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Abstract

In the past ten years, boosting has become a major
field of machine learning and classification. This
paper brings contributions to its theory and algo-
rithms. We first unify a well-known top-down de-
cision tree induction algorithm due to[Kearns and
Mansour, 1999], and discrete AdaBoost[Freund
and Schapire, 1997], as two versions of a same
higher-level boosting algorithm. It may be used
as the basic building block to devise simple prov-
able boosting algorithms for complex classifiers.
We provide one example: the first boosting al-
gorithm for Oblique Decision Trees, an algorithm
which turns out to be simpler, faster and signifi-
cantly more accurate than previous approaches.

1 Introduction
Loosely speaking, aboosting algorithm repeatedly trains
moderately accurate learners from which it gets itsweakhy-
potheses, and combines them to output astrong classifier
which boosts the accuracy to arbitrary high levels[Kearns
and Valiant, 1989]. A pioneering paper[Schapire, 1990]
proved the existence of such boosting algorithms, and another
one drew the roots of their most popular representative: Ad-
aBoost, that builds a linear combination of the predictionsof
the weak hypotheses[Freund and Schapire, 1997]. Another
paper due to[Kearns and Mansour, 1999] proved that some of
the most popular top-down decision tree induction algorithms
are also boosting algorithms in disguise[Breimanet al., 1984;
Quinlan, 1993]. These two kinds of algorithms are outwardly
different from each other: while AdaBoost repeatedly modi-
fiesweightson the training examples and directly minimizes
a convexexponential loss, top-down decision tree induction
algorithms do not modify weights on the examples, and they
minimize the expectation of a concave, so-calledpermissible
function[Kearns and Mansour, 1999].

This explains why the starting point of this paper is a quite
surprising result, as we prove that these two kinds of algo-
rithms are in fact thesamealgorithm, whose induction is per-
formed on two different classifier “graphs”. The apparent per-
ceptual differences in the algorithms stem only from different
structural properties of the classifiers. This suggests a generic
induction scheme which gives, for many classifiers that meet

a simple assumption, a corresponding boosting algorithm.
Using a recent result due to[Nock and Nielsen, 2006], this
algorithm uses real-valued weak hypotheses, but it does not
face the repetitive minimization of the exponential loss faced
by previousReal boosting algorithms[Friedmanet al., 2000;
Schapire and Singer, 1999]. When the classifier is an oblique
decision tree, the algorithm obtained has three key features:
it is fast, simple, and the first provable boosting algorithm
that fully exploits this class. This is important, as the prob-
lem of inducing oblique decision trees has a longstanding his-
tory, and the algorithms available so far are either time con-
suming or complex to handle formally[Breimanet al., 1984;
Cant́u-Paz and Kamath, 2003; Heathet al., 1993; Murthyet
al., 1994; Shawe-Taylor and Cristianini, 1998]. The follow-
ing Section presents definitions; it is followed by a Sectionon
our theoretical results, and a Section that discusses them and
gives our boosting algorithm for oblique decision trees; two
last Sections discuss experiments, and conclude. For the sake
of clarity, proofs have been postponed to an appendix.

2 Definitions and problem statement
Bold-faced variables such asw and x, represent vectors.
Unless otherwise stated, sets are represented by calligraphic
upper-case alphabets,e.g. X , and (unless explicitely stated)
enumerated following their lower-case, such as{xi : i =
1, 2, ...} for vector sets, and{xi : i = 1, 2, ...} for other sets.
Consider the following supervised learning setting. LetX
denote a domain of observations of dimensionn, such asRn,
{0, 1}n, etc. . We suppose a setS of |S| = m examples, with
|.| the cardinal notation, defined asS = {si = 〈xi, yi〉 ∈
X × {−1,+1} : i = 1, 2, ...,m}, onto which a discrete dis-
tribution w1 is known. “+1” is called the positive class, and
“-1” the negative class. Our primary objective is related to
building an accurate classifier (or hypothesis)H : X → R.
The goodness of fit ofH onS may be evaluated by two quan-
tities:

ε(H,w1) = Ew1
(1[sign(H(x)) 6=y]) , (1)

εexp(H,w1) = Ew1
(exp(−yH(x))) . (2)

Here,sign(a) = +1 iff a ≥ 0 and−1 otherwise,1[.] is the 0/1
indicator variable, andE.() is the expectation. (1) is the con-
ventional empirical risk, and (2) is an upperbound, the expo-
nential loss[Schapire and Singer, 1999]. We are interested in



for t = 1, 2, ..., T

AdaBoost + Trees

Input : S,w1;

ht ← Tree(S,wt);

for i = 1, 2, ...,m

Input : S,w1;

for t = 1, 2, ..., T

let ℓ ∈ leaves(Ht−1) containing

examples of both classes;

ht ← Stump(Sℓ,w1);

ℓ← ht;wt+1,i ← wt,i exp(−αtyiht(xi))/Zt;

TopDownDT (CART, C4.5)

Input : S,w1;

for t = 1, 2, ..., T

let ℓ ∈ leaves(Ht−1) containing

ht ← StumpLS(Sℓ,w1);

ℓ← ht;

TopDownODT (OC1, SADT)

examples of both classes;αt ← arg minα∈R Ewt
(exp(−yαht(x)));

Figure 1: An abstraction of 3 core greedy procedures of some popular induction algorithms (see text for references and details).

the stagewise, greedy fitting ofH to S, from scratch. A large
number of classes of classifiers have popular induction algo-
rithms whose core procedure follows this scheme, including
Decision Trees (DT)[Breimanet al., 1984; Quinlan, 1993],
Branching Programs (BP)[Mansour and McAllester, 2002]
and Linear Separators (LS)[Freund and Schapire, 1997;
Nock and Nielsen, 2006]. Virtually all these procedures share
another common-point: the components that are used to grow
H are also classifiers. These are the DTs for AdaBoost with
trees, the internal node splits for the DTs and BPs (akin to
decision stumps), etc.

Now, given some fixed class of classifiers in which we fit
H, here is the problem statement. A weak learner (WL) is
assumed to be available, which can be queried with a sam-
ple S ′ and (discrete) distributionw′ on S ′; the assump-
tion of its existence is called a Weak Learning Assump-
tion (WLA). It returns in polynomial time1 a classifierh
on which only the following can be assumed:ε(h,w′) ≤
1/2 − γ for some γ > 0 [Schapire and Singer, 1999].
Given 0 < ǫ < 1, is it possible to build in polynomial
time someH with ε(H,w1) ≤ ǫ, after having queriedT
times WL for classifiersh1, h2, ..., hT , for someT > 0 ?
Provided additional assumptions are made for its generaliza-
tion abilities (see Section “Discussion” below), this algorithm
is called a boosting algorithm[Freund and Schapire, 1997;
Kearns and Valiant, 1989].

3 Unifying boosting properties
For the sake of clarity, we now plugT in subscript on
H; An element of LS is a classifierHT with HT (x) =
∑T

t=1 αtht(x), whereαt ∈ R is a leveraging coefficient that
may be interpreted as a confidence inht. An element of DT is
a rooted directed tree in which each internal node supports a
single boolean test over some observation variable, and each
leaf is labeled by a real. The classification of some obser-
vation proceeds by following, from the root, the path whose
tests it satisfies, until it reaches a leaf which gives its class.
Figure 2 (left) presents an example of DT (n = 2), where
v1, v2 are Boolean description variables. Finally, Oblique De-
cision Trees (ODT) generalizes DT, as linear combinations of
variables are authorized for the internal nodes, which allows
splits that are oblique instead of just axis-parallel[Breimanet
al., 1984].

1For the sake of simplicity, polynomial time means polynomial
in the relevant parameters throughout the paper.

Figure 1 gives an abstract view of some of the most pop-
ular induction algorithms, or at least of their core procedure
which induces a large classifier: AdaBoost with trees[Freund
and Schapire, 1997; Schapire and Singer, 1999], C4.5[Quin-
lan, 1993], CART [Breimanet al., 1984], OC1 [Murthy et
al., 1994], SADT [Heathet al., 1993]; the first algorithm for
the induction of ODT dates back to the mid-eighties; it was a
descendant of CART[Breimanet al., 1984]. Most of the in-
duction algorithms for DT or ODT integrate a pruning stage;
here, we are only interested in the greedy induction scheme.
WL has various forms: it induces a decision tree on the whole
sampleS and on a distribution which is repeatedly modified
for AdaBoost; it induces a decision tree with a single internal
node (a stump) on the subset ofS that reaches leafℓ (noted
Sℓ) and on a distribution which is not modified for CART and
C4.5; it replaces this ordinary, axis-parallel stump, by a linear
separator stump (also called stump for the sake of simplicity)
for OC1 and SADT. The choice of a split for DT and ODT re-
lies on the repetitive minimization of an “impurity” criterion
which is the expectation, over the leaves of the current tree
H, of a so-called permissible function[Kearns and Mansour,
1999]:

εimp(H,w1, f) = Eℓ∼leaves(H)

(

f

(

w+
1,Sℓ

w1,Sℓ

))

; (3)

here, w1,S′ is the total weight ofS ′ in w1 and w+
. is its

weight further restricted to the positive class. In the expec-
tation, the weight of a leafℓ is w1,Sℓ

. The permissible func-
tion f : [0, 1] → [0, 1] has to be concave, symmetric around
1/2, and with f(0) = f(1) = 0 and f(1/2) = 1. Ex-
amples of permissible functions aref(z) = 4z(1 − z) for
Gini index [Breimanet al., 1984], f(z) = −z log z − (1 −
z) log(1− z) for the entropy[Quinlan, 1993] (log base-2), or
evenf(z) = 2

√

z(1− z) for the optimal choice of[Kearns
and Mansour, 1999]. Remark that we haveεimp(H,w1, f) ≥
εimp(H,w1, 2min{z, 1 − z}) = 2ε(H,w1), for any per-
missible f , and so minimizing (3) amount to minimizing
the empirical risk ofH as well. The reason why this is
a better choice than focusing directly on the empirical risk
comes from the concavity of the permissible function[Kearns
and Mansour, 1999]. Though seemingly very different from
each other, AdaBoost and DT induction algorithms from the
CART-family were independently proven to be boosting al-
gorithms[Freund and Schapire, 1997; Kearns and Mansour,
1999; Schapire and Singer, 1999]. So far, no such formal
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Figure 2: A DT with 3 leaves and 2 internal nodes (left) and
an equivalent representation which fits to (A) (right).

boosting algorithm or proof exist for ODT that would take
full advantage of their structure combining oblique stumps
and decision trees. For this objective, let us shift to a more
general standpoint on our problem, and address the following
question: what kind of classifiers may be used to solve it ?
Consider the following assumption, thatHT represents some
kind of local linear classifier:

(assumptionA) ∀T > 0, denoteHT = {h1, h2, ..., hT }
the set of outputs of WL; then, there exists a function
which maps any observation to a non-empty subset of
HT , gHT

: X → 2HT \{∅}. ∀x ∈ X , gHT
(x) is re-

quired to be computable polynomially inn and the size
of HT ; it describes the classification function ofHT , in
the following way:

HT (x) =
∑

ht∈gHT
(x)

αtht(x) ,∀x ∈ X .

By means of words, the classification ofHT is obtained by
summing the outputs of some elements ofHT . Many classi-
fiers satisfy (A), such as decisition trees, decision lists, linear
separators, etc.

Definition 1 Thedecision graph ofHT (onX ) is an oriented
graphG = (HT , E); an arc (ht, ht′) ∈ E iff t < t′ and there
exists somex ∈ X such thatht, ht′ ∈ gHT

(x) and noht′′

with t < t′′ < t′ is in gHT
(x).

Remark thatG is acyclic, andgHT
maps each observation of

X to some path ofG. We also defineP as representing the
set ofpathsof G that is mapped fromX by gHT

:

P = {p ⊆ HT : ∃x ∈ X , p = gHT
(x)} .

The simplest case ofG is obtained whengHT
(x) =

HT ,∀x ∈ X : HT is a linear separator, andG a single path
from h1 to hT . Examples of classes of classifiers different
from linear separators and that fit to (A) include DT and ODT.
In this case,G is a tree and weak hypotheses are in fact con-
stant predictions on the tree nodes. Figure 2 (right) displays
the way we can represent a DT so as to meet (A). Remark
that there exists many possible equivalent transformations of
a DT; the way we induceHT shall favor a single one out of
all, as follows. We define two types of subsets ofS (with
p ∈ P and1 ≤ t ≤ T + 1):

Sp = {〈xi, yi〉 ∈ S : p = gHT
(xi)} , (4)

St = ∪p∈P:ht∈pSp . (5)

Input : S,w1;
for t = 1, 2, ..., T

computeSt;

αt ← (1/(2h⋆
t )) ln((1 + µt)/(1− µt));

GenericGreedy (G2)

for t = 1, 2, ..., T

wt+1,i←wt,i×

{

1−(µtyiht(xi)/h⋆
t )

1−µ2

t

if si ∈ St

1 if si ∈ S\St

;

for i = 1, 2, ...,m
ht ←WL(St,wt);

Figure 3: The generic greedy induction ofHT . The compu-
tation ofSt depends on the decision graph ofHt.

We also extend the weight notation, and letwt′,Sp
=

∑

si∈Sp
wt′,i andwt′,St

=
∑

si∈St
wt′,i (with p ∈ P and

1 ≤ t′ ≤ T + 1). We also defineh⋆
t = maxsi∈St

|ht(xi)| ∈
R, the maximal absolute value ofht overSt. After [Nock and
Nielsen, 2006], we define two notions ofmargins: the first is
the normalized marginht overS:

µt =
1

h⋆
t wt,St

∑

si∈St

wt,iyiht(xi) ∈ [−1,+1] . (6)

With the help of this definition, Figure 3 presents the generic
greedy induction ofHT . Remark that whenHT is a linear
separator,G2 is the AdaBoostR boosting algorithm of[Nock
and Nielsen, 2006]. The second margin definition is the mar-
gin of HT on example〈x, y〉 [Nock and Nielsen, 2006]:

νT (〈x, y〉) = tanh(yHT (x)/2) ∈ [−1,+1] . (7)

This margin comes to mind from the relationships between
boosting and the logistic predictionHT (x) = log(Pr[y =
+1|x]/Pr[y = −1|x]) [Friedmanet al., 2000]. In this case,
(7) becomesνT (〈x, y〉) = y(Pr[y = +1|x] − Pr[y =
−1|x]), whose expectation is the normalized margin (6) of
the Bayesian prediction in[−1,+1] (also called gentle lo-
gistic approximation[Friedmanet al., 2000]). Following
[Nock and Nielsen, 2006], we define themargin errorof HT

(∀θ ∈ [−1,+1]):

νw1,HT ,θ = Ew1
(1[νT (s)≤θ]) , (8)

and we haveε(HT ,w1) ≤ νw1,HT ,0. Thus, minimizing
νw1,HT ,0 would amount to minimizeε(HT ,w1) as well. The
following Theorem shows much more, as under some weak
conditions, we can show thatνw1,HT ,θ is minimized forall
values ofθ ∈ [−1,+1) (and not only forθ = 0).

Theorem 1 After T ≥ 1 queries of WL, the classifier ob-
tained,HT , satisfies:

νw1,HT ,θ≤

(

1 + θ

1− θ

)

×
∑

p∈P

wT+1,Sp

∏

ht∈p

√

1− µ2
t , (9)

for anyθ ∈ [−1,+1].

(proof in appendix). To read Theorem 1, consider the follow-
ing WLA for real-valued weak hypotheses, borrowed from
[Nock and Nielsen, 2006]:



(WLA) |µt| ≥ γ, for someγ > 0 (∀t ≥ 1).

Under the WLA, Theorem 1 states thatνw1,HT ,θ ≤
Kθ exp(−minp∈P |p|γ

2/2), with Kθ constant wheneverθ
is a constant∈ [−1,+1). In other words, provided the in-
duction inG2 is performed so as to keep paths with roughly
equal size, such as by a breadth-first induction of the decision
graph, the margin error is guaranteed to decrease exponen-
tially fast. To see howG2 fits to tree-shaped decision graphs,
consider the following assumption:

(assumptionB) (i) eachht ∈ HT is a constant, and (ii)
G is a rooted tree.

Assumption (B) basically restrictsHT to be a tree of any arity,
still in which any kind of classifier may be used to split the
internal nodes. As in (3), we use notationw+/−

. as the index’
weight for class “+1” or “-1”, respectively.

Theorem 2 Suppose that (A) and (B) hold. Then:

HT (x) =
1

2
ln

w+
1,St

w−
1,St

, (10)

∀x ∈ X and ht is the leaf ofgHT
(x). Furthermore, (2)

simplifies as:

εexp(HT ,w1)=
∑

ht leaf of G

w1,St
× 2

√

√

√

√

w+
1,St

w1,St

(

1−
w+

1,St

w1,St

)

.(11)

= εimp(HT ,w1, 2
√

z(1− z)) . (12)

(proof in appendix).

4 Discussion
4.1 Kearns and Mansour’s algorithm, AdaBoost

and G2

The similarity between (12) and (3) withf(z) = 2
√

z(1− z)
is immediate, and quite surprising as it shows the identity be-
tween a convex loss and the expectation of a concave loss.
However, this is not a coincidence. Indeed, Theorem 2 shows
a rather surprising result: the choice of the weak hypotheses
does not impact at all onHT (see (10)). When (A) and (B)
hold, the only way to modifyHT is thus through its deci-
sion graph,i.e. on the choice of the splits of the tree. There
is a simple way to choose them, which is to do the same
thing as the most popular LS boosting algorithms[Friedman
et al., 2000; Schapire and Singer, 1999]: repeatedly mini-
mize the exponential loss in (2). Because of Theorem 2, this
amounts to the minimization of the impurity criterion in (3)
with f(z) = 2

√

z(1− z). This is exactly the DT induc-
tion algorithm proposed by[Kearns and Mansour, 1999] that
meets the representation optimal bound.

On the other hand, whenHT is a linear separator,
there is no influence of the decision graph on the induc-
tion of HT as it is a single path fromh1 to hT . The
only way to modify HT is thus through the choice of
the weak hypotheses. Suppose that each weak hypothe-
sis has output restricted to the set of classes,{−1,+1}.
In this case,αt = (1/2) ln((1 − ε(ht,wt))/ε(ht,wt)) =

arg minR Ew1
(exp(−yht(x))) (Figure 1), andG2 matches

exactlydiscrete AdaBoost[Freund and Schapire, 1997].
Thus, decision trees and linear separators are somehow ex-

tremal classifiers with respect toG2. Finally, whenHT is a
linear separator without restriction on the weak hypotheses,
G2 specializes to AdaBoostR

[Nock and Nielsen, 2006].

4.2 All boosting algorithms
In the original boosting setting, the examples are drawn in-
dependently according to some unknown but fixed distribu-
tion D over X , and the goal is to minimize thetrue risk
ε(HT ,D) with high probability,i.e. we basically wish that
ε(HT ,D) ≤ ǫ with probability≥ 1− δ over the sampling of
S [Freund and Schapire, 1997; Kearns and Valiant, 1989].
Two sufficient conditions for a polynomial time induction
algorithm to satisfy this constraint are (i) returnHT with
ε(HT ,w1) = 0, and (ii) prove that structural parameters of
the class of classifiers to whichHT belongs satisfy particular
bounds[Freund and Schapire, 1997; Shawe-Taylor and Cris-
tianini, 1998]. Theorem 1 is enough to prove that (i) holds
under fairly general conditions for algorithmG2 in Figure 3
provided WLA holds. For example,T = (2/γ2) log(1/ǫ) it-
erations for LS andT = (1/ǫ)2/γ2

for DT are enough to have
ε(HT ,w1) ≤ ǫ from Theorem 1. Fixingǫ < mini w1,i easily
yields (i). The bound for LS is the same as AdaBoost (dis-
crete or real)[Schapire and Singer, 1999], while that for DT
improves upon the exponent constant of[Kearns and Man-
sour, 1999]. Finally, (ii) is either immediate, or follows from
mild assumptions onG and WL. As a simple matter of fact,
(i) and (ii) also hold when inducing ODT withG2.

4.3 Recursive Boosting and Oblique Decision
Trees

The preceeding Subsections suggest thatG2 could be used
not only to buildHT , but also as the core procedure for WL.
For example, it comes from Theorem 2 that AdaBoost + trees
without pruning (Figure 1) is equivalent toG2 growing lin-
ear separators, in which WL isG2 growing a decision tree,
in which WL returns any constant weak hypothesis. In the
general case, we would obtain a recursive/composite design
of the “master”G2, via G2 itself, and the recursion would
end until we reach a WL that can afford exhaustive search for
simple classifiers (e.g. axis-parallel stumps, constant classi-
fiers, etc.), instead of calling againG2. However,G2 can
also be used to build the decision graph ofHT , in the same
recursive fashion. Consider for example the class ODT. The
internal nodes’ splits are local classifiers from LS that decide
the path based on the sign of their output, or equivalently, on
the class they would give. This suggest to build the tree with
G2 on both the linear separators in the internal nodes ofHT

(useSℓ to split leafℓ, where the linear separator uses ordi-
nary decision stumps),and on the tree shape as well. Call
BoostODT this ODT induction algorithm. It turns out that it
brings a boosting algorithm, that takes full advantage of the
ODT structure. However, this time, it is enough to assume the
WLA one level deeper, i.e. only for the stumps of the linear
separators, and not for the splits of the oblique decision tree.

Theorem 3 BoostODT is a boosting algorithm.
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Figure 4: Margin distributions for BoostODT (T1 = 50) on
domain XD6, with 10% (left), 20% (center) and 30% class
noise (right). Stair-shaped (bold plain) curves are the theoret-
ical margins for the logistic model (see text).

The proof, omitted due to the lack of space, builds upon The-
orem (1) plus Lemma 2.1 in[Mansour and McAllester, 2002],
and structural arguments in[Freund and Schapire, 1997;
Shawe-Taylor and Cristianini, 1998]. The proof emphasizes
the relative importance of sizes: suppose that each linear sep-
arator contains the same number of weak hypotheses (T1),
and the tree is complete withT2 internal nodes; then, having

T1 log T2 = Ω((1/γ2) log(1/ǫ))

is enough to haveε(HT ,w1) ≤ ǫ. From an experimental
standpoint, this suggests to build trees withT1 ≫ T2.

5 Experiments
We have performed comparisons on a testbed of 25 domains
with two classes, most of which can be found on the UCI
repository of ML databases[Blakeet al., 1998]. Comparisons
are performed via ten-fold stratified cross-validation, against
OC1 and AdaBoost in which the weak learner is C4.5 un-
pruned. BoostODT was ran forT1 ∈ {50, 200} (the weak
hypotheses of the linear separators are decision stumps) and
T2 = 4. To make fair comparisons, we ran AdaBoost for
a total number ofT = 5 boosting iterations. This brings
fair comparisons, as an observation is classified by 5 nodes
(including leaves) in BoostODT, and 5 unpruned trees in Ad-
aBoost. Before looking at the results, BoostODT has proven
to be much faster than OC1 in practice (ten tohundredtimes
faster). OC1’s time complexity isO(nm2 log m) [Murthy
et al., 1994], without guarantee on its result, while Boos-
tODT’s is O(nm) under the WLA, with the guarantee to
reach empirical consistency in this case. Complexity reduc-
tions have almost the same order of magnitude with respect to
SVM based induction of ODT[Shawe-Taylor and Cristianini,
1998]. Table 1 summarizes the results obtained. With rejec-
tion probabilitiesp ranging from less than.05 to less than
.005 for the hypothesisH0 that BoostODT does not perform
better, the four sign tests comparing both runs of BoostODT
to its opponents are enough to display its better performances,
and this is confirmed by student paired t-tests. There is more:
we can tell from simulated domains that BoostODT performs
as better as the domain gets harder. It is the case for the
Monks domains, and the LEDeven domains. BoostODT is
indeed beaten by both opponents on LEDeven, while it beats
both on LEDeven+17 (=LEDeven+17 irrelevant variables).

Looking at these simulated domains, we have drilled down
the results of BoostODT. Using (8), we have plotted on Figure

Domain BoostODT OC1 AdaBoost
T1 = 50 T1 = 200 +C4.5

Adult-strech 0.00 0.00 0.15 0.00
Breast-cancer 28.67 27.27 37.76 33.92
Breast-cancer-w. 3.72 3.86 6.01 4.43
Bupa 28.12 28.12 37.97 31.59
Colic 17.66 18.21 23.91 18.21
Colic.ORIG 13.86 15.76 16.03 32.07
Credit-a 14.64 14.93 20.43 15.51
Credit-g 26.50 25.40 31.10 28.40
Diabetes 25.91 23.44 34.64 29.82
Hepatitis 20.65 18.71 20.65 18.71
Ionosphere 7.41 6.27 9.12 7.41
Kr-vs-kp 3.38 3.35 3.69 0.69
Labor 10.53 10.53 15.79 12.28
LEDeven 15.25 14.75 9.75 10.50
LEDeven+17 22.75 21.50 38.25 30.75
Monks1 25.36 25.36 0.00 2.16
Monks2 1.00 0.67 0.33 26.96
Monks3 1.44 2.17 2.71 2.53
Mushroom 0.00 0.00 0.05 0.00
Parity 47.66 47.27 46.88 44.14
Sick 2.15 1.91 2.41 1.09
Sonar 13.94 12.50 33.17 18.27
Vote 3.91 3.45 4.37 5.29
XD6 20.57 18.77 5.33 5.40
Yellow-small 0.00 0.00 0.00 0.00
#Wins (T1 = 50) 17(10/4) 5(3) 8(3)
#Wins (T1 = 200) 18(10/7) 5(3) 8(3)

Table 1: Results on 25 domains. For each domain, bold
faces indicate the lowest errors. In each row “#Wins
(T1 = z)”, bold faces denote the number of times the
corresponding algorithm in column is the best over three
columns: BoostODT(T1 = z), OC1 and AdaBoost+C4.5
(z ∈ {50, 200}). Furthermore, the four numbers in parenthe-
ses in each row are the number ofsignificantwins (student
paired t-test,p = .05), for BoostODT vs OC1, BoostODT vs
AdaBoost+C4.5, and OC1 vs BoostODT, AdaBoost+C4.5 vs
BoostODT (from left to right).

4 its margin error curves on domain XD6 with variable class
noise (seee.g. [Nock and Nielsen, 2006] for a description of
the domain), averaged over the test folds[Nock and Nielsen,
2006]. Themargin curveobtained is compared to that of the
logistic prediction of[Friedmanet al., 2000], which can be
computed exactly. The approximation of the logistic model
by BoostODT is quite remarkable. Indeed, its margin curves
display the single stair-shape of a theoretical logistic model
for a domain XD6 with 8-13% additional class noise, uni-
formly distributed among the ODT leaves.

6 Conclusion
Perhaps one main contribution of this paper is to show that
formal boosting is within reach using the same unified algo-
rithm, for a wide variety of formalisms not restricted to the
most popular included in this paper (such as decision lists
[Rivest, 1987], simple rules[Nock, 2002], etc. ). Another
contribution, quite surprising, is to show that a boosting al-
gorithm follows immediately even for complex combinations



of these formalisms, such as linear combinations of oblique
decision trees, decision trees in which splits are decided by
decision lists, etc. This is crucial, as our last contribution, the
first boosting algorithm for the class of oblique decision trees,
contrasts in simplicity with respect to previous approaches on
inducing oblique decision trees. In future works, we plan to
evaluate the experimental and theoretical potentials of these
boosting algorithms for these other formalisms.
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7 Appendix
Proof of Theorem 1. Let us focus on a singlep ∈ P, and
consider an examplesi ∈ Sp. Using the proof of Theorem 1
in [Nock and Nielsen, 2006], we obtain:

w1,i1[νT (si)≤θ] ≤ wT+1,i

(

1 + θ

1− θ

)

×
∏

ht∈p

√

1− µ2
t ,

Computingνw1,HT ,θ = Ew1
(1[νT (si)≤θ]) and simplifying

for eachp ∈ P yields the statement of the Theorem.

Proof of Theorem 2. We need the following simple Lemma
(proof straightforward).

Lemma 1 Whenever (A) and (i) of (B) are satisfied, we have
w−

t+1,St
= w+

t+1,St
, ∀1 ≤ t ≤ T .

Consider a leafht of G, and let p = gHT
(x), for an

observationx that reaches this leaf. We first suppose that
St contains both positive and negative examples. This
implies that(αt′ht′) is finite, ∀ht′ ∈ p. All the positive
examples (resp. negative examples) ofSt have seen their
weights modified in thesame way through induction.
Let σb,t = 1 + bµt, with b ∈ {+,−}. When HT is
built, the total weight, according towT+1, of the posi-
tive (resp. negative) examples ofSt, satisfy w+

T+1,St
=

w+
1,St

/
(

∏

ht′∈p:ht′>0 σ+,t′
∏

ht′∈p:ht′<0 σ−,t′

)

(resp.

w−
T+1,St

= w−
1,St

/(
∏

ht′∈p:ht′<0 σ+,t′
∏

ht′∈p:ht′>0 σ−,t′)).

From Lemma 1, we havew+
T+1,St

= w−
T+1,St

, and we

obtain (w+
1,St

/w−
1,St

) =
(

∏

ht′∈p:ht′>0 (σ+,t′/σ−,t′)
)

×
(

∏

ht′∈p:ht′<0 (σ−,t′/σ+,t′)
)

. Taking half the logarithms of

both sides and rearranging, we obtain:

1

2
ln

w+
1,St

w−
1,St

=
∑

ht′∈p

ht′

2h⋆
t′

ln
1 + µt′

1− µt′
=
∑

ht′∈p

αt′ht′(x)=HT (x) ,

as claimed. The case whereSt does not contain examples of
both classes is immediate. Indeed, that means that at least one
of w+

1,St
andw−

1,St
is zero asG is a tree, and we obtain that

(1/2) ln(w+
1,St

/w−
1,St

) = HT (x) = ±∞. Finally, (11) is the
simplification of (2) with the new expressions forHT (.).


