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Abstract

In this paper, we prove under a plausible complexity hypothesis that Reduced Error Pruning of branching program
to approximate within log1−δ n, for everyδ > 0, wheren is the number of description variables, a measure of the probl
complexity. The result holds under the assumption that NP problems do not admit deterministic, slightly superpolynom
algorithms: NP�⊂ TIME(|I |O(log log|I |)). This improves on a previous result that only had a small constant inapproxima
ratio, and puts a fairly strong constraint on the efficiency of potential approximation algorithms. The result also h
read-once andµ-branching programs.
 2003 Elsevier Science B.V. All rights reserved.
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Branching Programs, BPs, are a generalization
Decision Trees, DTs, in which the classifier has
form of a directed acyclic graph. All nodes with ou
degree zero are calledleavesand labeled by a class
The root of the BP is the unique node with in-degr
zero. An exampleconsists of a pair (observatio
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the label (or class) is in{0,1}. Examples that hav
class 1 are called positive and those that have cla
are called negative. In our Boolean framework, e
internal node of a BP is labeled by a descript
variable and has out-degree two. The arcs leavin
node correspond to the two possible values of
variable associated with the node.

An observation is classified as follows. Start fro
the root of the BP. In an internal node check the va
of the node variable in the observation. Recursiv
follow the arc corresponding to the same value. Wh
the observation reaches a leaf, its label gives the c
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leaf nodes by leaves, and then discarding all nodes and
arcs unreachable from the root.
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Fig. 1. An example of a BP, withn = 4 (variablex2 does not appea
in the BP). Arcs with a black arrow correspond to the positive lite
of a variable, and those with a white arrow correspond to its nega
literal. Bold nodes and arcs depict the path followed by observat
for which x1 = 1, x3 = 0, andx4 = 1. This observation is classifie
positive.

assigned by the BP to the observation. Fig. 1 show
BP and the path followed by an observation.

Inducing classifiers from examples is a gene
problem with a simple setting. We are given a set
examplesLScalled the learning sample, and a weig
for each example, and wish to obtain a classifier (e
a BP) with reasonable error onLS, i.e., such that the
sum of weights of the examples on which the classi
disagrees with labels of the examples is small. T
problem is of wide interest both from the theoretic
and practical standpoints. One of the most pop
classes of concept representations used to addres
problem is the class of DTs [1,13].

The popularity of BPs has recently increased,
only because they generalize DTs, but also beca
recent results have proven that the top–down induc
of BPs can be much more efficient than it is for D
[11]. Under mild assumptions, BPs can theoretica
achieve an error which is exponentially smaller th
the error achieved by DTs of the same size.

Because of computational and statistical reas
beyond the scope of this paper [10], most popu
induction algorithms inducing DTs do not consist
a single top–down induction step [1,13]. They ha
a post-processing step, which consists of pruning
formula obtained, either onLS [9], or on a hold-out
sampleE different from LS. In that latter case, th
aim is to obtain a sub-tree with the minimal err
on E [3,4]. This procedure is called Reduced Er
Pruning, and is easy to carry out for DTs [12]. Giv
the expressive power of BPs with respect to DTs
question that naturally arises is whether Reduced E
Pruning can be carried out efficiently for BPs as w
A pruning of a BP boils down to replacing some no
s

Unfortunately, a recent result establishes that
duced Error Pruning of BPs is not as easy as for D
[4]. Let us cast our Reduced Error Pruning problem
the form of the following minimization problem:

• Name: Minimal Branching Program Reduced E
ror Pruning (MBPREP);

• Instance: a BPP , a set of examplesE (described
overn Boolean variables), a rational weight fun
tion w :E → [0,1] such that

∑
e∈E w(e) = 1;

• Feasible solutions: BPs pruned fromP ;
• Cost function: errorε(P ′) of the feasible solution

(pruned BP)P ′, i.e., the sum of weights of th
examples incorrectly classified byP ′.

Our statement ofMBPREP slightly differs from its
original definition [4], in which the examples we
not weighted. However, as long as the ratios of
weights are polynomially bounded, and under m
additional properties such as a limited number
different weights, the two definitions are essentia
equivalent. This follows from the fact that weight
examples can be represented by sets of copie
unweighted examples.

It has been proven—by a reduction from MAX 2SAT

—that the corresponding decision problem, wh
question is whether there exists a BP pruned fr
P with error no larger than some given parameter
NP-complete [4]. Strengthening this result into AP
hardness is also possible [4]. This last result means
existence of some inapproximability ratioρ > 1 such
that no polynomial time algorithm forMBPREP can
ensure to find a pruningP ′ of P with the guarantee
thatε(P ′) � ρ ×ε(P ∗), whereP ∗ is the optimal prun-
ing of P . Unfortunately, given that MAX 2SAT is not
approximable to within 1.0476 [8] but approximable
to within 1.0741 [6], the technique ofL-reductions
can only exhibit a small inapproximability ratioρ ∈
[1.003,1.006] for MBPREP. This appears to be no
enough to rule out reasonable approximation al
rithms, as one may argue that algorithms with cons
approximation ratios slightly larger than 1.006 would
actually fit most practical needs.

The aim of this paper is to show thatMBPREP is
actually much harder to approximate, even for
restricted cases of read-once andµ-BPs. A variable
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may appear at most once on any root-leaf path in
a read-once BP and, in aµ-BP, at most once in
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• All negative examples belong to a setE− of
cardinality|E−| = |S|. Each negative example is
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the whole program. We exhibit an inapproximab
ity ratio ρ = log1−δ n, for all δ > 0, unless NP⊆
TIME(|I |O(log log|I |)). In other words, problems wit
large number of variables shall be much harder to
proximate than expected from previous results [4]. O
result makes use of the complexity cla
TIME(|I |O(log log|I |)) [5], the class of problems fo
which there are deterministic algorithms with sligh
superpolynomial time complexity (I is a problem’s in-
stance).

2. A hard gap for MBPREP

We use the corresponding minimization proble
derived from the well-known Set Cover problem [7]

• Name: Minimum Set Cover(MIN-SET-COVER);
• Instance: A collectionC = {C1,C2, . . . ,C|C|} of

subsets of a setS = {s1, s2, . . . , s|S|} with S =⋃
i Ci ;

• Feasible solutions: C′ ⊆ C such that S =⋃
Cj∈C ′ Cj ;

• Cost function: |C′|.

The following is our main theorem. It states th
MIN-SET-COVER can be reduced toMBPREP so
that any gap for the former also holds for the latt
provided that we replace the MIN-SET-COVER gap
parameters by those ofMBPREP. For example, if the
gap expression for MIN-SET-COVER depends on|C|,
then the same gap in which we replace|C| by (n/2)

holds forMBPREP.

Theorem 1. Any hard gap forMIN-SET-COVER pass-
es on toMBPREP.

Proof. Given an instance(C,S) of MIN-SET-COVER,
we first build a setE of |E| = |C| + |S| + 1 examples
described overn = 2|C| variables, and a correspon
ing weight functionw(·), as follows. The variables
{xi,j : i = 1,2, . . . , |C|; j = 1,2}, are picked so tha
for all i ∈ {1,2, . . . , |C|}, xi,1 andxi,2 represent ele
mentCi of C. There are three kinds of examples:
described as(ni1,i2,...,ik ,0), and is associated t
an element ofS which is a member of subse
Ci1,Ci2, . . . ,Cik (and no other subset inC). Here,
ni1,i2,...,ik is the observation having value 1 f
variablesxi,j , for all i = i1, . . . , ik and j = 1,2
(and zeroes everywhere else). The weight of e
negative examplee ∈ E− is w(e) = w− = (2|S|+
3)/(2(|S| + 1)(|S| + 2)).

• One positive examplez consists of the all-zero
observation. Its weight is the same as that
negative examples:w(z) = w−.

• A set E+ of cardinality |E+| = |C| contains
positive examples of the form(pi,1), i = 1,2,

. . . , |C|, wherepi is the observation having valu
1 in positionsxi,1, xi,2 and value 0 everywher
else. The weight of these positive examplese ∈
E+ is w(e) = w+ = 1/(2|C|(|S| + 2)). Hence,
these examples are “light-weight”: even wh
combined, all members ofE+ cannot outweigh a
single negative example orz.

Note that

|S|w− + w− + |C|w+

= (|S| + 1
)
w− + |C|w+

= (
2|S| + 3+ 1

)
/
(
2
(|S| + 2

)) = 1,

as required by the definition ofMBPREP.
The BP that we consider in the following is expos

in Fig. 2. Basically, it consists of a chain us
to discriminate the positive class (the outer a
“evacuate” examples to the negative class). Beca
misclassifying even a single example fromE− ∪ {z}
incurs more error than misclassifying all examp
from E+, there are two types of prunings of th
BP: those misclassifying at least one example fr
E− ∪ {z}, with large error, and those misclassifyin
only examples fromE+, with comparatively smal
error. Naturally, we want to find a pruning from th
latter set.

The initial BP P misclassifies all negative exam
ples and no positive example, because they all
in the chain, following each link either by the whi
arc or by both black arcs, to reach the positive cla
The idea behind our proof is to show that any BPP ′
pruned fromP , with sufficiently low error, can be ob
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Fig. 2. The initial BPP built from MIN-SET-COVER. Any arc going out of the “chain” is actually a construction gadget. See Fig. 1 fo
notations/conventions used.

Fig. 3. A pruningP ′ of P whenC′ = {C2,C|C|}. Notice that all negative examples now follow a path contained in the bold arcs, thereby
assigned the right class.P ′ misclassifies at most two positive examples, and pays an error� 2w+ = |C′|w+.

tained by “opening” some links (i.e., removing some assumption) at least one negative example reach

verticesx.,2), the indices of which give a “low-cost”
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solution to MIN-SET-COVER. Reciprocally, each fea
sible solution to MIN-SET-COVER brings a pruning
of P with low error which opens some links ofP . The
initial error ofP is

ε(P ) = |S|w− = |S|(2|S| + 3)

(2(|S| + 1)(|S| + 2))
.

Lemma 2. From any feasible solutionC′ = {C′
1, . . . ,

C′
|C ′|} to MIN-SET-COVER, it is possible to build in

polynomial time a feasible solutionP ′ to MBPREP

such thatε(P ′) � |C′|w+.

Proof. We can assume thatC′
i �⊆ ⋃

j<i C
′
j for any

i = 1, . . . , |C′|. If this is not the case, we can simp
go through the setsC′

i in the order of their indices an
drop out the ones violating the condition.

Fig. 3 shows how to pruneP : for eachCi ∈ C′,
we remove the unique node ofP labeled byxi,2.
Exactly one positive example fromS+ and (by the
is negative. Note that sinceC′ is a cover, each negativ
example leaves the chain by an arc represente
bold in Fig. 3, and is, thus, given the right class. T
error is |C′|w+, as claimed. This ends the proof
Lemma 2. ✷

From any solution to MIN-SET-COVER, Lemma 2
shows how to pruneP to obtain a BPP ′, which
errs only on “small-weighted” (positive) examples.
particular, the error ofP ′ is lower thanε(P ), because
ε(P ) > |C|w+ (= |S+|w+). Let us prove that an
pruning ofP can be translated in polynomial time
a solution of MIN-SET-COVER with guaranteed size
This, with Lemma 2, will bring the desired gap.

Suppose we are given a pruningP ′ of P . For
j = 1,2, let us defineX.j = {xi,j : 1 � i � |C|}. In
what follows, we show how to obtain in polynomi
time fromP andP ′ a (potentially new) pruningP ′′ of
P , which satisfies (i)ε(P ′′) � ε(P ′), (ii) only nodes
in X.2 are pruned, and (iii) all negative exampl
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are correctly classified. It is then straightforward to
transform such a pruning into a small solution for
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to MBPREP, with an adequate replacement of its
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MIN-SET-COVER.
Let A be the greedy polynomial time algorith

which takesP as input, goes through the elemen
of X.2 in the order of their indices, and iterative
prunes those reached by some negative example.
BP obtained thus only errs on positive examples fr
S+, incurring a loss smaller thanε(P ) andw−.

To see that none of the nodes inX.1 needs to be
pruned, assume first that at least one of them is pru
in P ′. Let � be the pruned node with least index fro
X.1. It is enough to consider pruning�, because al
following nodes inX.1 are automatically discarde
with this operation. First assume that the leaf replac
� receives at least one negative example. It m
also receive the single “heavy” positive examplez.
Thus, the error of this pruning must be at leastw− �
|C|w+. A pruningP ′′ of P with lesser error can b
obtained by executing algorithmA onP , because afte
this modification only some “light-weight” positiv
examples are misclassified by the resulting BP. If,
the other hand, the leaf replacing� does not receive
any negative examples, then we can return the orig
BP structure from� on to correctly classify all thos
positive examples that reached the leaf.

Now, we can consider that only nodes fromX.2
have been pruned fromP in order to obtainP ′. If
P ′ misclassifies a negative example, then recall
running algorithmA on P will give a pruning with
a smaller error. If on the other hand,P ′ does not
misclassify any negative examples, then setP ′′ =
P ′, and note that its error is exactlyw+ times the
number of pruned nodes inX.2 that receive negativ
examples. It is now easy to see that the elementsC
corresponding to those nodes form a solution to MIN-
SET-COVER whose size isε(P ′′)/w+. Sinceε(P ′′) �
ε(P ′), we get the following lemma.

Lemma 3. From any solutionP ′ to MBPREP, it is
possible to build in polynomial time a feasible soluti
C′ to MIN-SET-COVER such that|C′| � ε(P ′)/w+.

Let c∗ be the minimal cost for MIN-SET-COVER

andε∗ the minimal cost forMBPREP. Lemma 2 shows
thatε∗ � c∗w+ and Lemma 3 shows thatc∗w+ � ε∗.
Together they, thus, prove that these quantities
linked by our reduction asε∗ = c∗w+. Therefore, any
parameters. This ends the proof of Theorem 1.✷
Here is an application of Theorem 1. A hard g

ρ = (1− ε) ln |S| is known for MIN-SET-COVER [5].
This holds for allε > 0 under the hypothesis NP�⊂
TIME(|I |O(loglog|I |)). The proof of this result show
that the inapproximability result holds even if w
restrict our attention to instances with

|C| � |S|k log log|S| = 2k log|S| log log|S|

for somek > 0. In our case,n = 2|C| and, thus,

logn = log|C| + 1

� k log|S| log log|S| + 1

� (1− ε)(1+ε) · (ln |S|)(1+ε)

for |S| large enough. Hence, by choosingε =
δ/(1− δ), we get log1−δ n � (1 − ε) ln |S|, which im-
plies the following theorem on the inapproximabil
of MBPREP:

Theorem 4. Unless NP ⊆ TIME(|I |O(log log|I |)),
MBPREP is not approximable to withinlog1−δ n, for
anyδ > 0.

A read-once BP is one in which each variable
pears at most once on a root-leaf path. Another res
tion of BPs is the class ofµ-BPs (sometimes also re
ferred to as read-once BPs) in which variables m
occur at most once in the whole program. The com
tational aspects of learning read-once andµ-BPs have
for long been a research issue in computational le
ing theory (see, e.g., [14,2]). It is worthwhile remar
ing that our reduction above makes use ofµ-BPs only,
so that Theorem 4 holds also in these restricted ca

Corollary 5. Unless NP ⊆ TIME(|I |O(log log|I |)),
MBPREP restricted to read-once andµ-branching
programs is not approximable to withinlog1−δ n, for
anyδ > 0.
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