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Abstract
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We describe a simple and fast/dog, %)-time algorithm for finding &1 + ¢)-approximation of the smallest enclosing disk 72
of a planar set ofi points or disks. Experimental results of a readily available implementation are presented. 73

00 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The smallest enclosing disk (SED for short) prob-

77
78
and do not perform so well in practice. In this note,®
we concentrate exclusively on the planar case ap®
proximation, and we refer readers to the papers [1,3}

lem dates back to 1857 when Sylvester [5] first asked for experimental comparisons of recently designed af?

for the smallest disk enclosing points on the plane.
Although Qnlogn)-time algorithms were designed
for the planar case in the early 1970s, its complex-
ity was only settled in 1984 with Megiddo’s first lin-
ear time algorithm [2] for solving linear programs in
fixed dimensionUnfortunately, these algorithms ex-
hibit a large constant hidden in the big-Oh notation

* Corresponding author.
E-mail addressedrank.nielsen@acm.org (F. Nielsen),
rnock@martinique.univ-ag.fr (R. Nock).

gorithms that either solve the exact or approximat&
smallest enclosing ball problemstinbounded dimen-
sion Computing smallest enclosing disks are usefuf’
for metrology, machine learning and computer graphg—6
ics problems. Fast constant approximation heuristics
are popular in computer graphics [4]. LBt={P; = ®
(xi, yi), i €{1,...,n}} be a set of planar points. We
use notations:(P;) = x; and y(P;) = y; to mention

point coordinates. Let DigK*, r*) be the smallest
enclosing disk ofP of center pointC* (also called

circumcenter or Euclidean denter) and minimum ra-
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diusr*. We want to compute él + ¢)-approximation,
that is, a disk DiskC,r) such thatr < (1 + &)r*
and P C Disk(C, r). Our paper aims at designing a
fast deterministic (i.e., worst-case time bounded) ap-
proximation algorithm that is suitable for real-time
demanding applications. Our simple implementation
for point/disk sets is a mere 30-line code which do not
require to compute the tedious basis primitive of the
smallest disk enclosing three disks. Moreover, we ex-
hibit a robust approximation algorithm using only al-

gebraic predicates of degree 2 on Integer arithmetic. In g .,

Section 6, we show that our floating-point implemen-
tation outperforms or fairly competes with traditional
methods while guaranteeing worst-case time.

2. Piercing/covering duality

49
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Fig. 1. Covering/piercing duality principle.

65
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Let us consider the general case of a disk set 3. Algorithm outline 67

D ={D; =Disk(P;, r;), i €{1,...,n}}to explain the
piercing/covering duality. Our approximation algo-
rithm proceeds by solving dual piercidgcision prob-
lems(DPs for short; see Fig. 1): given a set of corre-
sponding dual diskB(r) = {B; = Disk(P;,r —r;),i €
{1,...,n}}, determine whethef\ B(r) = (/_; Bi =

¢ or not.

Lemma 1. Observe that forr > r*, there exists a
(uniqu@ disk B of radiusr(B) =r — r* centered at
C(B) = C* fully contained insid¢ 5.

Proof. In order to ensure thaC* is inside each
B; (r), a sufficient condition is to have> max {r; +
d2(P;, C*}. SinceB; C Disk(C*,r*), Vie{l,2,...,
n}, we have

max{r; +da(P;, C*)} <r*. (*)

1
Thus, provided- > r*, we haveC* € [ B(r). Now,
notice thatvi € {1,2,...,n}, YO+ < (r — r;) —
do(P;, C*), Disk(C*, ") C B;(r). Thus, if we ensure
thatr’ < r —max (r; +d2(P;, C*)), then DisKC*, r’)
C (N B(r). Fromineq. {), we choose’ = r — r* and
obtain the lemma (see Fig. 1). Uniqueness follows
from the proof by contradiction of [6]. O

1 Source code in C is available at http://www.csl.sony.co.jp/
person/nielsen/WIP/MEB;/.

68

Our approximation algorithm proceeds by solv-se
ing a sequence of dual piercirdecision problems 7o
(see Fig. 1): given a set of diskB(r) = {Bi = n
Disk(P;,r),i € {1,...,n}}, determine whethdn B(r) 72
= (); Bi = # or not. We relax the 1-piercing point 73
problem to that of a common piercing™*-disk (i.e., 7a
a disk of radiuser®*): report whether there exists a7
disk B = Disk(C, er*) such thatB < (\B(r) or not. 76
Algorithm 1 describes the complete approximationz
procedure. 78
79

3.1. Solving decision problems 80
81

We explain procedure DecisionProblem of Algo-s2
rithm 1. Let [x,,, xp] be an interval on ther-axis 83
where aner*-disk center might be located if it ex- 84
ists. (Thatisc(C) € [x, xp] if it exists.) We initialize 85
Xm,Xyp as thex-abscissae extrema;, = max(x;) — 86
r, xp = min;(x;) + r. If xpr < x,,, then clearly verti- 87
callineL : x = (x;;, + x37)/2 separates two extremum &s
disks (those whose corresponding centers give rise to
xm and xys) and thereforeB(r) is not 1l-pierceable 9o
(therefore noktr*-ball pierceable). Otherwise, the al- 91
gorithm proceeds by dichotomy (see Fig. 2). ket 92
(xm + xp)/2 and letL denotes the vertical ling : x 93
=e. Denote byB;, ={B;NL|ie{l,...,n}} the o4
set of n y-intervals obtained as the intersection ofes
the disks of3 with line L. We check whetheBy, = 9
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DecisionProblen®, xmin, xmax, r, ¢):

1 xpy =xmin+r;
2 Xxp; =Xmax—r;
3 whilexpy — x;,; > ¢ do
4 | = *MtXm :
5  ym=maXer..ay i —Vri—(1—x)%
6 =argmaXe(1,.. n}Yi —V re— (- xi)z;
7 ym=Miniga gy yi +Vre— 1 —x)%
8  M=argmineq  nyyi +vré—1—x)%
9 if yar = ym then
10 x =1
11 y=0m+ym/2;
12 return true;
else
/Im andM are arg indices of,,;, andyy;
13 if (xm +xp7)/2>1then
14 xm=1;
ese
15 XM =1
16 return false;
SmallEnclosingDiskp, ¢):
17 xmin=min;c1, .. n) %
18 Xmax=ma¥e(1, ) i}
19 diy=maxe(,.. 1P — Pall;
20 b=dy;
21 a= dzl,
22 &<« 4(19 —a)g;
23 whileb—a>¢do
24 r=(a+b)/2;
25 pierceable= DecisionProblen®, xmin, xmax, r, ¢);
26 if pierceablehen
27 b=r,;
else
28 a=r,

Algorithm 1. (1+ &)-approximation of the minimum enclosing disk
of P.

{BiNL=1[a;,b;]|ie{l,...,n}} is 1-pierceable or
not. SinceBy is a set ofn y- mtervals, we just need to
check whether mirb; > max a; or not. If (B # @,
then we have found a poirie, min; b;) in the inter-
section of all balls of8 and we stop recursing. (In
fact we found a(x = e,y = [y, = Ma% a;, yy =
min; b;]) vertical piercing segment.) Otherwise, we
have( B, = @ and need to choose on which side of
L to recurse. Without loss of generality, Bt and B2
denote the two disks whose correspondyrigitervals
on L are disjoint. We choose to recurse on the side
whereB1 N By is located (if the intersection is empty

then we stop by reporting the two nonintersecting ballse
B1 and By). Otherwise,B1 N B2 # ¢ and we branch 5o
on the side whereg, g, = (x(C(B1)) + x(C(B2)))/2 5t
lies. At each stage of the dichotomic process, we?
halve thex-axis range where the solution is to be lo-53
cated (if it exists). We stop the recursion as soon &8
XM — xm < €5. Indeed, ifxy — x, < e then we 55
know thatno center of a ballof radiuser is con- 56
tained in() B. (Indeed if such a ball exists thdroth 57
M BL(x,) # % and() By, # ¥.) Overall, we recurse 58
at most 3+ [log, %1 times since the initial interval 5°
width xp; — x,, is less than 2 and we always con- ©°

. *
siderr > . 61
62

3.2. Radius dichotomy search ij
Finding the minimum enclosing disk radius65
amounts to find the smallest values R such that
N B(r) # @. That isr* = argmin.cg+ [ B(r) # 0.
We seek an1 + ¢)-approximation of the minimum
enclosing ball of points by doing a straightforward70
dichotomic process on relaxed decision problems
explicited by procedure SmallEnclosingDisk. We aI—72
ways keep a solution intervdh, b] whe*re r* lies, 73
such that at any stage we hgVeB(a — %) =¢and _,
(N B(b) # @. Without loss of generality, leP; denote
the leftmostx-abscissae point oP and let P, € P
be the maximum distance point @& from P;. We
have r = do(P1, P2) > r* (since P C Disk(P1, r)).
But d>(P1, P2) < 2r* since bothP, and P, are con-
tained inside the unique smallest enclosing disk OJo
radiusr*. Thus we have™ €[5, r]. We initialize the
range by choosing = 5 <r* andb =r < 2r*. Then
we solve thejr-disk piercing problem with disks of
radiuse = (a + b)/2. If we found a common piercing
point for () B(e) then we recurse ofu, ¢]. Otherwise
we recurse offie, b]. We stop as soon ds— a < aﬁ.
(Therefore after @og, %) iterations since the initial g7
range widthb — a < r*.) At any stage, we assert thatgs
B — &) =0 (by answering tha{)B(a) does g
not contain any ball of radiug;) and B(b) # . At o
the end of the recursion process, we get an intervai
la—F ” bl wherer* I|es in. Sinceb —a < 54 <&l 5> @
and |r —al < < 2 (becauseB(a — ) =¥), 9
we get:b < r* + 2e7. Sincer < 2r*, we obtain a 9
(1+ e)-approximation of the minimum enclosing ball 95
of the point set. Thus, by solving (@g, %) decision 9

68
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Fig. 2. Arecursion stepL : x = e intersects all balls. Twg-intervals do not intersect oh. We recurse on-rangele, x;]. 65
66
67
problems, we obtain a@logg %)-time deterministic 4. Predicatedegree 68

(1+ e)-approximation algorithm.
3.3. Bootstrapping

We bootstrap the previous algorithm in order to get
a better Qn log, %)—time algorithm. The key idea is to
shrink potential rangéga, b] of r* by selecting itera-
tively different approximation ratiog until we ensure
that, atkth stageg; < €. Let Disk(C, r) be a(1+ ¢)-
approximation enclosing ball. Observe thatC) —
x(C*)| < er*. We update thec-range|x,,, x)/] ac-
cording to the so far found piercing point abcissae
x(C) and current approximation factor. We start by
solving the approximation of the smallest enclosing
ball fore; = 1. It costs Qn log, %) = O(n). Using the
final output rangéa, b], we now haveb — a < e1r*.
Considers = 871 and reiterate untid; < . The overall
cost of the procedure is

flogp 21 1
> Omlog,2) = O(n log, —).
X &
i=0

We get the following theorem:

Theorem 1. A (1 + ¢)-approximation of the minimum
enclosing disk of a set of points on the plane can
be computed efficiently i®(nlog, %) deterministic
time.

69

Predicates are the basic computational atoms of ar
gorithms that are related to their numerical stabilities’*
In the exact smallest enclosing disk algorithm [6], the?
so-calledinCircle containment predicate of algebraic”3
degree 4 is used on Integers. Since we only {se 7
function to determine the sign of algebraic numbers?
all computations can be done on Rationals using algét
braic degree 2. We show how to replace the predicatés
of algebraic degreée4 by predicates of degree 2 for 78
Integers: “Given a disk centék;, y;) and a radiug;, °
determine whether a poirit, y) is inside, on or out- 8°
side the disk”. It boils down to compute the sign of8!
(x — x;)?+ (y — yi)? — r2. This can be achieved using #
another dichotomy search on liie x =1. We needto %
ensure that i, > y, then there do exist two disjoint 8
disks B,, and By;. We regularly sample lind, such %
that if y,, > ya, then there exists a sampling point in8
[ym, ym] that does not belong to both disig, and &
By . In order to guarantee that setting, we need to er{€

sure soméatnesf the intersection of |\ B(r) N L by %
90

91
2 Comparing expressionsy; + vr2—(—x1)2 > y» + 92
VrZ — (I —x2)? is of degree 4 for Integers. Indeed, by isolat- g5
ing and removing the square reoby successive squaring, the

predicate sign is the same &2 — (| — x))2 — (I — xp)?)2 >
44r2 — (1 — x1)%)(r2 — (I — x)2). The last polynomial has highest °°
monomials of degree 4. 96
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Table 1 49
Timings 50
Method/distribution O Square max ® Ring max O Square avg O Ringavg 51
Eberly ¢ = 1075) 0.7056 0.6374 0.1955 02767 52
Ritter (e > 10*1) 0.0070 0.0069 0.0049 Q0049 53
ASED (¢ = 10_2) 0.0343 0.0338 0.0205 00286 54
ASED (£ = 1073) 0.0515 0.0444 0.0284 Q0405 55
ASED (¢ = 10*4) 0.0646 0.0617 0.0392 Q0449 56
ASED (¢ = 10_5) 0.0719 0.0726 0.0473 Q0527

57

Experiments done on 1000 trials for point sets of size 100000. Maxifmuzx) and average (avg) running times are in fractions of a secongg

Bold numbers indicate worst-case timings.

recursing on the-axis until we havexy; — x,, < \sz
In that case, we know that if there was a commapft
ball intersection, then its centercoordinate is inside
[xm. xm]: this means that odl, the width of the in-

tersection is at Ieas%. Therefore, a regular sampling
on vertical lineL with step width% guarantees to
find a common piercing point if it exists. A straightfor-
ward implementation would yield a time complexity
O( log, %). However it is sufficient for each of the
disks, to find the upper most and bottom most lattice
point in O(log, %)—time using the floor function. Us-
ing the bootstrapping method, we obtain the following
theorem:

Theorem 2. A (1 + ¢)-approximation of the minimum
enclosing disk of a set af points on the plane can be
computed irO(n log, %) time using Integer arithmetic
with algebraic predicates InCircle of degr@e

5. Extension to disks

Our algorithm extends straightforwardly for sets
of disks. Consider a set of planar disksD =
{Dl, . Dn} with C(D;) = P; = (x;, yi) andr(D,-) =
ri. Let B(r) ={B; | C(B;) = P; andr(B;) =r — ri}.
Using the dual piercing principle, we obtain thdt=
argmin.cg (1 B(r) # 8. (We haveC* = (B(r*).)
Observe also that* > max r;. Initialization is done
by choosing = r1+max (d2(P1, P;)+r;) anda = §.
We now let

r22 — rl2 + (r1+ rz)2
2(r1+r2)?

XB1By = XB; + (xBZ - -XB]_)-

59

60

61

6. Experimental results 62
63

We compare our implementation with D.H. Eber-g,
ly's C++ implementatio” using double types that g
guarantees precisian= 10> and has expected run- g
ning time 1@ but no known worst-case bound betterg;
than Qn!). We also compare our code with Ritter'sgg
fast constant approximation £ 10%) greedy heuris- gy
tic used in game programming [4]. Timings are ob-,
tained on an Intel Pentium(R) 4 1.6 GHz with 1 GB,
of memory for points uniformly distributed inside a;,
unit square 0) and inside a unit ring of width.01 4,3
(®). Table 1 reports our timings. The experiments,
show that over a thousand square/ring random poirg
sets, our algorithm (ASED) maximum time is muchyg
smaller than that of Eberly’s (in addition, this latter;;
algorithm requiresO(log3n) calls [6] to the expen- 75
sive and intricate basic primitive of computing theg
circle passing through three points). Source codes i
C for point and disk sets are available at http://wwwyg;
csl.sony.co.jp/person/nielsen/WIP/MEB/. 82
83
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