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Abstract

This paper presents decision committees. A
decision committee contains rules, each of
these beeing a couple (monomial, vector).
Each monomial is a condition that, when
matched by an instance, returns its vector.
When each monomial is tested, the sum of
the returned vectors is used to take the clas-
sification decision. We show that for every
constant k, the subclass of decision commit-
tees whose elements have monomial of length
< k is pac-learnable and that it properly con-
tains k-DL. However, we also show that the
problem of inducing the shortest consistent
decision committee is NP-Hard. This leads
to theoretical results on non-learnability, and
to negative considerations for practical op-
timization problems on decision committees.
A two-stages heuristic algorithm, IDC, is pre-
sented, that learns by a particular subclass of
decision committees. It first chooses mono-
mials by a breadth-first search inspired from
branch-and-bound algorithms. Then it clus-
ters gradually the resulting rules to form deci-
sion committees, according to the minimiza-
tion of empirical risk. Finally it selects the
decision committee over the final population,
which is the best according to the learning
sample. Experimental results on 15 arti-
ficial and real domains tend to show that
IDC achieves good results, while constructing
small, and interpretable decision committees.

1 Introduction

A decision committee contains rules, each of these bee-
ing a couple (monomial, vector). Each monomial is a
condition that, when fired, returns its vector. After
each monomial has been tested, the sum of the re-
turned vectors is used to take the classification de-
cision. A decision committee combines rules in an

additive fashion, like in MYCIN-type expert systems
(Shortliffe [Sho76]). The main idea is to allow the ab-
sence of any underlying ordering in the decision pro-
cedure (unlike the ordering of literals in a decision
tree, or the ordering of rules in a decision list), and to
take advantage of multiple knowledge (Gams [Gam89),
Kononenko and Kovaéi¢ [KK92]).

Decision committees may be viewed as a generaliza-
tion of Threshold Functions (Bruck [Bru90]) in the
multiclass case. They are also a very special case
of Neural Networks, where there would be constraints
over the activation functions and the network architec-
ture. The idea of combining the decision of rules is not
new (see for example Nilsson [Nil65], Bongard [Bon70],
Quinqueton and Sallantin [QS83], Cestnik and Bratko
[CB88], Gams [Gam89)], Gascuel [Gas89], Kononenko
and Kovaéi¢ [KK92]). Decision committees can be
viewed as a formalism that allows to express classes of
concepts using shared knowledge such as Sum of dis-
tribution, Voting method of Kononenko and Kovacié
[KK92], Voting method of Gascuel [Gas89]. Our aim
is to use this formalization to provide theoretical pac-
learnability results regarding classes of decision com-
mittees having practical and theoretical relevance.

One essential problem in systems that use shared
knowledge is how to combine rules to classify ex-
amples. If we restrict the monomials to single
monotonous literals, this problem is subsumed by that
of linear discrimination. Whithout this restriction, the
problem appears to be harder and a good practical il-
lustration of its difficulty is given by Kononenko and
Kovacic [KK92): indeed, they observe that their Vot-
ing and Sum of distribution methods give “bad or un-
stable” results. We propose a two-stages algorithm,
IDC (Induction of Decision Committees), that con-
structs decision committees from a particular subclass
chosen for its practical relevance. Firstly IDC isolates
rules in a very general way, each rule beeing judged
only on its intrinsic properties and on the whole learn-
ing sample. Secondly IDC constructs from a global
population of rules some decision committees by clus-
tering rules (or decision committees) gradually, ac-



cording to a simple criterion related to the principle
of minimization of empirical risk (Vapnik, [Vap82]).

Section §2 is devoted to definitions and theoretical re-
sults on learnability of decision committees. Section
§3 details the components of IDC. Section §4 presents
experimental results of IDC on publically available
databases, which are discussed in section §5.

2 Deﬁnitioné and theoretical results

As the reader shall see, decision committees have sev-
eral good properties: we show that if we limit the size
of each monomial appearing in a decision committee to
a constant k, then the resulting class is pac-learnable
(in the sense of Valiant [Val84]). For any constant
k, we also show that this subclass properly contains
k-DL, the set of decision lists where the size of each
monomial is < k, Rivest [Riv87]. We also study sub-
classes of decision committees having higher practical
interest, e.g. those whose elements have limited size.
We show that, like for many classes of Boolean formu-
lae (Rivest [Riv87], Kearns et al. [KLPV87a}, Pitt and
Valiant [PV88], Hancock et al. [HILT95]) the practi-
cal aim which is to obtain a good compromise between
complexity and goodness-of-fit is intractable for deci-
sion committees. This leads to negative results for
pac-learnability of the corresponding subclasses. This
also justifies the heuristic IDC we use in Section §3 to
construct these decision committees.

2.1 Notations

Let ¢ be the number of classes. A decision committee
contains two parts:

o A set of unordered couples (or rules) {(t, %)},
where each ¢; is a monomial (a conjunction of lit-
erals) over {0,1,*}" (n being the number of de-
scription variables), and each ©; is a vector in IR°
(in the two-classes case, it is sufficient to add a
single number rather than a 2-component vector).

e A Default Vector D in [0,1]°. Again, in the two-
classes case, the reader shall remark that D can
be replaced by a default class € {+,—}.

For any example e and any monomial ¢;, the proposi-
tion “e satisfies ¢;” is denoted by e = t;. The opposite
proposition “e does not satisfy t;” is denoted by e # ;.

The classification of any example e is made in the fol-
lowing way: define V. as follows:
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(ti, ¥:)]e=>t;

The class assigned to e is then

. a.rgmaxlstCI-/'e[j] if{argmaxlsjscf/;[j]l =1.

® AIgMAX; e, o o, Vilk] D[j] otherwise.

In other words, if the maximal component of V., is
unique then its index gives the class assigned to e.
Otherwise, we take the index of the maximal compo-
nent of D corresponding to the maximal components
of V..

We call DC the whole class of decision committees.
Define Yk < n, k-DC to be the subclass of DC where
each element has monomials of length < k. Further-
more, Yk > 0, k-complex-DC denotes the subset of DC
where each element has a total number of literals < k
(if a literal appears [ times, it is counted [ times).

Let # C R and F € {DC,-DC, k-complex-DC}.
Fu denotes the subset of F where for each deci-
sion committee and each rule, #; € U° (e.g. U =
{-1,0,1}, R*). For example, 3-DCR+ contains all
the decision committees whose monomials contains at
mcis;t 3 literals each, and whose vectors are elements of
Rt .

The previous definition leads to the following remark:
there is no point in fixing for U sets such as {—1,0,1}
for classes where no bound is fixed on the size of a deci-
sion committee (DC, k-DC), if we allow repetitions of
rules. Indeed, we artificially increase the power of the
decision committees, and, by this way, can get “as close
as” desired to real-valued vectors. Therefore, when we
write DC{_1 0,1}, k-DC{_1 0,1}, this implicitely means
that no repetition of rules is allowed. When we speak
of other subclasses having limited-size formulae like k-
complex-DCy_; 0,1}, we add whether or not such rep-
etitions are allowed.

The previous definitions are general ones. Subsections
$2.2 and §2.3 take place in the Boolean context, i.e.
¢ = 2. Therefore, we assume without loss of generality
t_l‘lat each vector is replaced by a number, and that
D is replaced by a default class € {+,—}. In order
to preserve homogeneous notations, in the following
Subsections, we keep definitions for & such as U =
{-1,0,1}, even if “0” is not necessary in the Boolean
framework. This is due to the fact that we make a large
use of U = {~1,0, 1}, particularly in our applications.

2.2 k-DC generalizes k-DL, and it is
learnable

It is well known that for every constant k > 0, k-DNF
(disjunctive normal forms with monomials whose size
is < k), k-CNF (conjunctive normal forms with clauses
having size < k) and k-DL are pac-learnable (Valiant
[Val84], Rivest [Riv87]). It is also shown in Rivest
[Riv87] that k-DL properly contains k-DNF and k-
CNF (which properly contains k-DT, that is, depth-k
decision trees). We show that for every constant k£ > 0,
k-DC properly contains k-DL,and furthermore that it
is learnable:



Proposition 1 Yk > 0 constani, k-DL C k-DC, and
k-DC is pac-learnable.

Proof Let f = {(t1,¢1),(t2,c¢2),...,(t1,c1)} be a k-
decision list. To see that k-DL C k-DC, It is sufficient
to associate to f; a sufficiently high integer greater than
the sum of the integers associated to the monomials
tj,i+ 1< j <l This ensures that the first monomial
satisfied by an example in f is the one that achieves
the decision in the decision committee. To see that
this inclusion is strict, we show that 1-DC{_; 0,1} € k-
DL, for every constant & > 0. Fix n > 2k an even
integer. Consider the following 1-DCy_; 0,1}

3
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The choice of the default class replacing D is not im-
portant. Every monomial using fewer than % literals
classifies at least one positive and one negative exam-
ple, so the first monomial of every k-DL is bound to
make mistakes, whatever the class to which it is asso-
ciated.

n

> %)

j:%-}-l

Now, for the pac-learnability property, note that when
k is fixed, the number of monomials of length < k is

]z::lw' <;‘> = O(n*)

Thus, instead of expressing the examples in {0, 1}", we

can express them in {0, 1}0(""). This transformation
is polynomial in n, and now the aim is only to find a
linear separator in this @(n*)-dimensional space. This
can be done using the polynomial-time algorithm of
Karmarkar [Kar84] for linear programming. m]

Remark: the integers chosen in the preceding proof
to transform the decision list into a decision commit-
tee are exponential in /. In our applications, we have
chosen U = {—1,0, 1}, without allowing repetitions of
rules. This leads to a subclass of decision committees
which cannot be used to check the inclusion relation-
ship of Proposition 1. Nevertheless, this restriction al-
lows us to preserve a useful property. The most used,
and practically-efficient, Boolean formulae are decision
trees, and we have
VO<k<nkDTC k-DC{_l,o’l}

To check this, replace each path from the root to a
leaf by the corresponding monomial associated to +1
or —1 whether the corresponding leaf is labeled “+”
or “—”. This leads to a formula € k-DCy._; 0,1}. The
inclusion is strict since k-DNF and k-CNF are also
properly contained in k-DCy_; 0,1}-

2.3 Negative results encountered in practice

A learning problem can be stated as an optimization
problem. The aim is to find a decision procedure

consistent with sufficiently big parts of the training
sample, but also sufficiently small (this leads to Oc-
cam’s principle, Murphy and Pazzani [MP94], Turan
[Tur91]). Usually, we hope to find one presenting a
good compromise between these two properties. In
fact, like for many other classes of Boolean formulae
(Hyafil and Rivest [HR76], Rivest [Riv87)], Kearns et
al. [KLPV87a], Hancock et al. [HILT95]) this aim is
also intractable for decision committees:

Proposition 2 It is NP-Hard to find the smallest de-
cision committee consistent with a set of examples, for
any fired U, with or without allowing repetitions of
rules.

Here, “size” can either mean whole number of literals
(reduction from the “Exact Cover By 3-Sets” problem,
Garey and Johnson [GJ79]) or number of rules (reduc-
tion from the “2-NM-Colorability” problem, Kearns
et al. [KLPV87a), Kearns et al. [KLPV87b], Pitt and
Valiant [PV88]).

Furthermore, in practice, interpretability means re-
strictions over Y. For the expert’s convenience, we
have decided to retain a small number of integers al-
lowing natural and simple interpretations of the rules
such as: “this rule is in favor (disfavor) of this class”,
“this rule is likely to be not correlated with this class”.
That’s why we fix in our applications &/ = {-1,0,1}
(and so we do not allow repetitions of rules). This ad-
ditional restriction intuitively makes the learning task
harder. A good illustration in the Boolean framework
is the following:

Proposition 3 Unless RP = NP, 1-DCi_1,,1} is
not pac-learnable.

(Reduction from “Zero-One Integer Programming”,
Kearns et al. [KLPV87a]). Thus, this limitation over
U makes the positive result of Proposition (1) become
negative. In a way, the negative results of proposition
(2) and (3) justify the use of the heuristic IDC we give
in the following section.

3 Learning by DC(_,0,): the IDC
algorithm

In order to preserve their interpretability, we have cho-
sen to construct decision committees where:

1. The vectors are elements of {—1,0, 1}°.

2. The rules appear at most once.

This section is devoted to the presentation of our
heuristic algorithm: IDC. The first part shows how
IDC constructs rules (i.e. chooses the monomials and
calculates the corresponding vectors). The second part
presents our clustering algorithm, which leads to the
hypothesis decision committee.



3.1 .Constructing rules
3.1.1 Choice of monomials

The algorithm we use to choose the monomials is a
version restricted to Boolean representations of an al-
gorithm implemented in the software PLAGE (Gas-
cuel [Gas86], [Gas89]). This algorithm is based on a
breadth-first search, inspired from Branch-and-Bound
algorithms. It uses the idea that a good rule must
present a good compromise between simplicity and
goodness-of-fit. Indeed, every rule R is judged on the
base of two criteria:

1. The simplicity criterion (or coverage) S(R) which
is the number of examples satisfying the rule.

2. The x? criterion, which is a measure of the dis-
criminant capacity of the rule.

We construct for R a 2xc table as below:

Ne1 | N2 | - § N
n_fl nf2 “ee nfc

Where ny; is the number of training examples of class
i that satisfy R, and nj; is the number of training
examples of class ¢ that do not satisfy R. Thus n¢; +
ng; = |ci|, where |c;| is the cardinality of the class ¢;
in the training sample. Then we have:

S(R) =) myj
j=1

and

c 2
B Ny -
X*(R) = |LS| (Z| TS Elc,-l(lLSIJ—S(R))) et
=1

where |LS| is the size of the learning sample. The
user fixes two thresholds ss, the simplicity thresh-
old, and sya, the x? threshold. The algorithm ensures
that every selected rule R satisfies (1) S(R) > ss, (2)

x%(R) > sy2 and no generalization of this “rule sat-
isfies them. The algorithm starts with the list L; of
rules whose monomials have length 1. Every selected
rule of L; (satisfying (1) and (2)) is put into the fi-
nal list of selected rules L.,q4. It is obvious that every
rule R satisfying S(R) < ss can be removed from L;,
since specializing this rule cannot increase its simplic-
ity. Now, the remaining rules of L; satisfy S(R) > ss
but x?(R) < sy2. The algorithm estimates the best x?
that a specialization of R could have (call it “opty2”).
This calculation is facilitated by a convexity property
of the x2 which allows the search of a greatly reduced
number of possibilities (see Gascuel [Gas89] for a com-
plete presenta.tion) Then the algorithm keeps in L, all
the remaining rules satisfying opt,s > sy2. For each
of these rules, all the direct speclahzatlons are con-
structed and put in a list L,. Every rule of L; having
a generalization in L.,q4 is removed from Ly, and the

process is repeated iteratively by putting in L.,q all
the selected rules of L, removing the rules of Ly hav-
ing a simplicity < sg, etc... It ends at a step j iff the
current list Lj = @, and returns L.n4. This algorithm
ensures that any rule of the rule space that satisfies
(1) and (2) (or one of its generalization that satisfies
(1)"and (2), if it exists) is retained in L.,q. Thus it
leads to a good cover of the rule space, but can also
lead to long searches if ss and s,2 parameters are not
adjusted well. Nevertheless, in practice, research time
took from a few seconds to 15 minutes, using a non-
optimized C++ program running on a Sun Sparc 10.
Furthermore, we remarked in practice that for almost
all the domains that were used to test IDC, L.nq was
composed of monomials having no more than 3 literals.

3.1.2 Calculation of the vectors

This is a two (at most) stage process that calculates
the corresponding vector of each monomial. Let t; be
a monomial chosen in the list L.,q4. The first stage is
the following: let e € ¢; be an example that satisfies ¢;
(for a given class ¢;). The values from {—1,0,1} are
associated to corresponding conditions as follows:

o Fi[j] = +1 is associated to the condition Pr(e =
) > 3 L with sufficiently high probability,

e #;[j] = —1 is associated to the condition Pr(e =
t;) < 1 with sufficiently high probability,

o ¥;[j] = 0 otherwise.

Fix f; = ﬁ’j Under suitable hypotheses, and with

probability > 1 —«, an upperbound of Pr(e # ¢;) may
be approximated using f; by the following quantity:

B(f;) = 1+2 (f: +4+1/¢2 +2qf]—2qf2)

Where ¢ = ]-E-IJ;[ln(;) (Hoeffding [Hoe63], Gascuel and
Caraux [GC92]). Obviously, if we can upperbound
Pr(e # t;) with probability 1 — «, then we can lower-
bound Pr(e => t;) with probability 1 — a.

Our rule to calculate #;[5] is the following:

o If B(f;) < 3 then 5[] = +1
e Else If B(1— f;) < 1 then ;[j] = -
¢ Else ¢;[j]=0

The second stage of the calculation takes place in
rarely encountered cases!, typical of rules having a low
x2. Namely, it takes place when all the values of the
calculated ¥; satisfy Vj, k < ¢, 5;[j] = vi[k] = v = £1.

~ Firstly take the case v = +1. Let f;, = maxi<c f
and fj, = maxpzj, < fx. Formula (1) above allows
us to bound the corresponding probabilities (Pr(e €

IThis particularly holds for the MONKS dataset #2,
where the target function is an XOR-like function.



¢j, 7 ti) for f (, and Pr(e € ¢;, # t;) for fj,), and in
J2

that case, if B(j2) < 1—B(1-j1), then #;[j] is flipped
and becomes ‘U,[]ll = -1.
+— Secondly take the case v = —1, let fj, = minz<. fr

and fj, = minkgj <e fi- If B(]l) <1-B(1- ]2)
then ¥;[j1] is flipped and becomes +1. The previous
calculations are then repeated for every monomial of

Lend-

3.2 Combining rules

The aim of this algorithm is to extract from the pop-
ulation L.,4 a subset of rules which, when combined
in a decision committee, have small error on the learn-
ing sample. Its general principle is inspired from the
agglomerative clustering algorithms of the statistical
litterature. In our case, the initial population Py is the
list of rules L.nq (where each monomial ¢; € Lepnq has
its corresponding vector #; calculated). The individu-
als are the rules, and they can also be assimilated to
decision committees (with one rule). Clusters of indi-
viduals are decision committees of more than one rule,
and grouping of individuals consists simply in merging
decision committees (to form new ones). When con-
structing a decision committee, the default vector is
calculated by putting into it the observed distribution
of ambiguous examples. At each step, two decision
committees are merged to form a new one. They are
chosen because their union maximizes a gain-criterion
G. The algorithms stops when every merging produces
a gain G < 0. Let C and C’ be two decision commit-
tees, and C UC’ be the decision committee formed by
merging C and C’. Let fc, fcr and fcuc' be the re-
spective error frequency on the training sample of the
previous decision committees. Then the gain criterion
Gc,c' produced by merging the two decision commit-
tees is:

=min{fc; fc'} — feucr

The two decision committees C, C' merged at step &
satisfy G¢,cr = maxc,,c,ep, {Gc,,c,} > 0. When this
maximal gain is < 0, the algorithm ends and returns
the best decision committee (according to the learn-
ing sample) of the current population. This algorithm
tries to take advantage of the shared nature of the
knowledge of the rules in a decision committee, by not
forgetting some rules (or decision committees), that
in fact could advantageously complete the description
quality of one when merged to it. Moreover, this ap-
proach empirically proved to be better than the greedy
one that consists of merging to a current decision com-
mittee (initalized to @) the rule that increases the most
the accuracy of this decision committee.

Gec

Clustering algorithms are frequently used in practice
in domains such as statistics. The algorithm for com-
bining rules is an adaptation of these techniques, that
gave good results. Nevertheless, it must be noted that
this algorithm is an heuristic, and we have the follow-
ing property:

Proposition 4 We cannot devise (unless P = NP)
even in the Boolean case an algorithm that, given L.nq
and the set of ezamples LS from which Lenq was con-
structed, can find (by merging rules from Lnq) a deci-
sion committee whose error on LS is optimal. And this
even holds for very restricted cases of Leng in which
each rule consists only in a single monotone literal as-
sociated to +1.

This is proved by reduction from the Vertex Cover
problem (Garey and Johnson [GJ79]).

4 Experiments

Subsection §4.1 presents in a general way how we used
datasets, and how we fixed the parameters of IDC.
Subsection §4.2 presents the datasets, and the results
we obtained.

4.1 Experimental process

Binarization of continuous values: Some problems
contain continuous attributes, hardly manageable for
binary-attributes based systems. Some algorithms
use sophisticated binarization procedures to overcome
this problem. Using a simple procedure (in order
not to bias the results of IDC), continuous values
were ternarized. Ternarization was chosen so as not
to lose a lot of information. Take a continuous at-
tribute. We cut the interval of its possible values three
times, so that the four remaining subintervals contain
approximately the same number of examples. Call
[i0, 1], [%1, 12, [22, 23], [#3, 74} these subintervals. Then
the first corresponding literal of an example is “1” iff
the corresponding value is < i;, and “0” otherwise.
The second corresponding literal is “1” iff the corre-
sponding value is < 19, and “0” otherwise, etc... Fi-
nally, using the preceeding procedure, every continu-
ous attribute gives indeed rise to three binary descrip-
tors.

Choice of parameters: The parameters of the algo-
rithm constructing monomials are fixed as follows:

e sg is a function of the quantity min, =
min;<. |¢;|. When ¢ > 2, ss = min.. When ¢ =2,
we put sg = < for almost all the problems.
This puts a fairly high constraint over selected
rules. However, for some particular problems
(e.g. the MONKS dataset #2), where sometimes
rules satisfying this constraint are not found, we
put sg = %, where b is determined by cross-
validation. We set an interval S of values that
b will take (2 to 10 in our experiments), and for
each of these, we perform 5 times the following.
Split the training set into a set LS; (2/3) and LS;
(1/3); perform IDC on LS; with adequate values
of b, and test it on LS;. After having averaged



Table 1: Characteristics of Data Sets.

Domain | #Learning | #LS | #Test | #Attrs | ¢ Comments
VO 435 1 [7] 16 2 Congress-Votes Problem
Vi 435 1 Q 15 2 V0+ attribute “Physician-fee Freeze” deleted
LE 200 11 5000 7 10 Digit recognition Problem
L24 200 11 5000 24 10 - LE 4 17 irrelevant attributes
WB 300 11 5000 21 3 Waveform Recognition Problem Binarized
WT 300 11 5000 21 3 Waveform Recognition Problem Ternarized
GL 214 1 0] 9 6 Identification of glass samples
G2 163 1 [7/] 2 | GL+ class 1, 3 grouped and class 4 to 6 deleted
IR 150 1 (0] 4 3 Fisher’s Iris dataset
M1 124 1 432 6 2 MONKS dataset #1
M2 169 1 432 6 2 MONKS dataset #2
M3 122 1 432 6 2 MONKS dataset #3
HE 270 1 1] 13 2 Heart dataset
AU 690 1 -0 14 2 Australian dataset
LA 57 1 %] 16 2 Labor Negotiations

References are: Breiman et al. [BFOS84]: LE, L24, WB, WT. Thrun et ol. [TBBB91]: M1, M2, M3. Buntine
and Niblett [BN92]: V0, V1, LE, GL, IR. Holte [Hol93]: VO, V1, GL, G2, IR. Gascuel and Gallinari [GG95):
WB, WT. Kohavi [Koh95}: V0, V1, GL, G2, IR, M1, M2, M3, HE, AU, LA.

error frequency on the 5 trials for each b, the min-
imal value of error frequency gives the value of b
to learn with the whole learning sample.

e 5,2 corresponds to a probability of overtaking o =
0.05 for a x? random variable with ¢ — 1 degrees
of freedom.

Cross-validations: When there is only one set of ex-
amples without any test set, we proceed by averaging
over 10 iterations the result of the following cross-
validation: randomly split the whole sample into a
learning sample (2/3 of the examples) and a test sam-
ple (1/3 of the examples); use the learning sample to
construct a decision committee with IDC, and test it
on the test set. This is the same experimental process
for cross-validation as the one of Holte [Hol93].

4.2 Experimental results

IDC was tested on the datasets summed up in Ta-
ble 1. There are 15 datasets. Datasets V0, V1, GL,
IR, M1, M2, M3, HE, AU, LA and Aha’s programs
(for LE and L24) are from the collection available
at the UCT Repostiory of machine learning database,
and were used exactly as they are found in the Jan-
uary 1995 distribution. Datasets WB, WT are avail-
able on request. Below Table 1 are additional refer-
ences for further informations or results concerning the
datasets.

Table 2 shows the performances of IDC compared with
other algorithms (values are of the form “Mean +
Standard Deviation”). Column “Best reported” is a
non-exhaustive review of results about the best known
results. These results concerns algorithms different

than CART, C4 and IDC. They either come from
mentioned publications or are available at the UCI
repository of machine learning database (results dis-
tinguished by “o”).

Table 2 shows that IDC can perform good results not
only in simulated and noisy domains (e.g. LE and L24,
for which Bayes accuracy is 74%), but also in simu-
lated unnoisy domains (M2). If we exclude GL (where,
however, IDC’s result is not significantly different from
CART’s), this is also the case in real domains (HE, AU,
VO, IR). These results are to be compared in the light
of the corresponding sizes of the decision committees.
Rules are neither numerous nor complex.

5 Discussion

IDC’s heuristic is not the first we have studied to
construct decision committees. Particularly, we have
already studied stochastic techniques (genetic algo-
rithms, simulated annealing in the same way as De
Carvalho Gomes and Gascuel [dCGG94]), and vari-
ous greedy techniques. But we abandoned them be-
cause of their results. Indeed, the results we obtained
were never as good as IDC’s. Their common point is
that the problem of constructing decision committees
was solved in one step, and not two like for IDC (con-
struction of rules/combination of rules). In fact, this
one-step constructions implied that rules did not have
individual value, since any judgment was made only
on the base of the whole decision committee.

On almost every dataset, IDC gave good results. Par-
ticularly, in a way, it proved experimentally to be
noise-tolerant. For simulated problems such as LE



Table 2: Performances of IDC, compared with decision trees algorithms, and others.

Accuracies Sizes

IDC | D. Trees Best reported IDC | D. Trees
VO [[95.24+1.1 [ 95.5+1.0* | 95.3 NN [Hol93] 1.0+£0.0 | 9.2+5.0
Vi 89.11+1.8 | 87.2+1.5¢ | 86.8 1R [Hol3] 6.4+19 | 15.8+8.0¢
LE || 74.27+0.6 | 66.2+ 3.1} | 73.3 IWN® 1224+ 1.9 | 24.6+5.4¢
L24 || 73.60+2.0 | 70} 71.5 NT-growth® 17.6+ 3.5
WB || 76.25+2.3 | 71.2+1.67 | 79.1 NN [GG95] 15+ 6.4
WT || 80.36+1.6 | 70.5+ 1.8t | 81.9 NN [GG95] 36 +12.7
GL |l 55.89+6.4 | 60.446.2¢ | 62.0 BruteDL [SE94] 20+ 7.2 | 14.2+8.0¢
G2 || 72.96+8.0 [ 70.6+2.0 | 72.9 1R [Hol93] 12.1+£5.9
IR |[ 96.00+2.7 | 95.0+3.1¢ | 98.0 Lin. Disc. [Hol93] || 4.3+2.8 54 1%
M1 || 83.34 75.7 100 AQ-17 [TBBBY1] 5
M2 || 70.61 65.0 100 AQ-17 [TBBB91] 18
M3 || 97.33 97.2 100 AQ-17 [TBBB91] 2
HE || 82.11+4.6 | 76.7+ 1.8 | 80.4 IDTM [Koh95] 1521+ 7.8
AU || 85.43+14 | 854+1.1 | 849 IDTM [Koh95] 18419
LA || 83.69+7.0 | 85.7+£3.5 | 90.0 AQ-15 [Hol93] 6.842.9

++ Results for decision trees (D. Trees) are given for C4.5 (Kohavi [Koh95]), except:
t Induction of decision trees based on Kolmogorov-Smirnov distance (Celeux and Lechevallier [CL82], Gascuel and Galli-

nari [GG95]).

1 CART results (Breiman et al. [BFOS84] for L24), and Buntine and Niblett results {BN92] for VO, V1, LE, GL.
++ Sizes are the number of literals for IDC, and the number of edges for decision trees.

and L24, this tolerance is optimal or nearly optimal.
WB, WT, M3 also reflect this property. Cestnik and
Bratko [CB88] present redundancy as ways to cope
with noise. It seems that IDC confirms this remark
for several datasets. IDC is to be judged not only by
its performances on testing, but also in the light of
the corresponding sizes of the decision committees it
creates. These decision committees are comprehensi-
ble, easy-to-interpret concepts. Firstly, this is due to
the choice of the subclass of decision committees used
by IDC. Secondly, note that the qualities of a rule are
judged on the whole learning sample, independently of
the previous retained rules. Learned rules can there-
fore be considered also in isolation (Segal and Etzioni
[SE94]). But obviously, the smaller the decision com-
mittees, the easier the interpretation. Thirdly, note
that IDC effectively tends to choose decision commit-
tees that have few rules.

WB and WT proved the importance of combining rules
in the additive manner of decision committees. In-
deed, Gascuel and Gallinari [GG95] remark that opti-
mal frontiers in these problems seems to be almost lin-
ear separators. The decision committees constructed
allow to approximate these surfaces, hence our results.
On the contrary, linear separators are hardly approx-
imable by decision trees, which obtain lesser results
(cf Table 2), unless “Oblique decision trees” are used
(Breiman et al. [BFOS84], Murthy et al. [MKS94])

In a more general context, our work empirically con-

firmed for several problems the importance of redun-
dant and multiple knowledge (Cestnik and Bratko
[CB88], Gams [Gam89], Kononenko and Kovati¢
[KK92]).
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