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Abstract low two different approaches to hypothesis production.
MIS and CLINT, for instance, identify the target at

We study the learn ability of Inductive Logic t~e limit, whereas most others use polynomial heuris-
Programming (ILP) concept classes with re- tICS for concept induction. Consequently, these sys-
spect to robust-learning. We first investigate tems are generally efficient learners, but, to our knowl-
the class of k-Horn clauses, and show that it edge, none can be formally shown to find the target
is not learnable in that model. We prove this concept in polynomial time.
using a reduction on which we impose as few Simultaneously, theoretical work has allowed to estab-
constraints as possible. From this proof, we lish learnability results for some subclasses of first or-
then show how we can also derive negative re- der Horn clauses. Early studies were undertaken in the
suIts for some PAC-learnable classes. Finally, Identification in the limit model (Gold, 1967), which
we end by discussing the applicational conse- describes learning as converging towards the target
quences of our work and its links with other concept, in finite time but given an unbounded amount
learnability studies regarding new learnabil- of examples. Schapiro (Schapiro, 1983) identified a
ity models for ILP. most general class learnable in this model by a con-

sistent algorithm (MIS) and other studies have since
been carried out in this framework (Banerji, 1987),

1 INTRODUCTION AND (Raedt, 1992). But most work focuses on Probably
MOTIVATION Approximately Correct (PAC) learnability (Valiant,

1984), (Kearns et al., 1987) which is thought to better
Inductive Logic Programming (ILP) is a branch of quant.ify the complexity of learning in terms of com-
Machine Learning which aims at learning concepts, putatlonal. effort and number of examples required.
expressed as (variously) restricted Horn Clause Pro- P.AC learnIng.r~laxes the convergence requirem~nt and
grams, from examples and in the presence of back- aIms at obtaInIng a hypothesis which is a good ap-
ground knowledge. In recent years, ILP has produced pr~ximation of this target, !rom a reasonable compu-
both experimental applications and theoretical learn- tatlo~ and from a polynomIal number of positive and
ability results. Among the former are systems such negatIve example.s.dra~n ~cco~ding to some fixed but
as MIS (Schapiro, 1983), FOIL (Quinlan, 1990), 11- unknown probabIlIty dIstrIbutIon. In ILP, this is in-
NUS (Lavrac et al., 1991), GOLEM (Muggleton and tractable for very general classes such as unconstrained
Feng, 1992), CLINT (Raedt and Bruynooghe, 1992), H~rn clauses (s~e (Kietz and D~eroski, 1994) for a de-
ITOU (Rouveirol, 1992), FORCE2 (Cohen, 1993b), taII~d presentatlon.ofcom~u:atlonal hardness results).

and others, which have been applied to domains such S.o, m order to achIeve posItIve results, several restric-

as biology, chess playing and natural language analy- tlon~ of Horn ?lause programs have been considered.
sis. A common feature of those systems is their use AgaIn, d~termmacy has played a central role, and the
of search space size reductions, achieved by restrict- class of sIngle nonrecursive i~-determinate clauses was
ing the expressivity of the concept classes they learn. shown to be PAC le~nable m (Muggleton and Feng,
For instance, determinacy is frequently used to en- 1.992). Se:eral .studles have since considered exten-
sure tractability. Algorithmically, these programs fol- Slons of thIs basIC class, thereby leading to both posi-



tive and negative results, first by relaxing some of its, then present the robust learning model in which we set
syntactical constraints (Cohen, 1993b), (Cohen, 1994), our study. In section 3, we prove the non learnability
(Cohen, 1995a) and (Cohen, 1995b), then by allowing of k-Horn clauses in that model. This intermediate re-
multiple clauses and recursivity. Dzeroski, Muggleton suIt allows us to derive the corollaries of section 4, in
and Russell (Dzerovski et al., 1992) have shown that which we expose its consequences on well known ILP
k (constant) non recursive constant depth determi- clesses. Finally, given the apparent negative nature of
nate clauses are learnable under simple distributions, our study, we discuss its applicational consequences,
and extended this result to otherwise similar recursive in the concluding remarks of section 5.
clauses of constant maximum arity provided member-
ship queries (Angluin et al., 1992) are allowed. Co- 2 FORMAL PRELIMINARIES
hen (Cohen, 1993a) then showed that the class of 2
ij-determinate linear and closed recursive clauses are .. . .
PAC learnable with special basecase queries. In sectIon 2.1, we precIsely define the ILP settmg m
In this paper, we have chosen a different model to ex- whi~h we place ourselves. :n p.a~ticular, we pres~nt
amine the practicallearnability of ILP concept classes. the mference procedure we Imphcltely use, the choIce
Indeed, PAC learning makes the strong assumption ~f whi?h directly influences our proofs later. ~n. Then,
that any target concept can be represented in the hy- m sectIon 2.2, we present the robust learnablhty model
pothesis class 1£, which is very rarely acceptable in which we consider and highlight its close relations with
practice. So, we consider the (more realistic in that the PAC framework.

respect) model of robust learnability studied in (Hoff-
gen and Simon, 1992). Robust learning abandons the 2.1 Learning Horn Clauses
above assumption and studies the degradation in pre-
diction performance of a hypothesis class 1£ when it Throughout this paper, we follow classical First Order
is not known a priori whether it contains the target Logic (FOL) notations. We assume the reader is fa-
concept's class, the situation in which it doesn't being miliar with these, and refer him to (Lloyd, 1992) for
described as overstraining 1£. Since the target con- background definitions.
cept may not be expressible in the hypothesis class, Given a Horn clause language £, and a correct infer-
robust learning contrasts with PAC by comparing the ence relation on £, an ILP learning problem can be
performance of a proposed hypothesis not with a pre- formalised as follows. Assume a background knowl-
cision parameter E, but with that of a theoretically edge l3K expressed in a language £l3 ~ £ and a set of
'best' hypothesis in 1£ plus E. It should be under- examples £ in a language ££ ~ £. The goal is to pro-
estood that making the above PAC assumption sim- duce a hypothesis h in a hypothesis class 1£ ~ £ con-
plifies the learning task. Consequently, suppressing it sistent with l3K and £ such that h and the background
makes robust learning a stricter model than PAC, and knowledge cover all positive examples and none of the
any robustly learnable (henceforth R-learnable) class negative ones. The choice of representation languages
(e.g. symmetric functions) will obviously also be PAC- for the background knowledge and the examples, and
learnable. However, it also makes for a model which is of inference relation greatly influence the complexity
closer to applicative requirements, and is particularly (or decidability) of the learning problem. A common
relevant for the highly restricted hypothesis classes of- restriction for both l3K and £ is to use ground facts.
ten considered. So, our goal here is to highlight di- And in order to ensure tractability, subsumption is
vergences with PAC results for some of the main ILP preferred to implication as correct inference procedure.
classes. In order to prove these, we first give an inter- As Kietz and Dzeroski (Kietz and Dzeroski, 1994),
mediate theorem for the class of k function-free Horn we use O-subsumption as inference relation. Its main
clauses, which contains most of the ILP classes studied drawback being that it doesn't allow the use of back-
in the PAC model, and which we show not to allow ro- ground knowledge, other subsumption relations have
bust learning. To our knowledge, the PAC equivalent been defined to do so, in particular generalised sub-
of this problem is open. We then show how, from the sumption (Buntine, 1988), and are thus preferred in
very general reduction used to prove the theorem, we ILP. The following lemma establishes a usefulliink be-
can derive properties for the main PAC learnable ILP tween the two in our context.
classes such as determinate or local clauses.

. . . I.. . Lemma 1 (Kietz and Dzeroski, 1994»
The rest of thIS paper IS orgam~ed as fo lo~s. I.n sectIon Learning a Horn clause program from a set of ground
2, we first make the ILP prob em we dea wIth clear, background knowledge facts l3K and ground example
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facts 6', the inference relation being generalised sub- Definition 2 (Robust Learnability) A hypothesis
sumption, is equivalent to learning the same program class ?-t is said to allow robust learning if there ex-
with B-subsumption, an empty background knowledge ists a learning algorithm L and a polynomial p(.,.,.,.),
and examples defined by e t- b, where e E 6' and which for any concept c in 2x accuracy and con-
b E B1\::. fidence parameters f and 8 can, using a sample of

. . .. m~p(1/f,1/8,n,nopt~,D(c))examples(suppliedbyan
In the followmg, we are mterested m learmng concepts oracle, according to any unknown but fixed distribution
in the form of k I:Iorn clauses from ground background D), outputs an f-optimal hypothesis h with probability
knowledge and examples. This lemma allows us to con- at least 1 - 8 and in time polynomial in m.
sider the background knowledge has been incorporated
in the new examples (and is thus empty). Hence, all Note that various learnability notions are linked ac-
our proofs make use of B-subsumption and an empty cording to the mutual inclusion relationship between C
background knowledge. We will let k-HORN denote and?-t. In particular, robust learning is the special case
the class containing sets of k function free non recur- of agnostic learning (KearnS et al., 1992), (Auer et al.,
sive Horn clauses. An element of k-HORN B-subsumes 1995) which occurs when C = 2x. When C ~ 1£, f-
an example e E 6' if one of its k clauses B-subsumes e. accuracy and f-optimality become equivalent. There-

fore, robust learnability becomes synonymous to PAC-
2.2 Robust Learning learnability since the aim of PAC-learning is to pro-

duce an f-accurate hypothesis with probability at least
We now define the learnability model in which we set 1 - 8. In the special case C = 1£, C is said to be PAC-
our study. The basic definitions are ta~en from. (~of- learnable by itself.
fgen and Simon, 1992). Let X be a fimte descrIptIon
set on which is defined a probability distribution D, Lemma 2 Robust learnability is a stricter model than
and let C ~ 2x and 1£ ~ 2x respectively denote a PAC.
concept class and a hypothesis class. We let n de-
note the size of the largest example in X. In the Proof Assume 1£ is not PAC-learnable by itself. This
Boolean framework, the size of any example is always means the target concept c (which is also the optimum
the number of description variables, but ILP exam- concept) cannot be approached within the PAC re-
pIes are ground facts of variable size, so the size of quirements. Since these are the same for robust learn-
the largest is taken as complexity parameter. A hy- ing, at least some concepts (c, for instance) in 2x ex-
pothesis h E 1£ is said to be f-accurate for the tar- ist which cannot be approximated by a hypotesis in
get concept c E C if its prediction error relative to c 1£. Therefore, if 1£ is not PAC-learnable it is not R-
is bounded by f, that is PD(h =F c) ~ f. Another learnable either.
important notion, particularly relevant if we assume
1£ c C, is f-optimality, which describes closeness to
the best possible hypothesis. Let c E C denote a con- 3 A NEGATIVE RESULT FOR k
cept, hopt(c) an optimal hypothesis for c in 1£, that FUNCTION-FREE NON
is PD(hopt(c) =F c) = inhE1lPD(h =F c) = opt1l,D(C), RECURSIVE HORN CLAUSES
and nopt~.D(C) the size of the smallest such optimal
hypothesis (wh.en c E 1£, that is the PAC assumption, In this section, we show that the general class of k-
hopt(c) has a ml error). function free Horn clauses does not allow proper ag-
Definition 1 (f-optimality) A hypothesis h E 1£ is nostic learning. This c~ass contains ~ost of the more

t . I ifP (h -.t. ) < t ( ) + restricted ones for WhICh PAC learmng results have
f-Op zma z D T C op 1l,D C f .' ..- already been obtaIned. As stated earlIer, thIS mterme-

We now define robust learnability, a close variant of diate result is trivial for the non PAC learnable ones.
PAC-Iearnability used when no assumption is made However, the reduction used in our proof allows us
that the hypothesis space contains the concept being to derive neg~tive robust learning properties for some
learnt. We adapt Hoffgen and Simon's (Hoffgen and of the others. It also solves a problem which, to our
Simon, 1992) definition to ILP requirements by intro- knowledge is open in the PAC framework, that is, are
ducing a size notion. Note that our extension is con- k function free Horn clauses learnable or not?
sistent with the original and similar in nature to that
of uniform PAC-Iearnability and predictability defined Theorem 1 If RP =F NP, for any integer constant
by Cohen in (Cohen, 1993b). k > 0, k-HORN does not allow robust learning.
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Proof: Hoffgen and Simon (Hoffgen and Simon, 1992) The target concept is supposed to be 8+. Note that
use an intermediate complexity problem associated to the parameters l/f, 1/8, n, nopt1l,D(C) are all polyno-
the hypothesis class, which they show to be NP-Hard mial in the size of G (the latter because the optimal
then show that this implies negative robust learnabil- hypothesis needs only one variable and its size is at
ity properties for the class. We perform both steps at most k * lVI, that is k clauses each containing all the
once. This allows us to give a self contained proof, li6terals found in the examples). Therefore, when L is
without having to present their simulation technique, run, the learning task is performed in time polynomial
even though we use a very similar argument. Our proof in the size of G, and therefore in the size of the in-
is based on a property shown by Arora «Arora, 1994), stance of 3-SAT. Assume that the reduction of (Pl.l)
pp 102-106), and which we now restate: is performed by fixing k' = k + 1. The following prop-
(Pl.l): Fix some constant k' >0. For any set of clauses erty proves the theorem by reaching a contradiction if
instance of 3-SAT (Garey and Johnson, 1979), we can RP # NP:
construct in polynomial time a graph G = (V, E) in- (Pl.2) if we answer positively to 3-SAT whenever the
stance of Clique, associated to some integer m (also formula h obtained from L makes at most (IVI-m)/E
computable in polynomial time) such that: errors on the examples, we obtain an RP algorithm

which solves 3-SAT.
. H the instance if 3-SAT is satisfiable, then the To prove (Pl.2), we have to prove the three following

clique number of G (denoted w( G» is equal to m. intermediate results:
. .. (Pl.3) H the error of some set of k-Horn clause is. H the mstance of 3-SAT is not satisfiable, then strictly lower than IVI + I/E, then any of the Horn

w(G) = m/k. clauses it contains corresponds to a clique in G, con-

. . taining the vertices corresponding to literals absent
With the help of (Pl.l), we show that If, for. some con- from the body of the corresponding clause. Indeed,
stant. k, k-Ho.rn clauses allow robust learnmg (name any negative example corresponds to an edge absent
L this algorIthm), then we can construct an RP- from G and because of the h pothesis all of them ar
algor~thm.to solve 3-SA~, a contrad~ction if RP # NP. well cl~sified. H the set of ;ertices c~rresponding t~
The idea is to run L With approP:iate examples. and the absent literals did not give rise to a clique, a nega-
parameters, generated from any mstance of Clique. tive example corresponding to the missing edge would
From any graph .G,define a set of IVI unary pre?icates be {}-subsumed by the clause, which is impossible.
al (.), ..., aivi (.), m one to one correspondence with the (PIA) The error of any set of k-Horn clause is at least
set V of vertices of G. The sets of examples are then (IVI- kw(G»/E . Indeed, if a hypothesis misclassifies

d~fi~d ~ ~llo~s: .' . < some negative example, the property is true. H not,
8 - {Pt - q(lt) +- AkE{l,...,IV!}-{t}ak(lt),'IIz - IV!} because of (Pl.3), to any clause corresponds a clique

~d in G. The number of postive examples {}-subsumed
8 =. . a {7.i~ 'II i . = E q(lij) +- b~ so~e clau~e is ex~ctly the size of the correspondin.g

AkE{l,...,IV!}-{t,!} k( t), (,3) rt ). clique m G: mdeed, m order to {}-subsume some POSi-
where {li,1 ~ z ~ IVI} and {lij, (Z,3) rt E} are con- tiveexample the literal absent in the positive example
stant symbols. 8- describes the edge str~cture o.f th.e must be abs~nt from the body of the clause. And con-
c?mplementary graph of G. The respective cardmali- versely, if some literal is absent from the body of the
ties are: clause, then the positive example that does not contain

18+1 = IVI and 18-1 = (IVI) -lEI this literal is (}-subsumed by the clause. Therefore,
2' there are at most kw(G) correctly classified positive

where (~) is the binomial coefficient. We fix the ex- examples.
ample weights to 1 for every positive example and to (Pl.5) There always exists some set of k-Horn clause
IVI + 1 for every negative one. The probability dis- whose error is (IVI - w(G»/E. Indeed, note that a
tribution over the examples used when L is run is single Horn clause whose body contains exactly the lit-
generated from these weights in an obvious manner: erals corresponding to the vertices absent from a max-
each example has an associated probability equal to clique makes mistakes only on positive examples, and
its weight divided by the total sum of the weights its error is equal to (IVI- w(G»/E.
E = 18+1 + (IV I + 1)18-1. The other learning param- We can now prove (Pl.2):
eters are: . Case 1: Suppose that the instance of 3-SAT is

f = 1/(E + 1) and 8 < 1. satisfiable. Then w(G) = m. Because of (Pl.5),



there exists some element of k-HORN whose error A term t in the head of a clause is determinate (that is,
is no more than (IVI - m)/E. In that case, with linked by a determinate linking chain of length 0). As-
probability greater than 1-8, L returns a hypoth- sume h = A t- B1, ..., Bm, Bm+l, ..., Bn. The term t
esis h whose error is no greater than opt1i,D(C) + to in the literal Bm+l is linked by a determinate linking-
, i.e. no greater than opt1i,D(C) (because of the chain of length i + 1 iff all the terms in Bm+l that
our choice of to), and so smaller than (IVI- m)/E. rifJpear in A t- B1, ..., Bm are linked by determinate
And in that case we answer positively with a prob- linking-chains of length at most i and for every sub-
ability greater than 1- 8. stitution 0 such that AO E t: and b'K I- {Bl, ...,Bm},

there is a unique substitution 0-, on the variables in t
. Case 2: Suppose that the instance of 3-SAT is not such that b'K I- Bm+1Oo-, i.e. if every variable in t

satisfiable. Then UJ(G) = m/(k+1). (PIA) shows which does not appear in preceding terms has only one
~hat the error of any element of k-HORN clauses possible binding, given the bindings of the variables of
IS at least (IVI - mk/(k + l))/E > (IVI - m)/E. the previous terms.

In that case, we never answer positively.
Definition 4 The determinate depth of a term is the

Cases 1 and 2 establish that, under the hypothesis mi.nimallengths of its determinate linking-chains (cov-
that k-HORN allows robust learning, we can construct enng all the terms). The (nondeterminate) depth of
some RP-algorithm to solve 3-SAT, which is a contra- a clause is the maximum depth of any of its variables.
diction if RP # NP.D The depth of a variable is 0 if it appears in the head of

a clause and d + 1 if it appears in a literal in the body
4 CONSEQUENCES ON of the clause alongside another variable of depth d.

PAC-LEARNABLE ILP A function-free clause of maximum arity j and depth
CLASSES i is said to be ij-determinate. This important restric-

tion has been used by numerous authors to achieve
The proof of theorem 2 imposes very little syntac- positive results. M~~leton ~d Feng (Muggleton and
tic/size constraints on the clauses and the examples. Feng, 1.9.92) used ~J-determmacy ~o s~~w the ~AC-
In this section we show that this allows us to derive learnabIhty of a sIngle non recurSIve 1.J-determmate
consequences for some well studied ILP classes, since clause. Dzeroski et al. (~zerovski et al., 1992) .have
the previous result is preserved by the usual restric- shown that k non recurSIve clauses of determInate
tions found in the literature and thus covers a large depth i are learnable under simple distributions for
majority of ILP problems th~t are known to be PAC- any positive integers i and k (they extended this re-
learnable. We now review the main restrictions on suIt to otherwise similar recursive clauses of constant
function free Horn clauses which have been adopted by maxim~m literal arity provided membership queries
various authors in order to achieve PAC-Iearnability (Anglum et al., 1992) are allowed). (Cohen, 1993a)
and briefly show that the proof given above applie~ has shown that the class of 2 ij-determinate linear
individually to each of them. Obviously, since robust and closed re:ursive clauses are PAC learnable with
learning is stricter than PAC-learning, any non PAC- Basecase querIes.

learnable class will not be ro?ustly l.e~rnable. So, we Theorem 2 If RP # N P, for any integers i ~ 0
co~centrate on classes for whIch posItIve PAC results and j, k > 0 the class ij-determinate non recusrive
eXlst. k-HORN is not R-learnable.

4.1 Determinate clauses Proof The proof is extremely simple and relies en-
tirely on the generality of the proof of theorem 1. In

Determinacy implies that given a ground substitution the construction of the examples sets, only literals of
for all the variables in the head of a clause, those for arity one are used. If the clauses produced as hypothe-
the variables in the body are uniquely determined by ses contained predicates of arity greater than one, they
a step by step (literal by literal) process. would subsume none of the examples. Hence, the opti-

mum hypothesis can be found in the subset of k-HORN
Definition 3 (Determinate clause) containing only literals of arity one (i.e. 0,1 determi-
A Horn clause h is determinate (with respect to the nate hypotheses). Also, since the head predicate of the
background knowledge and the examples) if every term clauses never appears in the body of our examples, the
t in h is determinate. clauses are non recursive. In other words, the proof of



Theorem 1 would have been the same if, instead of Proof As for Theorem 2 note that the predicates used
considering k- HORN, we had limited the hypotheses in the examples of the main proof are unary. So, an op-
to OI-determinate k-HORN. If the optimum could be timum can be found in clauses of arity one. Also, note
found in ij-determinate k-HORN, we could also find it that all the examples contain the same constant. So,
for 01-determinate k-HORN. The converse proves the in order to f)-subsume examples, a clause needs only
result. 0 ooe variable. Therefore, among optimal hypotheses of
Several authors have analysed the relaxation of the arity one, there necessarily exists one using only one
ij-determinacy restriction with respect to learnability. variable. Since, as is usually the case we are only inter-
However, Cohen (Cohen, 1994) and Kietz and Dzeroski ested in linked clauses (Kietz and Dzeroski, 1994), this
(Kietz and Dzeroski, 1994) have shown that using ei- proves that O-local k-HORN always contains the opti-
ther non constant (even logarithmically so) depth, or mum hypothesis. Again, the proof of Theorem 1 would
nondeterminate clauses leads to negative results. The have been the same if, instead of considering k-HORN,
following subsection discusses an alternative restric- we had limited the hypotheses to O-local k-HORN. If
tion which leads to a more general yet PAC-learnable the optimum could be found in i-local k-HORN, we
language. could also find it for O-local k-HORN. The converse

proves the result. 0
4.2 Local clauses Remark We have shown that ij-determinate k-HORN

and i-local k-HORN are not R-learnable. Given that
Locality is a completely semantic restriction which at- the proofs of Theorems 2 and 4 simply boil down to
tempts to quantify how much of a clause is influenced showing that that of Theorem 1 would hold unchanged
by the binding of a given variable. It is presented for these classes, it is quite obvious that the result
by the author as an alternative (to determinacy) re- also holds for their intersection. These results imply
striction which allows a greater number of practical that, used in a polynomial-time learning system, those
problems to be tackled. classes (which are all PAC learnable) could not toler-

ate overstraining.
Definition 5 (Local clause) Let h = A f-

BI,'..'l!n. be a clau~e. A variable V in h .is .said to 5 CONCLUDING REMARKS
be free if ~t appears ~n the body of h but not ~n ~ts head
A. A free variable VI is said to touch another V2 if
both appear in the same literal, and to influence V2 if In this work we have studied the learnability of some
it either touches it or touches some other free variables common ILP concept classes from a viewpoint not con-
which influence it. In other words, VI influences V2 if sidered before in the domain: instead of the more usual
VI's chosen binding affects the choices for V2. The PAC learning model, we have focused on robust learn-
locale of a free variable is then defined as the set of ability, an extension of PAC which relaxes a frequently
literals which contain it or another variable influenced unacceptable constraint on the hypothesis class. In or-
by it. And the locality of a clause h is defined to be the der to obtain general properties, we have first studied
size (i.e. number of literals) of the largest locale of all the class of k-Horn clauses, later deriving results for
the variables in h, or 0 if h contains no free variables. its PAC-learnable subsets. It turns out that none of

the classes is learnable in that model, so our study ap-
Cohen (Cohen, 1994) compares the expressivity of the pears to increase the gap between theoretical results
class of nonrecursive clauses of constant locality with and applicative ones. However, we may make two re-
that of non recursive clauses of constant depth. marks.

First, as stated before, the real implication of our
Theorem 3 (from (Cohen, 1994» For every ij- study is that no polynomial time exact algorithm can

,# determinate clause C, there exists a semantically be hoped to always produce good learning results using
equivalent clause C' of locality k = ad+l and of size these hypothesis languages, and that heuristics have to
no greater than k times that of C. be used. This reflects reality since all polynomial time

practical algorithms are based on heuristics.
This class is also shown to be PAC-learnable in (Co- Also, it should be noted that even in the more con-
hen, 1994). We now show that it isn't R-learnable. ventional PAC framework, a mismatch between the-

ory and practice has been reported. Muggleton (Mug-
Theorem 4 If RP # N P, for any positive integers gleton, 1994), for instance, attributes this to distri-
l, k > 0 the class i-local k-HORN is not R-learnable. butional assumption differences between theory and~



practice, then goes on to propose a new learnability Tenth National Conference on Artificial Intelli-
model (U-Iearnability) which replaces the worst case gence, A-AAI'93, pages 86-92.
analysis by an average case one. In a way, we come C h W (1994) P I . d .

. . 0 en,. . ac- earnIng non etermmate

to the same conclusIon and our work brIngs comple- I I P d. f h T l'lf h N . I. . causes. n rocee mgs 0 t e we~. auona

mentary theoretIcal arguments. Because It formally ...,
. I. th d £ h . t . al .th t d "'# Conference on Artificzal Intelhgence, AAAI g4,Imp Ies e nee or euns IC gon ms, our s u y - 676-681
shows that new models incorporating limited probabil- pages .

ity distribution families and average time complexity Cohen, W. (1995a). Pac-learning recursive logic pro-
analysis are required in order to evaluate them. Just as grams: Efficient algorithms. Journal of Artificial
PAC-results often use the link with NP-Completeness Intelligence Research, 2:501-539.
theory, it seems likely that such models would rely
on links with RNP-Completeness theory (Gurevich, Cohen, W. (1995b). Pac-learning recursive logic pro-
1991). grams: Negative results. Journal of Artificial In-

telligence Research, 2:541-571.

Acknowledgements Dzerovski, S., Muggleton, S., and Russel, S. (1992).
This work was completed in the Machine Learning and Pac-lea~nability of de.terminate logic programs. In
Classification team of the LIRMM. The authors wish ~roceedzngs ~f the Fifth Workshop on COmputa-
to thank Colin de la Higuera for reading and correcting uonal Learnzng Theory, COLT -92, pages 128-137.

earlier drafts of this paper, as well as Sazo Dzeroski for Garey, M. and Johnson, D. (1979). Computers and
his useful technical advice. Intractability - A guide to the Theory of NP-

Completeness. Freeman, San Francisco.
References Gold, E. (1967). Language indentification in the limit.

Angluin, D., Frazier, M., and Pitt, L. (1992). Learning Information and Control, 10:447-474.

conjunctions of horn clauses. Machine Learning, Gurevich, Y. (1991). Average case completeness. Jour-
9:147-164. nal of Computer and System Sciences, pages 346-

Arora, S. (1994). Probabilistic checking of proofs and 398.

hardness of approximation problems. Technical Hoffgen, K. and Simon, H. (1992). Lower bounds on
Report CS-TR-476-94. Princeton University. learning decision lists and trees. In Proceedings of

( ) the Fifth Workshop on COmputational Learning
Auer, P.,.Hol.te, R., andMa~ss, W. 199? T~eoryand Theo COLT'92 a es 428-439.

applIcatIons of agnostIc pac-learmng WIth small ry, , p g

decision trees. In Proceedings of the XII Interna- Kearns, M., Li, M., and Valiant, L. (1987). On the
tional Conference on Machine Learning, ML '95, learnability of boolean formulae. In Proceedings

-. pages 21-29. of the Nineteenth ACM Symposium on Theory of

B .. R (1987) Th d I. t . f Computing, STOCS'87, pages 285-294.
anerJI,. . eory an app Ica Ions 0 ag-

nostic pac-learning with small decision trees. In Kearns, M., Schapire, R., and Sellie, L. (1992). To-
Proceedings of the Tenth International Joint Con- wards efficient agnostic learning. In Proceedings
ference on Artificial Intelligence, IJCAI-87, pages of the Fifth ACM Workshop on COmputational
280-282. Learning Theory, COLT'92, pages 341-352.

Buntine, W. (1988). Generalized subsumption and its Kietz, J. and Dzeroski, S. (1994). Inductive logic pro-
applications to induction and redundancy. vol- gramming and learnability. Sigart Bulletin, 5:22-
ume 36, pages 149-176. 32.

Cohen, W. (1993a). Cryptographic limitations on Lavrac, N., S.Dzeroski, and Grobelnik, M. (1991).
learning one-clause logic programs. In Proceedings Learning non recursive definitions of relations
of the Tenth National Conference on Artificial In- with linus. In Proceedings of the Fifth European
telligence, AAAI'93, pages 80-85. Working Session on Learning, EWSL'91.

Cohen, W. (1993b). Pac-learning a restricted class of Lloyd, J. (1992). Foundations of Logic Programming.
recursive logic programs. In Proceedings of the Springer, Berlin, 2nd edition.



Muggleton, S. (1994). Bayesian inductive logic pro-
gramming. In Proceedings of the Seventh Work-
shop on COmputational Learning Theory.

Muggleton, S. and Feng, C. (1992). Efficient induction
of logic programs. Inductive Logic Programming. .-
Academic Press, New York.

Quinlan, R. (1990). Learning logical definitions from
relations. Machine Learning, 5:239-266.

Raedt, L. D. (1992). Interactive concept learning
and constructive induction by analogy. Machine
Learning, 8:107-150.

Raedt, L. D. and Bruynooghe, M. (1992). Belief up-
dating from integrity constraints and queries. Ar-
tificial Intelligence, 53:291-307.

Rouveirol, C. (1992). ITOU: induction of First Or-
der Theories. Inductive Logic Programming. Aca-
demic Press, New York.

Schapiro, E. Y. (1983). Algorithmic Program Debug-
ging. MIT Press, Cambridge, MA.

Valiant, L. (1984). A theory of the learnable. Associa-
tion for Computing Machinery Communications,
27:1134-1142.

.

-


