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Abstract

In this paper, we prove under a plausible complexity hypothesis that Reduced Error Pruning of branching programs is hard
to approximate within lo§~ », for everys > 0, wheren is the number of description variables, a measure of the problem’s
complexity. The result holds under the assumption that NP problems do not admit deterministic, slightly superpolynomial time
algorithms: NPz TIME (]7|2(08109171)) This improves on a previous result that only had a small constant inapproximability
ratio, and puts a fairly strong constraint on the efficiency of potential approximation algorithms. The result also holds for
read-once ang-branching programs.
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1. Introduction and definitions label), in which the observation is described by the
_ o values ofn Boolean variables;, i =1,2,...,n, and
B'rgnchlng Program;, BPS, are a gen(.ar.allzatlon of the label (or class) is if0, 1}. Examples that have
fDECISI(f)n 'I(;rees, E)TS' 'T_ Whlchhthe”clazsmer_hhas the ¢lass 1 are called positive and those that have class 0
orm of a directed acyclic graph. All nodes with out- are called negative. In our Boolean framework, each
degree zero are callddavesand labeled by a class. internal node of a BP is labeled by a description
Theroot of the BP is the unique node with in-degree . y p
zero. An exampleconsists of a pair (observation, variable and has out-degree two. The arcs leaving a
node correspond to the two possible values of the
T comesoond o variable associated with the node.
orresponding author. . . -

E-mail addressesnock@martinique.univ-ag.fr (R. Nock), An observation is cla§5|f|ed as follows. Start from
elomaa@cs.helsinki.fi (T. Elomaa), mtkaaria@cs.helsinki.fi the root of the BP. In an internal node check the value
(M. Kaariginen). _ of the node variable in the observation. Recursively
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follow the arc corresponding to the same value. When
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leaf nodes by leaves, and then discarding all nodes and
arcs unreachable from the root.

Unfortunately, a recent result establishes that Re-
duced Error Pruning of BPs is not as easy as for DTs
[4]. Let us cast our Reduced Error Pruning problem in
the form of the following minimization problem:

e Name Minimal Branching Program Reduced Er-
ror Pruning (MBPREP);
e Instancea BP P, a set of exampleg (described

Fig. 1. An example of a BP, with = 4 (variablex, does not appear
in the BP). Arcs with a black arrow correspond to the positive literal
of a variable, and those with a white arrow correspond to its negative

literal. Bold nodes and arcs depict the path followed by observations overn Boolean variables), a rational weight func-
for whichxq = 1, x3 = 0, andx4 = 1. This observation is classified tionw:E — [0, 1] suchthad , ., w(e) =1;
positive. o Feasible solutionsBPs pruned fronP;

e Cost functionerrore(P’) of the feasible solution
assigned by the BP to the observation. Fig. 1 shows a (pruned BP)P’, i.e., the sum of weights of the
BP and the path followed by an observation. examples incorrectly classified 1#/.

Inducing classifiers from examples is a general
problem with a simple setting. We are given a set of Our statement of1 BPREP slightly differs from its
exampled S called the learning sample, and a weight original definition [4], in which the examples were
for each example, and wish to obtain a classifier (e.g., not weighted. However, as long as the ratios of the
a BP) with reasonable error dr§, i.e., such that the  weights are polynomially bounded, and under mild
sum of weights of the examples on which the classifier additional properties such as a limited number of
disagrees with labels of the examples is small. This different weights, the two definitions are essentially
problem is of wide interest both from the theoretical equivalent. This follows from the fact that weighted
and practical standpoints. One of the most popular examples can be represented by sets of copies of
classes of concept representations used to address thisnweighted examples.
problem is the class of DTs [1,13]. It has been proven—by a reduction from2 Sat
The popularity of BPs has recently increased, not —that the corresponding decision problem, whose
only because they generalize DTs, but also becausequestion is whether there exists a BP pruned from
recent results have proven that the top—down induction P with error no larger than some given parameter, is
of BPs can be much more efficient than it is for DTs NP-complete [4]. Strengthening this result into APX-
[11]. Under mild assumptions, BPs can theoretically hardness is also possible [4]. This last result means the
achieve an error which is exponentially smaller than existence of some inapproximability ratio> 1 such
the error achieved by DTs of the same size. that no polynomial time algorithm fom BPREP can
Because of computational and statistical reasons ensure to find a pruning’ of P with the guarantee
beyond the scope of this paper [10], most popular thate(P’) < p x e(P*), whereP* is the optimal prun-
induction algorithms inducing DTs do not consist of ing of P. Unfortunately, given that Mx 2SAT is not
a single top—down induction step [1,13]. They have approximable to within D476 [8] but approximable
a post-processing step, which consists of pruning the to within 1.0741 [6], the technique of-reductions
formula obtained, either ohS [9], or on a hold-out can only exhibit a small inapproximability ratio €
sampleE different from LS. In that latter case, the [1.003 1.006] for MBPREP. This appears to be not
aim is to obtain a sub-tree with the minimal error enough to rule out reasonable approximation algo-
on E [3,4]. This procedure is called Reduced Error rithms, as one may argue that algorithms with constant
Pruning, and is easy to carry out for DTs [12]. Given approximation ratios slightly larger than0D6 would
the expressive power of BPs with respect to DTs, a actually fit most practical needs.
guestion that naturally arises is whether Reduced Error  The aim of this paper is to show th&tBPREP is
Pruning can be carried out efficiently for BPs as well. actually much harder to approximate, even for the
A pruning of a BP boils down to replacing some non- restricted cases of read-once aneBPs. A variable
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may appear at most once on any root-leaf path in
a read-once BP and, in a-BP, at most once in
the whole program. We exhibit an inapproximabil-
ity ratio p = log*~?n, for all § > 0, unless NRC
TIME (]1)C00glogiZDy ' |n other words, problems with
large number of variables shall be much harder to ap-
proximate than expected from previous results [4]. Our
result makes use of the complexity -class
TIME(|1|CUeglogl’Dy [5], the class of problems for
which there are deterministic algorithms with slightly
superpolynomial time complexity (s a problem’s in-
stance).

2. A hard gap for MBPREP

We use the corresponding minimization problem
derived from the well-known Set Cover problem [7]:

e Name Minimum Set Cove{M IN-SET-COVER);

e Instance A collectionC = {C1, Co, ..., C|c|} of
subsets of a sef = {s1,s2,...,55} with § =
Ui Gi;

e Feasible solutions ¢’ € C such that§ =
Uc,ec' Cii

e Cost function|C’|.

The following is our main theorem. It states that
MIN-SET-COVER can be reduced tonBPREP so
that any gap for the former also holds for the latter,
provided that we replace the IM-SET-COVER gap
parameters by those ofBPREP. For example, if the
gap expression for Mi-SET-COVER depends onC|,
then the same gap in which we repld¢g by (n/2)
holds formBPREP.

Theorem 1. Any hard gap foMIN-SET-COVER pass-
es on tovBPREP.

Proof. Givenan instanceC, S) of MIN-SET-COVER,
we first build a sef of |E| =|C| + |S| + 1 examples
described oven = 2|C| variables, and a correspond-
ing weight functionw(-), as follows. The variables,
{xi;: i=12,...,|C|; j = 1,2}, are picked so that
foralli € {1,2,...,|C|}, xi,1 andx; 2 represent ele-
mentC; of C. There are three kinds of examples:

75

e All negative examples belong to a sé&t~ of
cardinality| E~| = |S|. Each negative example is
described asn;, i,,...i., 0), and is associated to
an element ofS which is a member of subsets
Ci,, Ci,, ..., Ci, (and no other subset ifi). Here,
Niyio,....ip 1S the observation having value 1 for
variablesx; ;, for all i =iy,...,iy andj =1,2
(and zeroes everywhere else). The weight of each
negative examplec E~ isw(e) =w™ = (2| S|+
3)/2(SI+ DS+ 2)).

One positive example consists of the all-zero

observation. Its weight is the same as that of

negative exampleso(z) = w™.

e A set ET of cardinality |[E*| = |C| contains
positive examples of the forrp;,1), i = 1,2,
..., |C|, wherep; is the observation having value
1 in positionsx; 1, x; 2 and value O everywhere
else. The weight of these positive exampes
Et is w(e) = wT = 1/(2|C|(|S] + 2)). Hence,
these examples are “light-weight”: even when
combined, all members af * cannot outweigh a
single negative example ar

Note that

ISlw™ +w™ 4+ |Clwt
=(ISI+w™ +[Clw*
=(2181+3+1)/(2(1S| +2)) =1,

as required by the definition of BPREP.

The BP that we consider in the following is exposed
in Fig. 2. Basically, it consists of a chain used
to discriminate the positive class (the outer arcs
“evacuate” examples to the negative class). Because
misclassifying even a single example frair U {z}
incurs more error than misclassifying all examples
from ET, there are two types of prunings of this
BP: those misclassifying at least one example from
E~ U {z}, with large error, and those misclassifying
only examples fromE™, with comparatively small
error. Naturally, we want to find a pruning from the
latter set.

The initial BP P misclassifies all negative exam-
ples and no positive example, because they all stay
in the chain, following each link either by the white
arc or by both black arcs, to reach the positive class.
The idea behind our proof is to show that any BP
pruned fromP, with sufficiently low error, can be ob-
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Fig. 2. The initial BPP built from MIN-SET-COVER. Any arc going out of the “chain” is actually a construction gadget. See Fig. 1 for the

notations/conventions used.

0
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Fig. 3. A pruningP’ of P whenC’ = {C3, C|c|}. Notice that all negative examples now follow a path contained in the bold arcs, thereby being
assigned the right clas®’ misclassifies at most two positive examples, and pays an€rfart = |C'|wT.

tained by “opening” some links (i.e., removing some
verticesx_»), the indices of which give a “low-cost”
solution to MN-SET-CoVER. Reciprocally, each fea-
sible solution to MN-SET-COVER brings a pruning
of P with low error which opens some links &f. The
initial error of P is

BNENEE)

P)=|S|lw™ = .
SR =18 = s+ Dasi+2)

Lemma 2. From any feasible solutiod’ = {C}, ...,

Cl’c/l} to MIN-SET-COVER, it is possible to build in
polynomial time a feasible solutioR’ to MBPREP
such thate(P) < |C'|w™.

Proof. We can assume that] Z J,;_; C} for any
i=1,...,|C’|. If this is not the case, we can simply
go through the sets! in the order of their indices and
drop out the ones violating the condition.

Fig. 3 shows how to prun@: for eachC; € C’,
we remove the unique node df labeled byux; .
Exactly one positive example frorfit and (by the

assumption) at least one negative example reach this
leaf. Therefore, the majority class chosen for the leaf
is negative. Note that sine® is a cover, each negative
example leaves the chain by an arc represented in
bold in Fig. 3, and is, thus, given the right class. The
error is |C’|lw™, as claimed. This ends the proof of
Lemma2. O

From any solution to MN-SET-COVER, Lemma 2
shows how to pruneP to obtain a BPP’, which
errs only on “small-weighted” (positive) examples. In
particular, the error o’ is lower thans (P), because
e(P) > |ClwT (= |ST|w™). Let us prove that any
pruning of P can be translated in polynomial time to
a solution of MN-SET-CoOVER with guaranteed size.
This, with Lemma 2, will bring the desired gap.

Suppose we are given a prunigf of P. For
j =12, let us defineX ; = {x; ;: 1<i <|C[}. In
what follows, we show how to obtain in polynomial
time from P and P’ a (potentially new) prunin@” of
P, which satisfies (ix(P") < e(P’), (ii) only nodes
in X2 are pruned, and (iii) all negative examples
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are correctly classified. It is then straightforward to hard gap for MN-SET-COVER immediately translates
transform such a pruning into a small solution for to MBPREP, with an adequate replacement of its
MIN-SET-COVER. parameters. This ends the proof of Theorem d.
Let A be the greedy polynomial time algorithm
which takesP as input, goes through the elements Here is an application of Theorem 1. A hard gap
of X in the order of their indices, and iteratively p = (1—¢)In|S]|is known for MIN-SET-COVER [5].
prunes those reached by some negative example. TheThis holds for alle > 0 under the hypothesis N@
BP obtained thus only errs on positive examples from TIME(|7]°1091991/D) The proof of this result shows
ST, incurring a loss smaller tharn(P) andw™. that the inapproximability result holds even if we
To see that none of the nodes ¥, needs to be restrict our attention to instances with
pruned, assume first that at least one of them is pruned
in P’. Let ¢ be the pruned node with least index from
X 1. It is enough to consider pruning because all ~ for somek > 0. In our caser = 2|C| and, thus,
following nodes inX 1 are automatically discarded
with this operation. First assume that the leaf replacing
¢ receives at least one negative example. It must < klog|S|loglog|S| + 1
also receive the single “heavy” positive example < (1—g) 0. (In |S|)(1+s)
Thus, the error of this pruning must be at least > _
|Clw*. A pruning P” of P with lesser error can be for |S| large enough. Hence, by choosing =
obtained by executing algorithaon P, because after ~ 8/(1— 8), we getlod™"n < (1~ &) In|S|, which im-
this modification only some “light-weight” positive plies the following theorem on the inapproximability
examples are misclassified by the resulting BP. If, on Of MBPREP.
the other hand, the leaf replacidgdoes not receive O(oglogl1)
any negative examples, then we can return the original 1"€orém 4. Unless NP < TIME(|/| s ),
BP structure from on to correctly classify all those ~MBPREPis not approximable to withiog™° », for
positive examples that reached the leaf. anys > 0.

Now, we can consider that only nodes frakh, ) . . )
have been pruned fron® in order to obtain?’. If A read-once BP is one in which each variable ap-

P’ misclassifies a negative example, then recall that P€ars at mostonce on aroot-leaf path. Another restric-
running algorithmA4 on P will give a pruning with ~ tion of BPs is the class qi-BPs (sometimes also re-

a smaller error. If on the other han® does not ferred to as read-once BPs) in which variables may
misclassify any negative examples t,hen Wt — occur at most once in the whole program. The compu-
P’, and note that its error is exactly* times the tational aspects of learning read-once anBPs have
nu1mber of pruned nodes ik » that receive negative for long been a research issue in computational learn-
examples. It is now easy to see that the elemen of N9 theory (see, e.g., [14,2]). Itis worthwhile remark-

corresponding to those nodes form a solution tam N9 that our reduction above makes usg:eBPs only,
SET-COVER whose size is(P")/w™. Sinces(P") < so that Theorem 4 holds also in these restricted cases.

&(P"), we get the following lemma.

|C| < |S|kloglogiS|  pklogiSiloglog]s|

logn = log|C|+1

Corollary 5. Unless NP € TIME(|7|CdcgloglZDy
MBPREP restricted to read-once ang.-branching
programs is not approximable to withing— n, for
anys > 0.

Lemma 3. From any solutionP’ to MBPRERP, it is
possible to build in polynomial time a feasible solution
C’ to MIN-SET-COVER such thatC’| < e(P)/w™.

Let ¢* be the minimal cost for MN-SET-COVER
ande* the minimal cost foMBPREP. Lemma 2 shows
* *o 7t + *
thate™ < c*w™ and Lemma 3 shows thatw™ < &*. [1] L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classifi-

TOgether they, thUS., prove that these quantities are cation and Regression Trees, Wadsworth, Pacific Grove, CA,
linked by our reduction as* = c*w™. Therefore, any 1984.

References



78 R. Nock et al. / Information Processing Letters 87 (2003) 73-78

[2] N.H. Bshouty, C. Tamon, D.K. Wilson, On learning width
two branching programs, in: Proceedings of the 9th Annual
Conference on Computational Learning Theory, ACM Press,
New York, NY, 1996, pp. 224-227.

[3] T. Elomaa, M. Ka&aridinen, An analysis of reduced error
pruning, J. Artificial Intelligence Res. 15 (2001) 163-187.

[4] T. Elomaa, M. K&ariainen, The difficulty of reduced error
pruning of leveled branching programs, Ann. Math. Atrtificial
Intelligence (2003), To appear.

[5] U. Feige, A threshold of In for approximating set cover,
J. ACM 45 (4) (1998) 634—652.

[6] U. Feige, M.X. Goemans, Approximating the value of two
prover proof systems, with applications to MAX 2SAT and
MAX DICUT, in: Proceedings of the 3rd Israel Symposium on
Theory of Computing and Systems, IEEE Computer Society
Press, Los Alamitos, CA, 1995, pp. 182—189.

[7] M.R. Garey, D.S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness, W.H. Freeman,
New York, 1979.

[8] J. Hastad, Some optimal inapproximability results,
J. ACM 48 (4) (2001) 798-859.

[9] M. Kearns, Y. Mansour, A fast, bottom-up decision tree prun-
ing algorithm with near-optimal generalization, in: J. Shavlik
(Ed.), Proceedings of the 15th International Conference on Ma-
chine Learning, Morgan Kaufmann, San Francisco, CA, 1998,
pp. 269-277.

[10] M.J. Kearns, U.V. Vazirani, An Introduction to Computational
Learning Theory, MIT Press, Cambridge, MA, 1994.

[11] Y. Mansour, D. McAllester, Boosting using branching pro-
grams, J. Comput. System Sci. 64 (1) (2002) 103-112.

[12] J.R. Quinlan, Simplifying decision trees, Internat. J. Man-
Mach. Stud. 27 (3) (1987) 221-248.

[13] J.R. Quinlan, C4.5: Programs for Machine Learning, Morgan
Kaufmann, San Mateo, CA, 1993.

[14] V. Raghavan, D. Wilkins, Learning-branching programs with
queries, in: Proceedings of the 6th Annual ACM Conference on
Computational Learning Theory, ACM Press, New York, NY,
1993, pp. 27-36.



