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Abstract

We describe a simple and fast O(n log2
1
ε )-time algorithm for finding a(1+ ε)-approximation of the smallest enclosing di

of a planar set ofn points or disks. Experimental results of a readily available implementation are presented.
 2004 Elsevier B.V. All rights reserved.
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The smallest enclosing disk (SED for short) pro
lem dates back to 1857 when Sylvester [5] first as
for the smallest disk enclosingn points on the plane
Although O(n logn)-time algorithms were designe
for the planar case in the early 1970s, its compl
ity was only settled in 1984 with Megiddo’s first lin
ear time algorithm [2] for solving linear programs
fixed dimension. Unfortunately, these algorithms e
hibit a large constant hidden in the big-Oh notat
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proximation, and we refer readers to the papers [
for experimental comparisons of recently designed
gorithms that either solve the exact or approxim
smallest enclosing ball problems inunbounded dimen
sion. Computing smallest enclosing disks are use
for metrology, machine learning and computer gra
ics problems. Fast constant approximation heuris
are popular in computer graphics [4]. LetP = {Pi =
(xi, yi), i ∈ {1, . . . , n}} be a set ofn planar points. We
use notationsx(Pi) = xi andy(Pi) = yi to mention
point coordinates. Let Disk(C∗, r∗) be the smalles
enclosing disk ofP of center pointC∗ (also called
circumcenter or Euclidean 1-center) and minimum ra

.
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diusr∗. We want to compute a(1+ ε)-approximation,
that is, a disk Disk(C, r) such thatr � (1 + ε)r∗

a
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andP ⊆ Disk(C, r). Our paper aims at designing
fast deterministic (i.e., worst-case time bounded)
proximation algorithm that is suitable for real-tim
demanding applications. Our simple implementatio1

for point/disk sets is a mere 30-line code which do
require to compute the tedious basis primitive of
smallest disk enclosing three disks. Moreover, we
hibit a robust approximation algorithm using only a
gebraic predicates of degree 2 on Integer arithmetic
Section 6, we show that our floating-point impleme
tation outperforms or fairly competes with tradition
methods while guaranteeing worst-case time.

2. Piercing/covering duality

Let us consider the general case of a disk
D = {Di = Disk(Pi, ri), i ∈ {1, . . . , n}} to explain the
piercing/covering duality. Our approximation alg
rithm proceeds by solving dual piercingdecision prob-
lems(DPs for short; see Fig. 1): given a set of cor
sponding dual disksB(r) = {Bi = Disk(Pi, r −ri ), i ∈
{1, . . . , n}}, determine whether

⋂
B(r) = ⋂n

i=1 Bi =
∅ or not.

Lemma 1. Observe that forr � r∗, there exists a
(unique) disk B of radiusr(B) = r − r∗ centered at
C(B) = C∗ fully contained inside

⋂
B.

Proof. In order to ensure thatC∗ is inside each
Bi(r), a sufficient condition is to haver � maxi{ri +
d2(Pi,C

∗)}. SinceBi ⊆ Disk(C∗, r∗), ∀i ∈ {1,2, . . . ,

n}, we have

max
i

{
ri + d2(Pi,C

∗)
}

� r∗. (�)

Thus, providedr � r∗, we haveC∗ ∈ ⋂
B(r). Now,

notice that∀i ∈ {1,2, . . . , n}, ∀0 � r ′ � (r − ri) −
d2(Pi,C

∗), Disk(C∗, r ′) ⊆ Bi(r). Thus, if we ensure
thatr ′ � r − maxi (ri + d2(Pi,C

∗)), then Disk(C∗, r ′)
⊆ ⋂

B(r). From ineq. (�), we chooser ′ = r − r∗ and
obtain the lemma (see Fig. 1). Uniqueness follo
from the proof by contradiction of [6]. �

1 Source code in C is available at http://www.csl.sony.co
person/nielsen/WIP/MEB/.
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Fig. 1. Covering/piercing duality principle.

3. Algorithm outline

Our approximation algorithm proceeds by so
ing a sequence of dual piercingdecision problems
(see Fig. 1): given a set of disksB(r) = {Bi =
Disk(Pi, r), i ∈ {1, . . . , n}}, determine whether

⋂
B(r)

= ⋂
i Bi = ∅ or not. We relax the 1-piercing poin

problem to that of a common piercingεr∗-disk (i.e.,
a disk of radiusεr∗): report whether there exists
disk B = Disk(C, εr∗) such thatB ⊆ ⋂

B(r) or not.
Algorithm 1 describes the complete approximat
procedure.

3.1. Solving decision problems

We explain procedure DecisionProblem of Alg
rithm 1. Let [xm,xM ] be an interval on thex-axis
where anεr∗-disk center might be located if it ex
ists. (That isx(C) ∈ [xm,xM ] if it exists.) We initialize
xm,xM as thex-abscissae extrema:xm = maxi (xi) −
r, xM = mini (xi) + r. If xM < xm then clearly verti-
cal lineL : x = (xm + xM)/2 separates two extremu
disks (those whose corresponding centers give ris
xm and xM ) and thereforeB(r) is not 1-pierceable
(therefore notεr∗-ball pierceable). Otherwise, the a
gorithm proceeds by dichotomy (see Fig. 2). Lete =
(xm + xM)/2 and letL denotes the vertical lineL : x

= e. Denote byBL = {Bi ∩ L | i ∈ {1, . . . , n}} the
set of n y-intervals obtained as the intersection
the disks ofB with line L. We check whetherBL =



ARTICLE IN PRESS

E
C

S0020-0190(04)00358-8/SCO AID:3208 Vol.•••(•••) [DTD5] P.3 (1-6)
IPL:m3 v 1.32 Prn:21/12/2004; 13:14 ipl3208 by:violeta p. 3

F. Nielsen, R. Nock / Information Processing Letters••• (••••) •••–••• 3

1 49

2 50

3 51

4 52

5 53

6 54

7 55

8 56

9 57

10 58

11 59

12 60

13 61

14 62

15 63

16 64

17 65

18 66

19 67

20 68

21 69

22 70

23 71

24 72

25 73

26 74

27 75

28 76

29 77

30 78

31 79

32 80

33 81

34 82

35 83

36 84

37 85

38 86

39 87

40 88

41 89

42 90

43 91

44 92

45 93

46 94

47 95

48 96

DecisionProblem(P,xmin,xmax, r, ε):
1 xM = xmin+ r ;

k

r
o

n

e
of

ide
ty

then we stop by reporting the two nonintersecting balls
B1 andB2). Otherwise,B1 ∩ B2 
= ∅ and we branch

we
lo-
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al-

of

f
g

l
at

rval

ll
U
N

C
O

R
R

2 xm = xmax− r ;
3 while xM − xm � ε do
4 l = xM+xm

2 ;

5 ym = maxi∈{1,...,n} yi −
√

r2 − (l − xi )
2;

6 m = argmaxi∈{1,...,n}yi −
√

r2 − (l − xi )
2;

7 yM = mini∈{1,...,n} yi +
√

r2 − (l − xi )
2;

8 M = argmini∈{1,...,n}yi +
√

r2 − (l − xi )
2;

9 if yM � ym then
10 x = l;
11 y = (ym + yM)/2;
12 return true;

else
//m andM are arg indices ofym andyM ;

13 if (xm + xM)/2 > l then
14 xm = l;

else
15 xM = l;
16 return false;

SmallEnclosingDisk(P, ε):
17 xmin= mini∈{1,...,n} xi ;
18 xmax= maxi∈{1,...,n} xi ;
19 d1 = maxi∈{1,...,n} ‖Pi − P1‖;
20 b = d1;

21 a = d1
2 ;

22 ε ← 1
4(b − a)ε;

23 while b − a > ε do
24 r = (a + b)/2;
25 pierceable= DecisionProblem(P,xmin,xmax, r, ε);
26 if pierceablethen
27 b = r ;

else
28 a = r ;

Algorithm 1.(1+ ε)-approximation of the minimum enclosing dis
of P .

{Bi ∩ L = [ai, bi] | i ∈ {1, . . . , n}} is 1-pierceable o
not. SinceBL is a set ofn y-intervals, we just need t
check whether mini bi � maxi ai or not. If

⋂
BL 
= ∅,

then we have found a point(e,mini bi) in the inter-
section of all balls ofB and we stop recursing. (I
fact we found a(x = e, y = [ym = maxi ai, yM =
mini bi]) vertical piercing segment.) Otherwise, w
have

⋂
BL = ∅ and need to choose on which side

L to recurse. Without loss of generality, letB1 andB2
denote the two disks whose correspondingy-intervals
on L are disjoint. We choose to recurse on the s
whereB1 ∩ B2 is located (if the intersection is emp
T
E

D
 P

R
O

O
F

on the side wherexB1B2 = (x(C(B1)) + x(C(B2)))/2
lies. At each stage of the dichotomic process,
halve thex-axis range where the solution is to be
cated (if it exists). We stop the recursion as soon
xM − xm < ε r

2. Indeed, if xM − xm < ε r
2 then we

know that no center of a ballof radius εr is con-
tained in

⋂
B. (Indeed if such a ball exists thenboth⋂

BL(xm) 
= ∅ and
⋂

BL(xM) 
= ∅.) Overall, we recurse
at most 3+ �log2

1
ε
� times since the initial interva

width xM − xm is less than 2r∗ and we always con
siderr � r∗

2 .

3.2. Radius dichotomy search

Finding the minimum enclosing disk radiu
amounts to find the smallest valuer ∈ R

+ such that⋂
B(r) 
= ∅. That is r∗ = argminr∈R+

⋂
B(r) 
= ∅.

We seek an(1 + ε)-approximation of the minimum
enclosing ball of points by doing a straightforwa
dichotomic process on relaxed decision problems
explicited by procedure SmallEnclosingDisk. We
ways keep a solution interval[a, b] where r∗ lies,
such that at any stage we have

⋂
B(a − εr∗

2 ) = ∅ and⋂
B(b) 
= ∅. Without loss of generality, letP1 denote

the leftmostx-abscissae point ofP and letP2 ∈ P
be the maximum distance point ofP from P1. We
have r = d2(P1,P2) � r∗ (sinceP ⊆ Disk(P1, r)).
But d2(P1,P2) � 2r∗ since bothP1 andP2 are con-
tained inside the unique smallest enclosing disk
radiusr∗. Thus we haver∗ ∈ [ r

2, r]. We initialize the
range by choosinga = r

2 � r∗ andb = r � 2r∗. Then
we solve theε

4r-disk piercing problem with disks o
radiuse = (a + b)/2. If we found a common piercin
point for

⋂
B(e) then we recurse on[a, e]. Otherwise

we recurse on[e, b]. We stop as soon asb − a � ε r
4.

(Therefore after O(log2
1
ε
) iterations since the initia

range widthb − a � r∗.) At any stage, we assert th⋂
B(a − εr

4 ) = ∅ (by answering that
⋂

B(a) does
not contain any ball of radiusεr4 ) andB(b) 
= ∅. At
the end of the recursion process, we get an inte
[a − εr

4 , b] wherer∗ lies in. Sinceb − a � ε r
4 � ε r∗

2
and |r∗ − a| < εr

4 � εr∗
2 (becauseB(a − εr

4 ) = ∅),
we get: b � r∗ + 2ε r

4. Since r � 2r∗, we obtain a
(1+ ε)-approximation of the minimum enclosing ba
of the point set. Thus, by solving O(log2

1
ε
) decision



ARTICLE IN PRESS
S0020-0190(04)00358-8/SCO AID:3208 Vol.•••(•••) [DTD5] P.4 (1-6)
IPL:m3 v 1.32 Prn:21/12/2004; 13:14 ipl3208 by:violeta p. 4

4 F. Nielsen, R. Nock / Information Processing Letters••• (••••) •••–•••

1 49

2 50

3 51

4 52

5 53

6 54

7 55

8 56

9 57

10 58

11 59

12 60

13 61

14 62

15 63

16 64

17 65

18 66

19 67

20 68

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48
R
O

O
F

Fig. 2. A recursion step:L : x = e intersects all balls. Twoy-intervals do not intersect onL. We recurse onx-range[e, xM ].

problems, we obtain a O(n log2
2

1
ε
)-time deterministic 4. Predicate degree
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(1+ ε)-approximation algorithm.
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3.3. Bootstrapping

We bootstrap the previous algorithm in order to
a better O(n log2

1
ε
)-time algorithm. The key idea is t

shrink potential range[a, b] of r∗ by selecting itera-
tively different approximation ratiosεi until we ensure
that, atkth stage,εk � ε. Let Disk(C, r) be a(1 + ε)-
approximation enclosing ball. Observe that|x(C) −
x(C∗)| � εr∗. We update thex-range[xm,xM ] ac-
cording to the so far found piercing point abciss
x(C) and current approximation factor. We start
solving the approximation of the smallest enclos
ball forε1 = 1

2. It costs O(n log2
1
ε1

) = O(n). Using the
final output range[a, b], we now haveb − a � ε1r

∗.
Considerε2 = ε1

2 and reiterate untilεl � ε. The overall
cost of the procedure is

�log2
1
ε
�∑

i=0

O(n log2 2) = O

(
n log2

1

ε

)
.

We get the following theorem:

Theorem 1. A (1+ ε)-approximation of the minimum
enclosing disk of a set ofn points on the plane ca
be computed efficiently inO(n log2

1
ε
) deterministic

time.
T
E

D
 Predicates are the basic computational atoms o

gorithms that are related to their numerical stabiliti
In the exact smallest enclosing disk algorithm [6], t
so-calledInCircle containment predicate of algebra
degree 4 is used on Integers. Since we only use

√·
function to determine the sign of algebraic numbe
all computations can be done on Rationals using a
braic degree 2. We show how to replace the predic
of algebraic degree2 4 by predicates of degree 2 fo
Integers: “Given a disk center(xi, yi) and a radiusri ,
determine whether a point(x, y) is inside, on or out-
side the disk”. It boils down to compute the sign
(x − xi)

2 + (y − yi)
2 − r2

i . This can be achieved usin
another dichotomy search on lineL : x = l. We need to
ensure that ifym > yM , then there do exist two disjoin
disksBm andBM . We regularly sample lineL such
that if ym > yM , then there exists a sampling point
[yM,ym] that does not belong to both disksBm and
BM . In order to guarantee that setting, we need to
sure somefatnessof the intersection of

⋂
B(r)∩L by

2 Comparing expressionsy1 +
√

r2 − (l − x1)2 > y2 +√
r2 − (l − x2)2 is of degree 4 for Integers. Indeed, by isola

ing and removing the square roots by successive squaring, th
predicate sign is the same as(2r2 − (l − x1)2 − (l − x2)2)2 >

4(r2 − (l − x1)2)(r2 − (l − x2)2). The last polynomial has highes
monomials of degree 4.
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Table 1
Timings

ond.
O
F

Method/distribution � Square max
⊙

Ring max � Square avg
⊙

Ring avg

Eberly (ε = 10−5) 0.7056 0.6374 0.1955 0.2767
Ritter (ε > 10−1) 0.0070 0.0069 0.0049 0.0049
ASED (ε = 10−2) 0.0343 0.0338 0.0205 0.0286
ASED (ε = 10−3) 0.0515 0.0444 0.0284 0.0405
ASED (ε = 10−4) 0.0646 0.0617 0.0392 0.0449
ASED (ε = 10−5) 0.0719 0.0726 0.0473 0.0527

Experiments done on 1000 trials for point sets of size 100000. Maximum(max) and average (avg) running times are in fractions of a sec
Bold numbers indicate worst-case timings.

recursing on thex-axis until we havexM − xm � ε√
2
. 6. Experimental results
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ball intersection, then its centerx-coordinate is inside
[xm,xM ]: this means that onL, the width of the in-
tersection is at leastε√

2
. Therefore, a regular samplin

on vertical lineL with step width ε√
2

guarantees to
find a common piercing point if it exists. A straightfo
ward implementation would yield a time complexi
O( n

ε
log2

1
ε
). However it is sufficient for each of then

disks, to find the upper most and bottom most latt
point in O(log2

1
ε
)-time using the floor function. Us

ing the bootstrapping method, we obtain the follow
theorem:

Theorem 2. A (1+ ε)-approximation of the minimum
enclosing disk of a set ofn points on the plane can b
computed inO(n log2

1
ε
) time using Integer arithmeti

with algebraic predicates InCircle of degree2.

5. Extension to disks

Our algorithm extends straightforwardly for se
of disks. Consider a set ofn planar disksD =
{D1, . . . ,Dn} with C(Di) = Pi = (xi, yi) andr(Di) =
ri . Let B(r) = {Bi | C(Bi) = Pi andr(Bi) = r − ri}.
Using the dual piercing principle, we obtain thatr∗ =
argminr∈R

⋂
B(r) 
= ∅. (We haveC∗ = ⋂

B(r∗).)
Observe also thatr∗ � maxi ri . Initialization is done
by choosingb = r1+maxi (d2(P1,Pi)+ri ) anda = b

2.
We now let

xB1B2 = xB1 + r2
2 − r2

1 + (r1 + r2)
2

2(r1 + r2)2 (xB2 − xB1).
T
E

D
 P

R
OWe compare our implementation with D.H. Ebe

ly’s C++ implementation3 using double types tha
guarantees precisionε = 10−5 and has expected run
ning time 10n but no known worst-case bound bet
than O(n!). We also compare our code with Ritter
fast constant approximation (ε � 10%) greedy heuris
tic used in game programming [4]. Timings are o
tained on an Intel Pentium(R) 4 1.6 GHz with 1 G
of memory for points uniformly distributed inside
unit square (�) and inside a unit ring of width 0.01
(
⊙

). Table 1 reports our timings. The experime
show that over a thousand square/ring random p
sets, our algorithm (ASED) maximum time is mu
smaller than that of Eberly’s (in addition, this latt
algorithm requiresÕ(log3

2 n) calls [6] to the expen
sive and intricate basic primitive of computing t
circle passing through three points). Source code
C for point and disk sets are available at http://ww
csl.sony.co.jp/person/nielsen/WIP/MEB/.
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