(G′′)f(a,b,c,α,δ)+(6+5α)b. We get

log ρ⊕

log(n(G′′)2δ−1)
<

f(a, b, c, α, δ) + (6 + 5α)b
2δ − 1

(7)

But the choice of d also gives

f(a, b, c, α, δ) + (6 + 5α)b
2δ − 1

≤ d (8)

d is therefore constant, and satisfies inequation 4. The proof of theorem 1 is com-
pleted. From proposition 1, from the fact that |LS| ≤ (max1≤i≤n{|Ei| + |Vi|})d,
n ≤ dmax1≤i≤n{|Vi|}, and the target concept’s size satisfies |t| = χg(G⊕), we
obtain

Theorem 3 Non-approximability of DNF Unless NP⊆ZPP , there cannot
exist an Occam’s razor for DNF finding formulae whose size does not exceed
|LS|anb|t|c, where |t| is the size of the target concept, and |LS| the size of the
learning sample. The result is true even if we suppose that the target concept
belongs to monotone-DNF. a, b, c are any constants satisfying:

1
19

> a ≥ 0 ; b ≥ 0 ; 1 +
1

145
> c ≥ 0

4 Conclusion

Recall that an Occam’s razor for a class of Boolean formulae C is an algorithm
that, given a learning sample LS whose labels are given by some unknown target
concept t ∈ C, can produce in time polynomial in |LS|, n, |t| a formula h ∈ C
satisfying to the two following conditions : h is consistent with LS and |h| ≤
|LS|a(n|t|)b, with a, b > 0 and a < 1. With our reasonable complexity hypothesis,
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our result does not rule out any possibility of deterministic Occam’s razors, even
if efficient Occam’s razors are proven impossible. However, the advantage of
our reduction technique is that, the higher the time alloted for τd

3 (thus, the
higher d), the higher the non-approximability ratio. [27] cite the complexity
hypothesis NP �⊂DTIME(poly(2nε

)) (for some ε > 0). With such hypotheses,
adaptated to handle zero-error, probabilistic algorithms, it would be interesting
to see how close to the Occam requirements the non-approximability ratio would
come.
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