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In this paper, we propose a thorough investigation of a nearest neighbor rule which
we call the “Symmetric Nearest Neighbor (sNN) rule”. Basically, it symmetrises the
classical nearest neighbor relationship from which are computed the points voting for
some instances. Experiments on 29 datasets, most of which are readily available, show
that the method significantly outperforms the traditional Nearest Neighbors methods.
Experiments on a domain of interest related to tropical pollution normalization also
show the greater potential of this method. We finally discuss the reasons for the rule’s
efficiency, provide methods for speeding-up the classification time, and derive from the
sNN rule a reliable and fast algorithm to fix the parameter k in the k-NN rule, a long-
standing problem in this field.
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1. Introduction

The Nearest Neighbor (NN) rule is one of the simplest and oldest classification

techniques related to Case-Based Reasoning (CBR). It uses a set of observations,

also called reference sample, S, from a n-dimensional metric space X to classify

members of X in one of c classes based on the classification of the elements of

∗Author for correspondence.
†This work was done while the author was with the Université des Antilles-Guyane.
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S. For each x ∈ X, we choose the element x′ ∈ S that is nearest to x (with

respect to a given metric), and assign to x the same class as x′. In case of ties, a

tie breaking rule chooses randomly for x′ one of the nearest neighbors. This rule

is obviously encompassed by the following one: the nearest neighbor of x can be

replaced by a voting set of k of the nearest instances of x, the k-nearest neighbors

(k-NN), a majority vote giving the class of x. Numerous experiments record that

simple nearest neighbor methods are competitive with very sophisticated classifiers

on challenging problems.8 Since the first appearance of a k-NN-like rule,6 domains

such as memory-based, instance-based, local, or lazy learning have contributed to

its widespread use, and much work was done in and around the NN paradigm

to improve the rule. In particular, recent publications13 have focused in locally

adapted neighborhoods, transforming the spherical neighborhoods centered on some

instance x into ellipsoidal neighborhoods, elongated to the directions of constant

posterior probability, and narrowed in the directions of greatest variations. Their

objective was to reduce the curse of dimensionality which states that, as dimension-

ality increases, the average or median neighborhood size on the uniform distribution

shrinks for the nearest neighbor only as |S|1/n, thereby leading to large neighbor-

hoods and possibly less reliable classification. We are going to show that a very

simple algorithm of low complexity, also locally adapting neighborhoods, improves

the classification of the nearest neighbor rule on most of 29 benchmark problems.

In the “Symmetric Nearest Neighbor rule”, k-sNN, we vote for some x the points

in S which could belong to the k nearest neighbors of x, and the points in S for

which x could belong to the k nearest neighbors. For example, if some x could vote

for some y in the k-NN rule, then y votes for x in the k-sNN rule, even if y does

not vote for x in the k-NN rule.

Figure 1 shows a simple case with 6 points in the plane and the neighborhoods

corresponding to the 1-NN and 1-sNN rules for two points x1 and x2. Arcs (x, y) in

the first part indicate that x can vote for y in the 1-NN rule. In the 1-sNN rule, arcs

are replaced by edges, and the neighborhood of x1 contains three points instead of

1-NN

x1

x2

1-sNN

x1

x2

Fig. 1. A simple example showing neighborhoods of the 1-NN and 1-sNN rules for x1 and x2.
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one in the 1-NN rule. Our motivation to address this approach and compare it to

the traditional k-NN rule is simple: in the set S ∪ {x}, the k-sNN rule increases

the number of voting neighbors compared to the k-NN rule, but without actually

creating “new” votes: for any y voting for x in the k-sNN rule, either y could vote

for x or x could vote for y in the k-NN rule. This is a way to increase the number of

voters while still working on the neighborhood graph of the k-NN rule, thus keeping

the same maximal neighborhood size, with possibly more reliable classification at

least for reasonable values of k. The motivation of this paper is precisely to test

this assertion.

These additional neighbors, which we also call adjuncts, were previously used

in Machine Learning (ML) to remove irrelevant instances from S, but not in sub-

sequent classification phases.19 Also, the graph of symmetric neighborhoods was

previously used in the field of image processing, but in that case for filter design,

and without link to ML purposes.12

Compared to Ref. 13, we think of our approach as providing a conceptually

simple solution at low computational cost, for which experiments tend to show that

it does not trade accuracy for simplicity. To demonstrate this fact, the remainder

of the paper is mostly experimental. First, we present results on 29 datasets, most

of which come from the UCI repository of ML database.2 These are complemented

by tests on a problem related to pollution normalization in Tropical Physics for

which ML represents a solution of great potentiality (yet no real investigation in

official texts has been proposed to date). In the last part, we extend the discussion

of the sNN rule’s reliability, we present methods to speed-up the classification of

new instances, and provide tests on a particular longstanding problem to which the

sNN neighborhood graph brings an accurate solution at affordable complexity: the

choice of k for the k-NN rule.

2. Experimental Results on the sNN Rule

2.1. The 1-sNN rule beats NN rules

In this section, we compare the 1-NN rule with its equivalent tNN and sNN rules

(the k-tNN rule where “t” stands for total, is the k-NN rule with the slight difference

that when there are ties, all points at distance not exceeding that of the kth nearest

neighbor vote). Table 1 presents the results that were obtained. Four accuracies are

given for each dataset, computed using Leave-One Out Cross Validation (LOOCV).

The first third are the accuracies of the 1-NN, 1-tNN and 1-sNN rules respectively,

and the fourth is the accuracy of the k-NN classifier with k equal to the average

neighborhood size (without the instance to be classified) of the 1-sNN classifier.

This rule is denoted k̄sNN -NN; it is used to compare the 1-sNN with a conventional

NN rule with a similar number of neighbors (on average). The last columns display

the average neighborhood sizes for 1-tNN and 1-sNN over all runs and all instances

(remark that this represents the average degree of the neighborhood graphs over

S). Two major factors can improve the performances of the 1-sNN rule compared to
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Table 1. Accuracies on LOOCV for five rules. Average resulting neighbor-

hood’s sizes are indicated for 1-tNN and 1-sNN. When accuracies of either
1-NN, 1-tNN or 1-sNN are greater than or equal to each of the four accuracies,
the results are bold faced (these represent very good results on corresponding
problems).

Accuracy k̄

Dataset 1-NN 1-tNN 1-sNN k̄sNN -NN 1-tNN 1-sNN

Audiology 78.30 78.30 78.80 74.80 1.83 2.85
Australian 77.70 77.50 78.00 80.10 1.77 2.62
Balance 79.20 80.30 80.50 81.00 6.40 6.80
Bigpole 65.00 64.40 65.40 62.80 3.75 4.64
Breast-W 95.60 96.30 96.40 96.90 1.66 7.42
Car 89.20 88.40 99.30 97.70 2.00 7.28
Crx 79.00 79.00 80.40 78.40 1.94 2.93
Dermatology 90.00 89.30 90.40 90.00 1.12 1.69
Echo 54.20 54.70 63.40 58.80 2.40 3.42
German 68.10 71.70 72.50 72.30 3.23 4.94
Glass2 66.30 66.90 74.20 73.60 6.03 7.37
Hard 58.20 53.10 48.80 50.40 2.82 3.76
Heart 75.00 75.00 75.10 76.66 1.86 2.73
Hepatitis 83.20 84.50 86.50 81.30 1.84 2.90
Horse Colic 71.20 71.70 70.90 70.90 1.18 1.95
Ionosphere 84.30 83.20 84.90 78.90 4.16 6.41
LED Even 87.40 87.20 87.60 88.80 18.77 19.73
LED Even+17 65.50 68.50 72.00 75.50 1.86 2.86
Lung Cancer 53.10 50.00 62.50 53.10 1.09 1.81
Monks 1 66.40 98.60 99.80 97.00 7.50 7.80
Pima 67.10 68.90 69.80 70.40 9.32 10.73
Tic tac toe 75.00 76.00 84.00 82.00 1.81 6.32

Vehicle 65.00 71.30 72.00 71.00 6.35 7.53
Waves 76.80 75.60 75.20 76.80 1.44 2.34
WhiteHouse 92.40 92.00 92.90 91.30 3.23 4.92
WhiteH w/o PP 88.74 88.05 88.05 89.20 3.30 5.02
XD6 75.70 81.50 80.70 81.80 3.99 5.36
Wines 85.96 85.96 87.64 85.96 1.21 1.75
Zoo 98.02 97.03 98.02 91.09 3.24 4.02

Average 76.26 77.76 79.85 78.57 3.69 5.15

the 1-NN rule’s. The first is the increasing number of voting instances, the second is

the better “construction” (or choice) of the neighbors. The fourth rule was run in

order to reduce the former effect, and evaluate the latter, that seems much more

interesting to us.

The results of the 1-tNN rule displayed in Table 1 show that the simple increase

of the number of neighbors compared to the 1-NN rule tends indeed to favor greater

accuracies, yet the difference is not significant: a sign test cannot separate the two

first columns even at risk α ≤ 30%. Moreover, when removing the atypical Monks

1 problem for which the 1-NN rule performs poorly, 1-tNN beats the 1-NN rule

only by 0.4% on average. The results of the 1-sNN rule are much more striking.

1-sNN beats almost systematically the 1-NN and 1-tNN rules together. One feature
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appears more interesting by looking at the bold-faced results of Table 1. The entries

were chosen to represent excellent results of either the 1-NN, 1-tNN or 1-sNN rules,

in the cases where they achieve results at least as good as all other algorithms,

including the NN rule ran with the average ks of the 1-sNN rule. Almost all bold-

faced results are in the column 1-sNN, and many of the 1-sNN results are actually

bold-faced. If the four algorithms were performing evenly, each would obtain the

best result on average 29/4 ≈ 7 times. A sign test (third column versus all the

others) reveals a threshold probability of minute order (10−27), i.e. an infinitesimal

proportion of configurations appear to be at least as in favor of the 1-sNN as the

one presented by Table 1.

All these observations exhibit a real performance of the 1-sNN algorithm. The

problem for which the increase is the most dramatic is Lung Cancer. In this case, the

use of the 1-sNN rule buys an increase of more than 9% in the accuracy compared

to each of the three other rules. Since the 1-sNN builds neighborhoods of larger

size compared to 1-NN and 1-tNN, we might conclude that this represent the

main reason for the accuracy’s increase. Further remarks show that this is a loose

explanation. The head-to-head comparison of the 1-tNN and 1-sNN shows that, if

we except the atypical Monks 1 dataset, the choice of the 1-tNN instead of the

1-NN buys on average an increase of 0.4% in accuracy by using 2.69 more neigh-

bors, whereas the choice of the 1-sNN instead of the 1-NN buys on average an

increase of more than 2.5% in accuracy by using only 4.15 more neighbors. There-

fore, the difference of less than 1.5 neighbors between 1-tNN and 1-sNN accounts

for more than 2% increase in the accuracy, i.e. much more than the comparison

1-tNN versus 1-NN. Finally, the k̄sNN -NN rule, at equivalent neighborhood size, is

beaten by ≈ 1.3% by the 1-sNN rule. This phenomenon can be explained by the

fact that the distance between one point voting for another in the 1-sNN rule is not

greater than the largest one in the 1-NN, whereas the largest such distance in the

k̄sNN -NN rule, which uses on average the same number of neighbors as the 1-sNN

rule, can be much larger than in the 1-NN, and therefore can provide less reliable

votes as distances increase. Altogether, these observations exhibit the more accurate

choice of the additional neighbors in the 1-sNN rule compared to the classical

NN rules.

2.2. Average comparisons for many k

In this section, we extend the results of the preceding section to the cases where

the value of k fluctuates to large values. To compare reliably the three rules k-NN,

k-tNN and k-sNN, we choose the following experimental set-up. On each dataset of

Table 2, we ran each rule with the values of k set from 1 to large values 90 ≤ k ≤ 100.

For the datasets with too few examples to reach such large values, the algorithms

were ran up to the maximum possible value for k. The accuracies on each dataset

were computed by LOOCV for each possible value for k.

The first three columns of Table 2 display the respective results of the corre-

sponding NN, tNN and sNN rules. Each result is given as a form (MeanStandard dev.,
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Table 2. Accuracies on LOOCV for 29 datasets. The

average accuracy of sNN is bold-faced because a paired
t-test reveals a threshold risk of order < 1/10% when
comparing it w.r.t. NN and tNN (see text).

Accuracyσ

Dataset NN tNN sNN

Audiology 65.454.63 65.964.48 68.792.48

Australian 77.890.88 77.880.83 77.681.27

Balance 85.351.11 86.481.53 86.591.48

Bigpole 64.731.23 64.751.34 65.431.19

Breast-W 95.890.38 96.030.45 96.380.48

Car 92.711.46 94.861.82 94.901.82

Crx 78.691.29 78.801.13 80.670.89

Dermatology 54.217.88 54.167.31 56.516.98

Echo 66.511.55 67.081.43 66.791.83

German 72.660.96 72.460.08 72.571.13

Glass2 66.714.95 67.912.59 69.372.41

Hard 49.314.16 48.824.78 48.975.44

Heart 75.321.04 75.141.07 75.360.89

Hepatitis 79.150.64 79.265.63 79.260.89

Horse Colic 68.772.40 68.722.25 71.162.61

Ionosphere 68.506.49 68.386.81 72.593.21

LED Even 89.590.43 89.120.27 89.180.60

LED Even+17 78.581.22 79.511.40 79.481.38

Lung Cancer 25.1813.1 26.3214.4 34.0716.3

Monks 1 79.118.01 78.8610.0 78.868.40

Pima 71.240.72 70.440.90 71.200.64

Tic tac toe 72.674.95 71.495.78 72.778.31

Vehicle 72.530.64 73.310.56 72.850.83

Waves 82.101.21 82.211.17 82.881.57

WhiteHouse 89.671.02 89.841.10 90.861.24

WhiteH w/o PP 86.940.74 86.960.83 88.230.79

XD6 80.711.17 81.331.49 80.872.61

Wine 55.4613.4 55.4113.6 59.0213.1

Zoo 55.4316.5 56.5417.9 60.7518.9

Average 72.45 72.69 73.93

i.e. σ is put in index) computed over all runs. These results are useful to compare

the relative behaviors of the three rules together, but they are obviously not suited

to make performance comparisons with other algorithms: the values of k ranged

towards values far larger than one would fix to maximize the accuracy.

A paired sign test was carried out between each of the three accuracy’s columns.

For the comparison k-NN versus k-tNN, it reveals that they cannot be separated

up to risk α ≤ 20%. This, along with the fact that their average accuracies over the
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Fig. 2. Four representative examples of plots using the two scales on k and µ(k), respectively
noted (k) and (m) for each dataset (vertical axes are the accuracies).

29 datasets are almost identical, shows that the two rules are equivalent. The four

datasets shown in Fig. 2 bring particularly good visual evidence of this fact: the

curves of these two rules are quite similar even on the two scales k and µ(k).

It is a bit different for the k-sNN rule. A sign test now gives threshold risks of

≈ 0.0012% and 0.00005% to separate the k-sNN rule from respectively the k-NN and

the k-tNN rule. As shown in Table 2, the primary reason for the test to be significant
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is of course that the average accuracy is significantly in favor of the k-sNN rule over

the 29 datasets. To explain these results, three reasons can be pointed out. The first

two reasons are obviously the same as for the preceding section. The justification

for the better choice of the additional neighbors in the k-sNN algorithm is now

visually evident from Fig. 2, when looking at the µ(k) curves. For the Horse Colic

dataset, the curve of the sNN rule is clearly located over the two other curves.

For particular points of 45 ≤ µ(k) ≤ 60, the accuracies of the NN and tNN rules

are similar, but they are beaten by the sNN rule by more than 5% on average, at

equivalent neighborhood sizes. The third reason explaining the better results of the

k-sNN rule, which were observed separately for a large majority of the datasets, is

its resistance against the accuracy’s degradation when the average neighborhood

size increases. In Ionosphere (see Fig. 2), when µ(k) tends to large values, the

performances of the sNN rule degrades about 8% compared to the small values for

µ(k) ≤ 20, whereas for the two other rules, the degradation is greater than 20%.

This phenomenon is less pronounced but still visible on the Audiology dataset in

Fig. 2. It is all the more important for a NN rule to be robust to the variations

of k, as there is no formal rule to fix k. To conclude this part, we have carried

out a paired t-test in Table 2 to compare each algorithm versus each of the other

two over all runs for k. The limit risk α for the difference tNN versus NN is only

3.6% (therefore, with a reasonable risk of few percents, we would keep the identity

hypothesis between the two algorithms), whereas the two other risks for sNN versus

NN and sNN versus tNN are respectively 0.029% and 0.057%; by means of words,

we can reject the identity of the performances of sNN and the two algorithms while

taking a very small risk < 1/10%.

2.3. sNN to fix pollution normalization

It is well known that coastal zones are economical areas sensitive to pollution linked

to human activities.1 The administrators of these coastal structures are confronted

with a crucial problem: what are the toxic metal thresholds required to immerse

dredging products in the sea?1 Experts and research organizations have set up

physico-chemical criteria, called grids, which are based on heavy metal concentra-

tion levels.1 These grids used in decision making over long-term storage cannot

be applied to various environments since they are basically tailor-made for local

applications only. As an example, in the Caribbean basin, comparisons with existing

standards (French, English, Canadian, Dutch) establish that all tested areas are

safe. Heavy metal (Lead and Zinc) concentrations observed in polluted areas in this

region are frequently inferior up to several orders of magnitude with respect to the

grids healthy reliable limit. One solution at an affordable price to build provisions

with reasonable generalization can be to use ML on local pollution measurements.

In this line of work, NN-like rules are a first step in addressing the problem,

because of their performances and simplicity. Our data contains 121 instances,

each described over 11 attributes (As, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Rb, Sn, Zn),
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Fig. 3. NN, tNN and sNN performances on Caribbean basin pollution data (notations follow
Fig. 2). Right plot displays curves of µ(k) as a function of k.

plus a class (Polluted/Non Polluted). The data were collected during the period

1992–1999 in the “Cul-de-Sac Marins” areas (about 300 km2) of Guadeloupe which

contains in particular a major harbor of the lesser Antilles: that of Pointe-à-Pitre.1

The results of the LOOCV’s comparisons between the three NN rules are displayed

in Fig. 3. Note that the accuracy of C4.5’s tree (default settings) is 91.7%, i.e. less

than the best values of the NN classifiers. This real-valued dataset is also very inter-

esting to compare our NN rules since the neighborhoods of the NN and tNN rules

are the same. The NN and tNN curves are therefore confounded and only the sNN

rule can possibly obtain better results. Figure 3 shows that it is indeed the case, as

well as show the phenomenon observed in Fig. 2: the resistance against accuracy’s

degradation for the sNN rule when k or µ(k) fluctuate.

3. Discussion

3.1. About the efficiency of the sNN rule

It was recently argued8 that the curse of dimensionality theoretically rules out

nearest neighbors classifiers as reliable classifiers, a thing which is obviously not true

from practice. One possible reason is that instances might be grouped in manifolds

whose complexity, and not n, would guide the curse of dimensionality. The extent

that its effects are dimmed for this reason is however unclear,8 but this gives in

turn a reason for the success of the 1-sNN rule. Figure 4 plots four examples of

µ(k) for the tNN and sNN algorithms. Remark that on all examples the curves for
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Fig. 4. Four examples of plots of the average neighborhood size of the tNN and sNN algorithms
as a function of k (NN’s is confounded with y = x).

sNN are highly distinct from y = x, whereas the curves for the tNN and y = x are

sometimes very similar, e.g. for the Horse Colic and Crx datasets.

Provided k is not too large, the maximum radius over all neighborhoods, that are

the same for each rule, remains reasonable enough for the vote of the corresponding

instances to be reliable. Since the neighborhoods of the 1-sNN rule contain the

greatest number of instances, and because there are more reliable instances to

vote, the overall vote will get even better. On the other hand, the Horse Colic

dataset (Fig. 2) shows that when k ≥ 90, given the greater number (> 33%) of

neighbors for the k-sNN rule getting further and more unreliable, the k-sNN rule

begins to perform worse than the other rules. Another possible explanation for the

good results of the sNN rule could be some smoothness or variation properties over

the class conditional densities, stating that on the vicinity of the instances these

functions do not fluctuate significantly, or at least they incur the same bias so that

predicting Bayes class does not suffer a significant loss (this second hypothesis is

also stated in Ref. 8). It is interesting to note that such properties, or something

akin to them, were necessary18 to obtain good theoretical bounds on the error

of nearest neighbor rules.4,5,8,14,17,18 Obviously, it is not to say that our datasets

satisfied such assumptions, even if it might be the case for reasonable hypotheses

in real-world domains, such as for our pollution measurements data. However, for

example, on simulated datasets for which such reasonable smoothness hypotheses

cannot be satisfied, the sNN rule did not perform as nicely as usual. This is the

case for the XD6,3 Hard and LED Even2 domains (see Table 2). Hard was partially
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generated to theoretically satisfy no such constraint: the target concept is a 5-bits

XOR function with 5 additional irrelevant attributes, and attribute noise. In the

case of XD6, very weak constraints can be satisfied everywhere in X (we refer the

reader to Ref. 3 for a complete description of the problem).

3.2. Speeding-up the classification of the sNN rule

The NN rule has two main complexity-dependent shortcomings. Since it stores

all instances in memory, it has a large, O(|S|) storing complexity. Since it must

search through all stored instances to classify a new instance, its time complexity

is also large, O(|S|). The sNN algorithm faces the same problems, along with

the additional one to find adjuncts in S. While instance selection methods10,11,19

can significantly reduce the storing and classification complexities of the NN and

sNN rules, sophisticated data structures were created for the k-NN rule to reduce

the classification complexity of orders, at the expense of a pre-processing stage to

organize the reference sample.

The kd-trees7,9 are useful tools for fast searching nearest neighbors (in this

notation, the “k” denotes the dimension of the search space, and not the number

of neighbors). A multidimensional binary search tree is built, by recursively parti-

tioning the reference sample into subsample of equivalent sizes, according to one

current variable, until each leaf contains buckets of instances of fixed size b. This

tree is processed by an oriented depth-first search. The search of the k nearest

neighbors of some point x has two principal components. First, a priority queue

maintains the k nearest instances found so far; second, pruning rules are used to

remove parts of the search space to which the true nearest neighbors cannot belong

(we refer the reader to Refs. 7, 9 and 20 for the detailed algorithm).

As argued by Ref. 20, this algorithm is efficient for moderate dimensions. As

dimension increases, the repetitive exploration stages in the tree soon visit nearly

every bucket, while the tree size consumes more and more space. Two methods

of interest for our purposes were proposed to correct this drawback. The first one

speeds-up the kd-trees processing stage,16 by giving to some buckets a class label

if their centroid obtains a confident classification by the k-NN rule. Whenever a

labeled leaf is reached by an instance to be classified, the class label is immediately

given to the instance without any further processing of the tree to search the nearest

neighbors. The second one replaces kd-trees by trees with a different internal node

structure20: each test is a membership test to an hyperball by defining a vantage

point (reference point) and specifying a corresponding radius. These trees are called

vp-trees.

The adaptation of the algorithms to the k-sNN rule can be made by completing

the previous tree structures to find the adjuncts during the pre-processing stage of

S. After having built these trees for the k-NN algorithm, for each x ∈ S, we compute

the radius of its kth nearest neighbor, rx. We call (x, rx) the neighborhood ball of x.

Note that ∀ y ∈ S, if d(x, y) ≤ rx, then x is one adjunct of y. After the construction
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of the chosen tree for the k-NN rule, we process each of its leaves to make it point

to each neighborhood ball intersecting the multidimensional leaf bucket. While it

depends on the metric used and on the problem, locally, this number shall remain

tractable even while S increases, because balls intersecting some bucket will get

closer and closer to it. When processing this tree to find the sNN neighbors of some

x ∈ X , as soon as we reach the first leaf of the tree, which means that the instance

belongs to the corresponding bucket, we test the pointed neighborhood balls to

see if the corresponding examples are adjuncts of x, and then search for the nearest

neighbors of x by processing the tree as explained in Refs. 7, 9 and 20.

3.3. Optimizing the k-NN rule using the sNN graph

The principal parameter of the NN rule which can be controlled to optimize the

accuracy is k. Its optimal fixation remains one important theoretical issue in the

NN field,15 but two experimental rules have a widespread use. Rule 1 states that

we should fix small constant values for k, such as between 1 and 15. Rule 2 states

that we should fix negligible values compared to |S|, such as k =
√

|S|. It appears

experimentally on a majority of datasets that for sufficiently small k, the greater

the average degree of the sNN graph, the more accurate the k-sNN rule compared

to the k-NN rule. Table 1 also shows that the fixation of k to be the average

neighborhood size of the 1-sNN rule brings a clear advantage to this k̄sNN -NN rule

compared to the 1-NN rule (in LOOCV, this represents the average neighborhood

size of S to which the tested instance is removed). We refer to this rule as Rule 3.

The comparison Rules 1–3 was carried out on the 29 datasets in Table 1, namely,

for each dataset, we have computed the number of values for k ∈ {1, 2, . . . , 15} for

which the accuracy on LOOCV for the corresponding k-NN rule is greater than that

of the k̄sNN -NN. The average number of values k ∈ {1, 2, . . . , 15} bringing better

accuracies over all problems is 4,67. The median value is 3, which means that the

distribution is highly concentrated on the small values, or similarly that Rule 3

beats Rule 1 on most cases. To make a simple comparison, replacing the k̄sNN -NN

with the conventional 1-NN leads to much worse results: average 7.5, median 10,

i.e. a distribution concentrated on the large values. The comparison Rules 2–3 shows

that the
√

|S|-NN rule performs surprisingly poorly on the 29 datasets, achieving

only 76.05% accuracy, a result equivalent to that of the 1-NN rule (see Table 1),

but much worse compared to the k̄sNN -NN rule, whose accuracy is higher by more

than 2.5%.

4. Conclusion

This paper has further explored the possibility to automatically adapt the local

neighborhoods in a NN rule type classification. Experiments tend to show the

potential of a simple procedure, which increases the number of voters without

facing the curse of dimensionality as in traditional nearest neighbor learning. The

major issue regarding this approach is to quantify the risk of this symmetric nearest
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neighbor learning rule, this time from a theoretical point of view, and compare it

with corresponding results for the traditional NN rule for finite reference samples.14
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