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Abstract

In the past ten years, boosting has become a major

field of machine learning and classification. This
paper brings contributions to its theory and algo-
rithms. We first unify a well-known top-down de-
cision tree induction algorithm due {&earns and
Mansour, 1998 and discrete AdaBoogfFreund
and Schapire, 1997 as two versions of a same
higher-level boosting algorithm. It may be used
as the basic building block to devise simple prov-
able boosting algorithms for complex classifiers.
We provide one example: the first boosting al-
gorithm for Oblique Decision Trees, an algorithm
which turns out to be simpler, faster and signifi-
cantly more accurate than previous approaches.

Introduction

moderately accurate learners from which it getsiiesakhy-

potheses, and combines them to outputi@ng classifier
which boosts the accuracy to arbitrary high levitearns
and Valiant, 1980 A pioneering papefSchapire, 1990
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Frank Nielsen
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a simple assumption, a corresponding boosting algorithm.
Using a recent result due f{tock and Nielsen, 20Q6this
algorithm uses real-valued weak hypotheses, but it does not
face the repetitive minimization of the exponential lossefh

by previousReal boosting algorithmiFriedmaret al., 2000;
Schapire and Singer, 19P9Vhen the classifier is an oblique
decision tree, the algorithm obtained has three key festure
it is fast, simple, and the first provable boosting algorithm
that fully exploits this class. This is important, as thelpro
lem of inducing oblique decision trees has a longstandisg hi
tory, and the algorithms available so far are either time con
suming or complex to handle formallreimanet al, 1984;
Canti-Paz and Kamath, 2003; Heathal,, 1993; Murthyet

al., 1994; Shawe-Taylor and Cristianini, 1998 he follow-

ing Section presents definitions; it is followed by a Sectian
our theoretical results, and a Section that discusses thedm a
gives our boosting algorithm for oblique decision treesy tw
last Sections discuss experiments, and conclude. Forkiee sa
of clarity, proofs have been postponed to an appendix.

2 Definitions and problem statement

Bold-faced variables such as and x, represent vectors.
Unless otherwise stated, sets are represented by caHigrap

proved the existence of such bOOSting algorithms, and anoth upper-case a|phabem_,g_ X, and (un|ess exp|icite|y Stated)

one drew the roots of their most popular representative: Adenumerated following their lower-case, such{as

1=

aBoost, that builds a linear combination of the predictiohs 1 2 .} for vector sets, andiz; : i = 1,2, ...} for other sets.

the weak hypothesd&reund and Schapire, 1997Another

Consider the following supervised learning setting. BRét

paper due tdKearns and Mansour, 19Pproved that some of  denote a domain of observations of dimensiosuch aR™,

the most popular top-down decision tree induction algat&h 1 117 etc. . We suppose a sétf |S| = m examples, with
are also boosting algorithms in disgui8zeimanet al., 1984;

Quinlan, 1993 These two kinds of algorithms are outwardly y x {—1,41} : i = 1,2,...,m}, onto which a discrete dis-
different from each other: while AdaBoost repeatedly modi-tripution w; is known. “+1” is called the positive class, and
fiesweightson the training examples and directly minimizes «.1” the negative class. Our primary objective is related to
a convexexponential losstop-down decision tree induction pyilding an accurate classifier (or hypothesis): X — R.
algorithms do not modify weights on the examples, and theyrhe goodness of fit aff onS may be evaluated by two quan-

minimize the expectation of a concave, so-cafedmissible

function[Kearns and Mansour, 19p9

This explains why the starting point of this paper is a quite
surprising result, as we prove that these two kinds of algo-
rithms are in fact theamealgorithm, whose induction is per-

|.| the cardinal notation, defined & = {s; = (x;,v;) €

tities:
€(H,’LU1) =

E':exp(-ll—ry wl) =

B, (Lsign(H (@) #y]) @)
B, (exp(—yH(z))) . (2)

formed on two different classifier “graphs”. The apparemt pe Here,sign(a) = +1iff a > 0 and—1 otherwise,l | is the 0/1

ceptual differences in the algorithms stem only from défer
structural properties of the classifiers. This suggestarie

indicator variable, and () is the expectation. (1) is the con-
ventional empirical risk, and (2) is an upperbound, the expo

induction scheme which gives, for many classifiers that meenential losd Schapire and Singer, 19P9Ve are interested in



Input: S, wq; Input: S, wq; Input: S, ws;
fort=1,2,...,T fort=1,2,...T fort=1,2,....T
hy < Tree(S, w;); let ¢ € leaves(H;_1) containing let ¢ € leaves(H;_1) containing
p — argminger Eqp, (exp(—yah(x))); examples of both classes; examples of both classes;
fori=1,2,....m h¢ < Stump(Sp, w1 ); ht < StumpLS(Sp, w1);
Wiy1,i — Wi exp(—aeyihe(x:))/ 2, 0 hy; € hy;
AdaBoost + Trees TopDown DT (CART, C4.5) TopDown ODT (OC1, SADT)

Figure 1: An abstraction of 3 core greedy procedures of sapealar induction algorithms (see text for references andilde.

the stagewise, greedy fitting &f to S, from scratch. A large Figure 1 gives an abstract view of some of the most pop-
number of classes of classifiers have popular induction-algaular induction algorithms, or at least of their core proaedu
rithms whose core procedure follows this scheme, includingvhich induces a large classifier: AdaBoost with tree®und
Decision Trees (DT]Breimanet al, 1984; Quinlan, 1993  and Schapire, 1997; Schapire and Singer, 1988.5[Quin-
Branching Programs (BHMansour and McAllester, 2002 lan, 1993, CART [Breimanet al,, 1984, OC1[Murthy et
and Linear Separators (LgFreund and Schapire, 1997; al., 1994, SADT [Heathet al., 1993; the first algorithm for
Nock and Nielsen, 2006 Virtually all these procedures share the induction of ODT dates back to the mid-eighties; it was a
another common-point: the components that are used to grodescendant of CARIBreimanet al, 1984. Most of the in-
H are also classifiers. These are the DTs for AdaBoost witlduction algorithms for DT or ODT integrate a pruning stage;
trees, the internal node splits for the DTs and BPs (akin tdiere, we are only interested in the greedy induction scheme.
decision stumps), etc. WL has various forms: it induces a decision tree on the whole

Now, given some fixed class of classifiers in which we fit sampleS and on a distribution which is repeatedly modified
H, here is the problem statement. A weak learner (WL) isfor AdaBoost; it induces a decision tree with a single indérn
assumed to be available, which can be queried with a sammode (a stump) on the subset®fthat reaches leaf (noted
ple S’ and (discrete) distributionv’ on S’; the assump- S;) and on a distribution which is not modified for CART and
tion of its existence is called a Weak Learning Assump-C4.5; it replaces this ordinary, axis-parallel stump, biynadr
tion (WLA). It returns in polynomial timé a classifierh ~ separator stump (also called stump for the sake of simplicit
on which only the following can be assumesd(h,w’) <  for OC1 and SADT. The choice of a split for DT and ODT re-
1/2 — ~ for some~y > 0 [Schapire and Singer, 19P9 lies on the repetitive minimization of an “impurity” criten
Given 0 < e < 1, is it possible to build in polynomial which is the expectation, over the leaves of the current tree
time someH with ¢(H,w;) < ¢, after having queried” H, of a so-called permissible functijkearns and Mansour,
times WL for classifiershy, ho, ..., hy, for someT > 0 ? 1999:
Provided additional assumptions are made for its generaliz N
tion abilities (see Section “Discussion” below), this aigfum _ _ Wy,s, .
is called a boosting algorithdFreund and Schapire, 1997; Simp(H, w1, ) = Brtcaves() <f <w1,55>> ()
Kearns and Valiant, 1989

here, w; s/ is the total weight ofS” in w; and w* is its

3 Unifying boosting properties weight further restricted to the positive class. In the expe

For the sake of clarity, we now plug@ in subscript on ation, the \1Neight O{ ahlea’f iséuw[. The permissible func- q
H: An element of LS is a classifiefl; with Hy(z) = tion f : [0,1] — [0, 1] has to be concave, symmetric aroun

Zthl athi(x), wherea; € R is a leveraging coefficient that 1/2, and with /(0) = f(1) = 0 and f(1/2) = 1. Ex-

: . . ) I f issible functi =4z(1 —2)f
may be interpreted as a confidencéjn An element of DT is ZT]'? i?l?jgx [%erginrf;; ete aﬁnfglg 2 S f(“gz): . fo(g - —Zzl o_r

a rooted directed tree in which each internal node supports 2,1 _ for the entro uinlan. 1993 (log base-2). or
single boolean test over some observation variable, artd eac9> og(1 —2) PIQ ! B(log )

leaf is labeled by a real. The classification of some obser?\é?jnl\ﬁ(zn) = Evlgéég Zr%f(r)lz :Eet?l\llfltl?al ChOI;:{e o[Keargs
vation proceeds by following, from the root, the path whose? ; sou2, ; 1e a E 2e ;\’@mp(f w1, f) 2
tests it satisfies, until it reaches a leaf which gives itsgla cimp(1, w1, 2min{z, 1 — 2}) = 2c(H, w,), for any per-
Figure 2 (left) presents an example of Dif & 2), where Missible f, and so minimizing (3) amount to minimizing
v1, U2 are Boolean description variables. Finally, Oblique De—the empirical risk offf as well. The reason why this is

cision Trees (ODT) generalizes DT, as linear combinatidns o2 PEtter choice than focusing directly on the empirical risk
variables are authorized for the internal nodes, whichaadlo €°MeS from the concavity of the permissible funciiiearns

; : : : o - and Mansour, 1999 Though seemingly very different from
zf)“tls;ggt are oblique instead of just axis-paralBreimanet each other, AdaBoost and DT induction algorithms from the

CART-family were independently proven to be boosting al-
IFor the sake of simplicity, polynomial time means polynomial gorithms[Freund and Schapire, 1997; Kearns and Mansour,
in the relevant parameters throughout the paper. 1999; Schapire and Singer, 1999So far, no such formal



Figure 2: A DT with 3 leaves and 2 internal nodes (left) and
an equivalent representation which fits £9 (right).

boosting algorithm or proof exist for ODT that would take

Input: S, w;
fort=1,2,...T

compute S;;
he — WL(S;, wy);
fori=1,2,...m
Wi 1,5~ Wt ;X 1—p? !f s € Sy ’
1 if 5, € S\S,

fort=1,2,...,T
oy — (1/(2h7)) In((1 + pe) /(1 — pur));
GenericGreedy@?)

Figure 3: The generic greedy induction &f-. The compu-
tation of S; depends on the decision graph/éf.

full advantage of their structure combining oblique stumps

and decision trees. For this objective, let us shift to a mor
general standpoint on our problem, and address the foltpwi
qguestion: what kind of classifiers may be used to solve it
Consider the following assumption, thét: represents some

kind of local linear classifier:

(assumptiorA) VT' > 0, denoteHy = {hq, ha, ..., hr}
the set of outputs of WL; then, there exists a function

which maps any observation to a non-empty subset of

Hr, gy @ X — 2MT\{0}. Vx € X, gu, () is re-
quired to be computable polynomially inand the size
of Hr; it describes the classification function Hfr, in
the following way:

>

ht€gn (x)

HT(QB) Oétht(ﬂl‘) ,Vm e X .

By means of words, the classification Hf; is obtained by
summing the outputs of some elementstf. Many classi-

rSNe also extend the weight notation, and let s,
'Q:siesp Wy and Wy S,

= ZsiESt wy ; (With p € P an
1 <t <T+1). We also defind; = max,,es, |[h(x;)| €
R, the maximal absolute value bf overS,. After [Nock and
Nielsen, 2008 we define two notions ahargins the first is
the normalized margih; overS:

(i) € [-1,+1] . (6)

H

With the help of this definition, Figure 3 presents the gemeri
greedy induction ofHr. Remark that wherH is a linear
separator(:? is the AdaBoost boosting algorithm ofNock
and Nielsen, 2036 The second margin definition is the mar-
gin of Hy on examplgx, y) [Nock and Nielsen, 2046

vr({(z,y)) tanh(yHr(2)/2) € [-1,+1] . (7)
This margin comes to mind from the relationships between

fiers satisfy f), such as decisition trees, decision lists, linearhoosting and the logistic predictioH, (z) = log(Prly =

separators, etc.

Definition 1 Thedecision graph of Hr (onX) is an oriented
graphG = (Hrp,£); an arc (he, hy) € € iff ¢ < ' and there
exists some: € X such thath;, hy € gp,. () and nohy,
witht < ¢ < t'isingp, (x).

Remark that is acyclic, andy,, maps each observation of
X to some path ofy. We also defing® as representing the
set ofpathsof G that is mapped fron’ by gp.,.:

P {(pCHr:3zeX,p=gu,(z)} .

The simplest case o is obtained whengy, (x)
Hr, Ve € X: Hr is a linear separator, ar@ a single path
from hy to hy. Examples of classes of classifiers different
from linear separators and that fit #)(include DT and ODT.

+1|z]/Prly = —1|z]) [Friedmanet al, 200d. In this case,
(7) becomesvr((z,y)) = y(Prly = +1ja] — Prly —
—1]x]), whose expectation is the normalized margin (6) of
the Bayesian prediction ifi-1,+1] (also called gentle lo-
gistic approximation[Friedmanet al, 200d). Following
[Nock and Nielsen, 20Q6we define thenargin errorof Hyp

(V0 € [-1,+1]):

(8)

and we haves(Hp,w1) < UV, Hp0- Thus, minimizing

Vap, ,Hy,0 WOUld amount to minimize(Hy, w, ) as well. The
following Theorem shows much more, as under some weak
conditions, we can show that,, .. ¢ is minimized forall
values off € [—1,+1) (and not only fo® = 0).

Vw, ,Hr,0 Ew1(1[uT(s)§9]) ,

In this case( is a tree and weak hypotheses are in fact con-Theorem 1 After T' > 1 queries of WL, the classifier ob-

stant predictions on the tree nodes. Figure 2 (right) dyspla
the way we can represent a DT so as to mégt Remark
that there exists many possible equivalent transformatidn
a DT, the way we inducéi shall favor a single one out of
all, as follows. We define two types of subsets&{with
pePandl <t<T+1):

SP {<$27y1> GS:p:gHT(mi)} )
S Upe’P:htEpSp .

(4)
()

tained, Hr, satisfies:

1+0
1-0

>><Z Wr41,s, H Vi—ui, 9

le7HT79 S (
pEP hiEp

foranyé € [—1,+1].

(proof in appendix). To read Theorem 1, consider the follow-
ing WLA for real-valued weak hypotheses, borrowed from
[Nock and Nielsen, 2046



(WLA) |u¢| > =, for somey > 0 (Vt > 1).

Under the WLA, Theorem 1 states that,, n,.o <

Kg exp(—min,ep [p|y?/2), with K, constant whenevef

is a constane [—1,+1). In other words, provided the in-
duction inG? is performed so as to keep paths with roughly
equal size, such as by a breadth-first induction of the detisi

graph, the margin error is guaranteed to decrease exponeg-

tially fast. To see howis? fits to tree-shaped decision graphs,
consider the following assumption:
(assumptiorB) (i) eachh; € Hr is a constant, and (ii)
G is arooted tree.
Assumption B) basically restrictdi to be a tree of any arity,
still in which any kind of classifier may be used to split the

internal nodes. As in (3), we use notatieri/~ as the index’
weight for class “+1” or “-1”, respectively.

Theorem 2 Suppose thatX) and @) hold. Then:

+
1 w
Hr() = ghn-t2t (10)
1,51,

Ve € X and h; is the leaf ofgy.,. (x).
simplifies as:

Furthermore, (2)

+ +
w w
1,8 1,8
Eexp(Hr, w1)= E wy,s, X 2 p”» t <1 o ’)11)
h: leaf of G 1,5 1,5

= Eimp(Hr,w1,2v/2(1 —2)) .

(proof in appendix).

(12)

4 Discussion

4.1 Kearns and Mansour’s algorithm, AdaBoost
and G2

The similarity between (12) and (3) witf(z) = 21/2(1 — 2)

is immediate, and quite surprising as it shows the idengty b

tween a convex loss and the expectation of a concave los

arg ming Ey, (exp(—yhs(x))) (Figure 1), andG? matches
exactlydiscrete AdaBoodt-reund and Schapire, 1907

Thus, decision trees and linear separators are somehow ex-
tremal classifiers with respect @?. Finally, whenH is a
linear separator without restriction on the weak hypothgese
G? specializes to AdaBoast{Nock and Nielsen, 2006

2 All boosting algorithms

In the original boosting setting, the examples are drawn in-
dependently according to some unknown but fixed distribu-
tion D over X, and the goal is to minimize th&ue risk
e(Hr, D) with high probability,i.e. we basically wish that
e(Hr, D) < e with probability > 1 — ¢ over the sampling of

S [Freund and Schapire, 1997; Kearns and Valiant, 1989
Two sufficient conditions for a polynomial time induction
algorithm to satisfy this constraint are (i) retufiiy with
e(Hr,wy1) = 0, and (ii) prove that structural parameters of
the class of classifiers to whidt; belongs satisfy particular
boundgFreund and Schapire, 1997; Shawe-Taylor and Cris-
tianini, 1999. Theorem 1 is enough to prove that (i) holds
under fairly general conditions for algorith@ in Figure 3
provided WLA holds. For exampld, = (2/+2) log(1/¢) it-

erations for LS and’ = (1/6)2/72 for DT are enough to have
e(Hr,w;) < efrom Theorem 1. Fixing < min,; w; ; easily
yields (i). The bound for LS is the same as AdaBoost (dis-
crete or real] Schapire and Singer, 19Q%hile that for DT
improves upon the exponent constantkéarns and Man-
sour, 1999. Finally, (i) is either immediate, or follows from
mild assumptions o4 and WL. As a simple matter of fact,
(i) and (i) also hold when inducing ODT wit&.

4.3 Recursive Boosting and Oblique Decision
Trees

The preceeding Subsections suggest tiatcould be used
not only to buildH, but also as the core procedure for WL.
For example, it comes from Theorem 2 that AdaBoost + trees
without pruning (Figure 1) is equivalent 8 growing lin-

gar separators, in which WL &% growing a decision tree,

However, this is not a coincidence. Indeed, Theorem 2 show& Which WL returns any constant weak hypothesis. In the
a rather surprising result: the choice of the weak hypthesegeneraI case, we would obtain a recursive/composite design

does not impact at all ol (see (10)). WhenX) and B)
hold, the only way to modifyH is thus through its deci-

of the “master’G?, via G? itself, and the recursion would
end until we reach a WL that can afford exhaustive search for

sion graphi.e. on the choice of the splits of the tree. There SIMple classifierse(g. axis-parallel stumps, constant classi-
is a simple way to choose them, which is to do the samdi€rs, etc.), instead of calling agafa“. However,G* can

thing as the most popular LS boosting algorithiREedman
et al, 2000; Schapire and Singer, 199%epeatedly mini-

alsobe used to build the decision graph &f-, in the same
recursive fashion. Consider for example the class ODT. The

mize the exponential loss in (2). Because of Theorem 2, thigternal nodes’ splits are local classifiers from LS thatidec

amounts to the minimization of the impurity criterion in (3)
with f(z) = 24/z(1 —z). This isexactlythe DT induc-
tion algorithm proposed bjKearns and Mansour, 19pthat
meets the representation optimal bound.

On the other hand, wherf{; is a linear separator,
there is no influence of the decision graph on the induc
tion of Hy as it is a single path fromh; to hy. The
only way to modify Hy is thus through the choice of
the weak hypotheses.
sis has output restricted to the set of classes], +1}.
In this case: = (1/2)In((1 — e(he, wy))/e(he, wy)) =

Suppose that each weak hypoth

the path based on the sign of their output, or equivalently, o
the class they would give. This suggest to build the tree with
G2 onboththe linear separators in the internal nodesof
(useS;, to split leaf?, where the linear separator uses ordi-
nary decision stumpsgnd on the tree shape as well. Call
BoostODT this ODT induction algorithm. It turns out that it
brings a boosting algorithm, that takes full advantage ef th
ODT structure. However, this time, it is enough to assume the
g\_/LA one level deepei.e. only for the stumps of the linear
Separators, and not for the splits of the oblique decisiea. tr

Theorem 3 BoostODT is a boosting algorithm.



100 = 100 e e 100 o B Domain BoostODT OC1 | AdaBoost
80 ! 80 | 80 I T = 50 Ty = 200 +C4.5
60 60 60 Adult-strech 0.00 0.00 0.15 0.00
40 40 10 ‘ Breast-cancer 28.67| 27.27| 37.76 33.92
20 20 20 ], | Breast-cancer-w. 3.72 3.86 | 6.01 4.43
o LI 0 | 0 d Bupa 28.12 28.12 | 37.97 31.59
toes 005 1405 0 05 14 05 00 05t Colic 17.66 18.21 | 23.91 18.21
Colic.ORIG 13.86 15.76 | 16.03 32.07

. L Credit-a 14.64 14.93 | 20.43 15.51
Figure 4: Margin distributions for BoostODT{ = 50) on Credit-g 26.50 25.40 | 31.10 28.40
domain XD6, with 10 (left), 20% (center) and 3% class Diabetes 25.91 23.44 | 34.64 29.82
noise (right). Stair-shaped (bold plain) curves are theriie Hepatitis 20.65 18.71 | 20.65 18.71
ical margins for the logistic model (see text). lonosphere 7.41 6.27 | 9.12 7.41
Kr-vs-kp 3.38 3.35| 3.69 0.69

Labor 10.53 10.53 | 15.79 12.28

The proof, omitted due to the lack of space, builds upon Ther | Epeven 15.25 14.75| 9.75 10.50
orem (1) plus Lemma 2.1 iiMansour and McAllester, 2002 LEDeven+17 22.75 21.50 | 38.25 30.75
and structural arguments ilFreund and Schapire, 1997; | Monksl 25.36 25.36| 0.00 2.16
Shawe-Taylor and Cristianini, 19R8The proof emphasizes | Monks2 1.00 0.67| 0.33 26.96
the relative importance of sizes: suppose that each liregar s | Monks3 1.44 217 271 2.53
arator contains the same number of weak hypothegs ( y;r?g‘/room 43-22 4‘;-22 4%-22 42-22
and the tree is complete with, internal nodes; then, having Sick 515 191| 241 1.09
T = 2 Sonar 13.94 12,50 | 33.17 18.27

log T2 H(1/77) log(1/e)) \ote 3.91 3.45| 4.37 5.29

is enough to have(Hr,w;) < e. From an experimental | XD6 20.57 18.77| 5.33 5.40
standpoint, this suggests to build trees viith>> Ts. Yellow-small 0.00 0.00 | 0.00 0.00
ZWins (11 = 50) | 17(10/4) 53) 8(3)

5 Experiments #Wins (I = 200) 18(1077) | 5(3) 8(3)

We have performed comparisons on a testbed of 25 domains

with two classes, most of which can be found on the UCITable 1: Results on 25 domains. For each domain, bold
repository of ML databasé8lakeet al, 1999. Comparisons  faces indicate the lowest errors. In each rowWins

are performed via ten-fold stratified cross-validatioraiagt (7, = z)”, bold faces denote the number of times the
OC1 and AdaBoost in which the weak learner is C4.5 uncorresponding algorithm in column is the best over three
pruned. BoostODT was ran fdf, € {50,200} (the weak  columns: BoostODT[; = z), OC1 and AdaBoost+C4.5
hypotheses of the linear separators are decision stumgs) ag: ¢ {50,200}). Furthermore, the four numbers in parenthe-
T> = 4. To make fair comparisons, we ran AdaBoost for ses in each row are the numbersignificantwins (student

a total number off" = 5 boosting iterations. This brings paired t-testp = .05), for BoostODT vs OC1, BoostODT vs
fair comparisons, as an observation is classified by 5 nodesdaBoost+C4.5, and OC1 vs BoostODT, AdaBoost+C4.5 vs
(including leaves) in BoostODT, and 5 unpruned trees in Ad-BoostODT (from left to right).

aBoost. Before looking at the results, BoostODT has proven

to be much faster than OC1 in practice (tertodredtimes

faster). OCL's time complexity i©(nm? log m) [Murthy 4 its margin error curves on domain XD6 with variable class

; : : _noise (see.g.[Nock and Nielsen, 20Q6or a description of
et al, 1994, without guarantee on its result, while Boos the domain), averaged over the test fddeck and Nielsen,

tODT's is O(nm) under the WLA, with the guarantee to ; . X
reach empirical consistency in this case. Complexity reduczo?e]ti Thre g]iatriglrr: CEE’ﬁogtgmne(: ISI Cg?gdar(\a/\(/jhththatnoLthe
tions have almost the same order of magnitude with respect 1189 stic prediction ol -riedmanet al, ’ ch can be

SVM based induction of ODTShawe-Taylor and Cristianini, coMPuted exactly. The approximation of the logistic model
1994. Table 1 summarizes the results obtained. With rejec-by BoostODT is quite remarkable. Indeed, its margin curves

tion probabilitiesp ranging from less thard5 to less than display the single stair-shape of a theoretical logistideto

005 for the hypothesigl, that BoostODT does not perform [0f & domain XD6 with 8-1% additional class noise, uni-
better, the four sign tests comparing both runs of BoostOD'Itormly distributed among the ODT leaves.
to its opponents are enough to display its better perforesmnc .
and this is confirmed by student paired t-tests. There is mon,5 Conclusion
we can tell from simulated domains that BoostODT performsPerhaps one main contribution of this paper is to show that
as better as the domain gets harder. It is the case for thermal boosting is within reach using the same unified algo-
Monks domains, and the LEDeven domains. BoostODT igithm, for a wide variety of formalisms not restricted to the
indeed beaten by both opponents on LEDeven, while it beatsost popular included in this paper (such as decision lists
both on LEDeven+17 (=LEDeven17 irrelevant variables).  [Rivest, 198¥, simple rulegNock, 2002, etc. ). Another
Looking at these simulated domains, we have drilled dowrcontribution, quite surprising, is to show that a boostihg a
the results of BoostODT. Using (8), we have plotted on Figuregorithm follows immediately even for complex combinations



of these formalisms, such as linear combinations of obliqugQuinlan, 1993 J. R. Quinlan.C4.5 : programs for machine
decision trees, decision trees in which splits are decided b learning Morgan Kaufmann, 1993.

decision lists, etc. This is crucial, as our last contribatithe [Rivest, 1987 R.L. Rivest. Learning decision list&lachine
first boosting algorithm for the class of oblique decisi@es, Lear’ning 2:229-246, 1987.

contrasts in simplicity with respect to previous approsabre _ _ . .
inducing oblique decision trees. In future works, we plan tolSchapire and Singer, 19p®R. E. Schapire and Y. Singer.

evaluate the experimental and theoretical potentials egeth Ir’.np'roved b00$tlng algorlthms using confidence-rated pre-
boosting algorithms for these other formalisms. dictions. Machine Learning37:297-336, 1999.

[Schapire, 1990 R. E. Schapire. The strength of weak learn-
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