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Abstract additive fashion, like in MYCIN-type expert systems
(Shortliffe [Sh076]). The main idea is to allow the ab-

This paper presents decision committees. A sence of an~ underlying ~rdering. in the .decision .p.ro-
decision committee contains rules, each of cedure (unlIke t~e orderIng .of lIter~l.s m.a decIsIon
these beeing a couple (monomial, vector). tree, or the orderIng of. rules m a decIsIon lIst), and to
Each monomial is a condition that when take advantage of multIple knowledge (Gams [Gam89] ,
matched by an instance, returns its 'vector. Kononenko and Kovacic [KK92]).
When each monomi~l is tested, the sum of Decision committees may be viewed as a generaliza-
t?e re~urned ,!:ctors IS used to take the clas- tion of Threshold Functions (Bruck [Bru90]) in the
sification decIsIon. We show ~h~t for eve~y multiclass case. They are also a very special case
constant k, the subclass of decIsIon commlt- of Neural Networks where there would be constraints
tees whose elements have monomial of length over the activation functions and the network architec-
~ k is pac-learnable and that it properly con- ture. The idea of combining the decision of rules is not
tains k-DL. .Howe.ver, we also show th~t the new (see for example Nilsson [NiI65] , Bongard [Bon70],
problem of mducmg the shortest consIstent Quinqueton and Sallantin [QS83] Cestnik and Bratko
decision c?mmittee is NP-Hard. T?~s leads [CB88] , Gams [Gam89], Gascuel'[Gas89], Kononenko
to theore.tlcal res';llts o~ non-learnabII!ty, and and Kovacic [KK92]). Decision committees can be
to negatIve consIderatIons for practIcal op- viewed as a formalism that allows to express classes of
timization proble~s. on dec~sion comm.ittees. concepts using shared knowledge such as Sum of dis-
A two-stages heUrIstIc algorI~hm, IDC, IS pre- tribution, Voting method of Kononenko and Kovacic
sen~e~, that lea!ns by a partIcular subclass of [KK92], Voting method of Gascuel [Gas89]. Our aim
deCISIon commIttees. It first chooses mono- is to use this formalization to provide theoretical pac-
mials by a breadth-first ~earch inspire.d from learn ability results regarding classes of decision com-
branch-and-bound algorIthms. Then It clus- mittees having practical and theoretical relevance.
ters gradually the resulting rules to form deci- ..
sion committees, according to the minimiza- One essentI.al problem m s.ystems that use .shared
tion of empirical risk. Finally it selects the knowledge IS how to .combme rules t? class1f~ ex-
decision committee over the final population amples. If we restrIct the monomIals to smgle
which is the best according to the learnin~ mo~otono~ l~te~als,. this pro.blem is s~bsum~d .by that
sample. Experimental results on 15 arti- of lInear diSCrImmation. Whlthout thIS restrIctlo.n, t~e
ficial and real domains tend to show that problem appears to be harder and a good practIcal 11-
IDC achieves good results, while constructing lustr~~i_on of its d.ifliculty is given by Kononen~o and
small, and interpretable decision committees. ~ovaclc [KK92]: !nd~ed,.they observe ~hat theIr Vot-

Ing and Sum of dIstrIbutIon methods gIve "bad or un-
stable" results. We propose a two-stages algorithm,

1 Introduction IDC (Indu~~ion of D~cision Committe.es) , that con-
structs decIsion commIttees from a partIcular subclass

. . .. th b chosen for its practical relevance. Firstly IDC isolates
~ decIsIon commlttee.contams rules, each of e~e .ee- rules in a very general way, each rule beeing judged
Ing a couple (monomIal, vector). Each monomIal IS a only on its intrinsic properties and on the whole learn-
condition th8;t, when fired, returns its vector. After ing sample. Secondly IDC constructs from a global
each monomlal.has been tested, the su~ of .the re- population of rules some decision committees by clus-
t';l~ned vectors. I.S used to. take the ~lasslficatlo~ de- tering rules (or decision com!mittees) gradually, ac-
ClSIon. A decIsIon commIttee combmes rules In an
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cording to a simple criterion related to the principle. argmaxjEargmaxk Y.[k] D[j] otherwise,
of minimization of empirical risk (Vapnik, [Vap82]),
Section §2 is devoted to definitions and theoretical re- In .other wor?s, .if the ~aximal compone.nt of Ve is
suIts on learnability of decision committees. Section umque then Its Index gIves the class assIgned to e.
§3 details the components of mc. Section §4 presents Otherwi~, we take the index of the maximal compo-
experimental results of mc on publically available neIlJ; of D corresponding to the maximal components
databases, which are discussed in section §5, of Ve.

We call DC the whole class of decision committees.
2 Definitions and theoretical results Define 'v'k .5: n, k-DC to be the subclass of DC where

each element has monomials of length .5: k. Further-
As the reader shall see, decision committees have sev- more, 'v'k > 0, k-complex-DC denotes the subset of DC
eral good properties: we show that if we limit the size where each element has a total number of literals .5: k
of each monomial appearing in a decision committee to (if a literal appears I times, it is counted I times).
a. constant k, then t~e resulting class is pac-learnable Let U C lR and F E {DC, k-DC, k-complex-DC}.
(m the sense of ValIant [VaI84]) , For any constant 'I:"

d - t th b t f 'I:" h l' h d .
, ' ~u eno es e su se 0 ~ were J.or eac eCI-k, we also show that thIS subclass properly contams. .tt d h I ~ E Uc ( Uh f d .. I' h h . f h Slon commI ee an eac ru e, Vi e.g. =

k-DL, t e set 0 eClSlon IStS were t e SIze 0 eac { 1 0 1} lR+) F I 3 DC t . II. I' < k R' t [R' 87] WIt d b - ", . or examp e, - R+ con ams a
monomla IS :-. ' Ives. IV '. e a. so s u y s~ - the decision committees whose monomials contains at
classes of decIsIon commIttees havIng hIgher practIcal t 3 I ' t 1 h d h t I t f. ,. . mos 1 era s eac an w ose vec ors are e emen soInterest, e.g. those whose elements have lImIted SIze. lR+C '
We show that, like for many classes of Boolean formu- .

lae (Rivest [Riv87], Kearns et al. [KLPV87a], Pitt and The previous definition leads to the following remark:
Valiant [PV88], Hancock et al. [HJLT95]) the practi- there is no point in fixing for U sets such as {-1, 0, 1}
cal aim which is to obtain a good compromise between for classes where no bound is fixed on the size of a deci-
complexity and goodness-of-fit is intractable for deci- sion committee (DC, k-DC), if we allow repetitions of
sion committees. This leads to negative results for rules, Indeed, we artificially increase the power of the
pac-learnability of the corresponding subclasses. This decision committees, and, by this way, can get ''as close
also justifies the heuristic mc we use in Section §3 to as'' desired to real-valued vectors. Therefore, when we
construct these decision committees. write DC{-l,O,l}' k-DC{-l,O,l}' this implicitely means

that no repetition of rules is allowed. When we speak
2.1 Notations of other subclasses having limited-size formulae like k-

complex-DC{ -l,O,l}, we add whether or not such rep-
Let c be the number of classes. A decision committee etitions are allowed.
contains two parts: The previous definitions are general ones. Subsections

A t f d d 1 ( I ) {(t ~ )} §2.2 and §2.3 take place in the Boolean context, i.e.. se 0 unor ere coup es or ru es i, Vi, 2 Th t' . h 1 f I .
h h t . , 1( , t . fl ' t c =. ereJ.ore, we assume WIt out oss 0 genera Ity

were eac i IS a monomla a conJunc Ion 0 1 - ,
erals) over {O, 1, *}n (n being the number of de- t3~t each vector IS replaced by a number, and that
scription variables), and each ~ is a vector in lRc D IS replaced by a default clas~ E {-,t, -}. In or?er
(in the two-classes case, it is sufficient to add a to pres~rve homogeneous n.°~atlons, m the folloWIng
single number rather than a 2-component vector). SubsectIons, we keep defimtlons for U such as U =

~ {-1,0, 1}, even if "0" is not necessary in the Boolean
. A Default Vector D in [0, 1]C, Again, in the two- framework. This is due to the fact that we make a large

classes case, the reader shall remark that D can use of U = {-1, 0, 1}, particularly in our applications,
be replaced by a default class E {+,-}.

. ,2.2 k-DC generalizes k-DL, and it is
For any example e and any monomIal ti, the propOSI- learnable
tion "e satisfies ti" is denoted by e ~ ti. The opposite
proposition "e does not satisfy ti" is denoted by e :po ti. It is well known that for every constant k > 0, k-DNF
The classification of any example e is made in the fol- (disjunctive normal forms with monomials whose size
I ' d fi IT t' II is < k), k-CNF (conjunctive normal forms with clauses
OWIng way: e ne Ve as J.O ows: h -. . < k) d k DL 1 bl (V I .

avmg SIze - an - are pac- earna e a Iant

if; = L v' [Val84], Rivest [Riv87]). It is also shown in Riveste (t 11)1 t' [Riv87] that k-DL properly contains k-DNF and k-
" . e::>. CNF (which properly contains k-DT, that is, depth-k

The class assigned to e is then decision trees). We show that for every constant k > 0,
k-DC properly contains k-DL,iand furthermore that it

. argmaxl$j$CVe[j] if largmaxl$j$CVe[j]1 = 1. is learnable:
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Proposition 1 Vk > 0 constant, k-DL C k-DC, and consistent with sufficiently big parts of the training
k-DC is pac-learnable. sample, but also sufficiently small (this leads to Oc-

cam's principle, Murphy and Pazzani [MP94], Thran
Pr<;>~f L~t f = {(t1, C1), (t2, C2), ..., (t/, c/)} be ~ k- [Thr91]). Usually, we hope to find one presenting a
decIsIon list. To see that k-DL ~ k-DC, It 1S sufficIent good compromise between these two properties. In
to associate to ti a sufficiently high integer greater than fact, like for many other classes of Boolean formulae
the. sum of. the inte~ers associated to the monomi~ls (Hya.fil and Rivest [HR76] , Rivest [Riv87], Kearns et
4, ~ + 1:5: J :5: I. ThIs en~ures.that the first mon~mlal al. [KLPV87a], Hancock et al. [HJLT95]) this aim is
satIsfied by an example m f IS the one that achIeves also intractable for decision committees:
the decision in the decision committee. To see that
this inclusion is strict, we show that 1-DC{ -l,O,l} <t k- Proposition 2 It is N P-Hard to find the smallest de-
DL, for every constant k > O. Fix n > 2k an even cision committee consistent with a set of examples, for
integer. Consider the following 1-DC{ -l,O,l}: any fixed U, with or without allowing repetitions of

1Ij n rules.
sign('\:""' x. - '\:""' x . )L..i J L..i J Here "size" can either mean whole number of literals

j=l j=1Ij+1 (red~ction from the "Exact Cover By 3-Sets" problem,

The choice of the default class replacing D is not im- Garey and Johnson [GJ79]) or number of rules (reduc-
portant. Every monomial using fewer than ~ literals tion from the "2-NM-Colorability" problem, Kearns
classifies at least one positive and one negative exam- et al. [KLPV87a], Kearns et al. [KLPV87b], Pitt and
pIe, so the first monomial of every k-DL is bound to Valiant [PV88]).
make mistakes, whatever the class to which it is asso- Fu th . t.. t t b.l .

t. t d r ermore, m prac Ice, m erpre all y means re-
cIa e . t . t . U F h ' .s nc Ions over. or t e expert s convemence, we
Now, for the pac-learnability property, note that when have decided to retain a small number of integers al-
k is fixed, the number of monomials of length :5: k is lowing natural and simple interpretations of the rules

k such as: "this rule is in favor (disfavor) of this class",
L 2j ( ~) = O(nk) "this rule is likely to be not correlated with this class".
'-1 J That's why we fix in our applications U = {-1, 0, 1}. J - . 'n (and so we do not allow repetitions of rules). This ad-

Thus, Instead of expressIng the examples m {O, 1} , we d.t . I t . t . . t .t . I k th I . t k. 0 nk. . 1 lona res nc Ion m UI lve y ma es e earnIng as
can express them m {0,1} ( ). ThIs transformatIon harder. A good illustration in the Boolean framework
is polynomial in n, and now the aim is only to find a is the following:
linear separator in this O(nk)-dimensional space. This
can be done using the polynomial-time. algorithm of Proposition 3 Unless RP = N P, I-DC{-l,O,l} is
Karmarkar [Kar84] for linear programmIng, [J not pac-learnable,

. , d . f (Reduction from "Zero-One Integer Programming",
Remark: the Integers chosen m the prece mg proo K t I [KLPV87 ]) Th th O I. .t t .

i"
h d ., I. t . t d .. .t earns ea. a. us, IS lml a Ion overto translorm t e eclslon IS m 0 a eclslon comml - U k th .t . It f P .t . (1) b. I . I I .. h ma es e pOSI lve resu 0 roposl Ion ecome

tee are exponentla m . In our app lcatlons, we ave t . I th t . It f .t .
{ } . I . . , f nega lve. n a way, e nega lve resu so proposl Ion

chosen U = -1, 0, 1 ,wIthout al OWIng repetItIons 0 (2)d (3) . t .r th f th h . t ' IDC . . . . . an Jus 1 y e use 0 e euns IC we gIve
rules, ThIs leads to a subclass of decIsIon commIttees . th i" II . t .h. h b d t h k th . I . I t . m e 10 OWIng sec Ion.
w IC cannot e use 0 c ec e mc US10n re a lon-
ship of Proposition 1. Nevertheless, this restriction al-
lows us to preserve a useful property. The most used, 3 Learning by DC{-l 0 I}: the IDCand practically-efficient, Boolean formulae are decision algorithm ' ,

trees, and we have
VO < k < n, k-DT C k-DC{ -l,O,l} In order to preserve their interpretability, we have cho-

To check this, replace each path from the root to a sen to construct decision committees where:
leaf by the corresponding monomial associated to + 1
or -1 whether the corresponding leaf is labeled "+" 1. The vectors are elements of {-1, 0, 1}C.
or "-". This leads to a formula E k-DC{-l,O,l}. The 2. The rules appear at most once.
inclusion is strict since k-DNF and k-CNF are also
properly contained in k- DC{ -l,O,l}. This section is devoted to the presentation of our

heuristic algorithm: IDC. The first part shows how
2.3 Negative results encountered in practice IDC constructs rules (i.e. chooses the monomials and

calculates the corresponding vectors). The second part
A learning problem can be stated as an optimization presents our clustering algorithm, which leads to the
problem. The aim is to find a decision procedure hypothesis decision committee.~
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3.1 Constructing rules process is repeated iteratively by putting in Lend all
the selected rules of L2, removing the rules of L2 hav-

3.1.1 Choice of monomials ing a simplicity < as, etc... It ends at a step j iff the
.. current list Lj = 0, and returns Lend. This algorithm

The algorithm we use to choose the m<;>nomials IS a ensures that any rule of the rule space that satisfies
ver~ion r~stricted to B<?olean representatIons of an al- (1) and (2) (or one of its generalization that satisfies
gonthm Implemented m the software PLAGE (Gas- (1) "1!.nd (2) if it exists) is retained in L d. Thus it
cuel [Gas86], [Gas89p. ~his algorithm is based on a leads to a good cover of the rule space, but can also
breadth-first search~ mspI~ed from Branch-and-Bound lead to long searches if Ss and sx2 parameters are not
algorithms. It uses the I?ea that a go.od r~~e must adjusted well. Nevertheless, in practice, research time
present a good compromIse between. s~mplIcity and took from a few seconds to 15 minutes, using a non-
goodness-of-fi~. I~deed, every rule R IS Judged on the optimized C++ program running on a Sun Sparc 10.
base of two Criteria: Furthermore, we remarked in practice that for almost

. .. .. w 'ch all the domains that were used to test mc, Lend was
1. The sImplicIty criterion (or co,:,er~ge) S(R) hI composed of monomials having no more than 3 literals.

is the number of examples satIsfymg the rule.

2. The X2 criterion, which is a measure of the dis- 3.1.2 Calculation of the vectors
criminant capacity of the rule.

This is a two (at most) stage process that calculates
We construct for R a 2 x c table as below: the corresponding vector of each monomial. Let ti be

a monomial chosen in the list Lend. The first stage isI nt1 I nt2 I ... I ntc I the following: let e E Cj be an example that satisfies ti
I nil I ni2 I ... I nic I (for a given class Cj). The values from {-1,0,1} are

associated to corresponding conditions as follows:
Where nti is the number of training examples of class
i that satisfy R, and nJi is the number of training. Vi[j] = +1 is associated to the condition Pr(e =>
examples of class i that do not satisfy R. Thus nti + ti) > ~ with sufficiently high probability,
~Ji = ICil; ~here ICil is the cardinality of the class Ci . Vi[j] = -1 is associated to the condition Pr(e =>
m the trammg sample. Then we have: ti) < ~ with sufficiently high probability,

S( R) = t ntj . Vi [j] = 0 otherwise.

j=l Fix Ij = Ttt. Under suitable hypotheses, and with
and probability?: 1- a, an upperbound of Pr( e ~ ti) may

( c n2. c n2. ) be approximated using Ij by the following quantity:
X2(R) = IL81 '\:"""' tJ + '\:"""' 1.7 - IL81~ Ic;IS(R) ~ Ic;IUL81-S(R» BUj) = ~ (/j + q + Jq2 + 2qlj - 2q1J)

where ILSI is the size of the learning sample. The 1 1 .
user fixes two thresholds: as, the simplicity thresh- Where q = fCiTln(a) (Hoeffdmg [Hoe63], Gascuel and
old, and sx2, the X2 threshol~. The algorithm ensures Caraux [GC~2]). Obv~~usly, if we can upperbound
that every selected rule R satIsfies (1) S(R) ?: as, (2) Pr(e :;.. ti) wIth probabIlity 1- a, then we can lower-
X2(R) ?: sx2 and no ~eneralization.of this ~ule sat- bound Pr(e ~ ti) with probability 1- a.
isfies them. The algorIthm starts wIth the list L1 of 0 I t I I t -[j] ' th r II . . I d ur ru e 0 ca cu a e Vi IS e 10 owmg:rules whose monomIals have length 1. Every se ecte
rule of L1 (satisfying (1) and (2) is ~ut into the fi- . H B(f.) < ! then ~[j] = +1.
nallist of selected rules Lend. It IS ObVIOUS that every 1 - 2

rule R satisfying S(R) < Ss can be removed from L1, . Else H B(I- Ij) ~ ~then Vi[j] = -,-1
since specializing t~i~ rule cannot incre.ase its simplic-: . Else Vi [j] = O.
ity. Now, the remaImng rules of L1 satIsfy S(R) ?: Ss
but X2( R) < sx2. The algorithm estimates the best X2 The second stage of the calculation takes place in
that a specialization of R could have (call.it "optx2"). rarely encountered cases1, typical of rules having a low
This calculation is facilitated by a conveXIty property X2. Namely, it takes place when all the values of the
of the X2 which allows the search of a greatly reduced calculated Vi satisfy \fj, k ~ c, Vi[j] = vi[k] = V = :t:l.
number of possibilities (see Gascue~ [Gas89] fo~ a com- 1-+ Firstly take the case v = +1. Let Ijl = maxA:$c IA:
pletepres.e~tation). Th:nt?ealgonthmkeepsmLl all and Ij2 = maXA:~jl$c/A:' Formula (1) above allows
the remammg rules satIsfymg optx2 ?: sx2. For each us to bound the corresponding probabilities (Pr( e E
of these rules, all the direct specializations are con-
structed and put in a list L2. Every rule of L2 having IThis particularly holds for the MONKS dataset #2,
a generalization in Lend is removed from L2' and the where the target function is an XOR-like function.
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Cjl :f;- ti) for t'l and Pr(e E Cj~ :f;- ti) for fj~), and in Proposition 4 We cannot devise (unless P = N P)
that case, if B(j2) $ 1- B(1- jl), then vi[.iJ is flipped even in the Boolean case an algorithm that, given Lend
and becomes vi[.iJ = -1. and the set of examples LS from which Lend was con-
1-+ Secondly take the case v = -1, let fjl = mink~c fk structed, can find (by merging rules from Lend) a deci-
and fj~ = mink#jl~c fk. If B(jl) $ 1 - B(1 - j2), sion committee whose error on LS is optimal. And this
then vi[.il] is flipped and becomes +1. The previous even holds for very restricted cases of Lend in which
calculations are then repeated for every monomial of each rule consists only in a single monotone literal as-
Lend' sociated to +1.

3.2 Combining rules This is proved by reduction from the Vertex Cover
problem (Garey and Johnson [GJ79]).

The aim of this algorithm is to extract from the pop-
ulation Lend a subset of rules which, when combined .
in a decision committee, have small error on the learn- 4 ExperIments
ing sample. Its general principle is inspired from the
agglomerative clustering algorithms of the statistical Subsection §4.1 presents in a general way how we used
litterature. In our case, the initial population Po is the datasets, and how we fixed the parameters of mc.
list of rules Lend (where each monomial ti E Lend has Subsection §4.2 presents the datasets, and the results
its corresponding vector Vi calculated). The individu- we obtained.
als are the rules, and they can also be assimilated to
decision committees (with one rule). Clusters of indi- 4.1 Experimental process
viduals are decision committees of more than one rule,
an~ g;rouping o~ individuals consists simply in merging Binarization of continuous values: Some problems
decIsI~n commI.t~ees (to fo~m new ones). When co~- contain continuous attributes, hardly manageable for
structmg a decIsIo.n C?m~Ittee, the defaul~ v~cto~ IS binary-attributes based systems. Some algorithms
calcula~ed by puttmg litO It the observed distrIb~t~on use sophisticated binarization procedures to overcome
of am?Iguous examples. At each step, two decIsIon this problem. Using a simple procedure (in order
commIttees are me.rged.to form. a ~ew one: Th.ey ~re not to bias the results of mC), continuous values
chosen because theIr umon maxImIzes a galli-CrIterIon were ternarized. Ternarization was chosen so as not
G. The algorithms stops when every merging produces to lose a lot of information. Take a continuous at-
a gain G $ O. ~et C and ~'.be two de.cision commit- tribute. We cut the interval of its possible values three
tees, and C u C be the decIsIon commIttee formed by times so that the four remaining subintervals contain
merg~ng C and C'. Let fa, fc' an.d/cuc' be the re- appr;ximately the same number of examples. Call
spec~Ive erro.r !requency.on the traImng sar.nple.of ~he [io, iI], [iI, i2], [i2, i3], [i3, i4] these subintervals. Then
preVIOUS decIsIon commI~tees. Then the .g~m crIterI~n the first corresponding literal of an example is "1" iff
Gc,c;:' produced by mergmg the two decIsIon commIt- the corresponding value is .<::; iI, and "0" otherwise.
tees IS:. The second corresponding literal is "1" iff the corre-

Gc,c' = mm{fc; fc'} - fcuc' sponding value is .<::; i2, and "0" otherwise, etc... Fi-

The two decision committees C, C' merged at step k nally, using the preceeding procedure, every continu-
satisfy Gc C' = m"v~ C Ep {Gc c } > O. When this ous attribute gives indeed rise to three binary descrip-. """-'I, ~ k I, ~
maximal gain is .<::; 0, the algorithm ends and returns tors.
~he best decision committee (acco.rding t? the l~arn- Choice of parameters: The parameters of the alga-
mg sample) of the current populatIon. ThIs algorIthm rithm constructing monomials are fixed as follows:
tries to take advantage of the shared nature of the
knowle.dge of the rules in a de~i~ion comm~ttee, by not . Ss is a function of the quantity minc =
~orgettmg some rules (or decIsIon commIttees)! t?at min;<c ICil. When c > 2, Ss = minc. When c = 2,
m fact could advantageously complete the deSCrIptIon - t min £ 1 t 11 th bl. . h . we pu Ss = = or a mos a e pro ems.

qualIty of one when merged to It. Moreover, t IS ap- Th . t f . ~ h. h t .
t 1 t d. . IS pu s a airly Ig cons ram over se ec eproach empmcally proved to be better than the greedy 1 H £ t .

1 bl., . . ru es. owever, or some par ICU ar pro ems
one that consIsts of mergmg to a current decIsIon com- ( th MONKS d t t #2) h t . .tt (. .t 1. d t no) th 1 th t . th t e.g. e a ase ,were some Imes

mi ee mi a Ize 0 \U e ru e a mcreases e mos 1 t . f . thO t .
t t £ d. . .. ru es sa IS ymg IS cons ram are no oun, we

the accuracy of thIS decIsIon commIttee. t !!:!i!:!..,. h b . d t . d bpu Ss = b ,were IS e ermIne y cross-
Clustering algorithms are frequently used in practice validation. We set an interval S of values that
in domains such as statistics. The algorithm for com- b will take (2 to 10 in our experiments), and for
bining rules is an adaptation of these techniques, that each of these, we perform 5 times the following.
gave good results. Nevertheless, it must be noted that Split the training set into a set LS, (2/3) and LSt
this algorithm is an heuristic, and we have the follow- (1/3); perform mc on LS, with adequate values
ing property: of b, and test it on LSt. After having averaged
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Table 1: Characteristics of Data Sets.

Domain #Learning #LS #Test #Attrs c Comments

VO 435 1 (2) 16 2 Congress- Votes Problem

VI 435 1 (2) 15 2 VO+ attribute "Physician-fee Freeze" deleted

LE 200 11 5000 7 10 Digit recognition Problem
L24 200 11 5000 24 10 .. LE + 17 irrelevant attributes

WB 300 11 5000 21 3 Waveform Recognition Problem Binarized

WT 300 11 5000 21 3 Waveform Recognition Problem Ternarized

GL 214 1 (2) 9 6 Identification of glass samples

G2 163 1 (2) 9 2 GL+ class 1, 3 grouped and class 4 to 6 deleted

IR 150 1 (2) 4 3 Fisher's Iris dataset

Ml 124 1 432 6 2 MONKS dataset #1

M2 169 1 432 6 2 MONKS dataset #2

M3 122 1 432 6 2 MONKS dataset #3

HE 270 1 (2) 13 2 Heart dataset

AU 690 1 (2) 14 2 Australian dataset

LA 57 1 (2) 16 2 Labor Negotiations

References are: Breiman et al. [BFOS84]: LE, L24, WB, WT. Thrun et al. [TBBB91]: Ml, M2, M3. Buntine

and Niblett [BN92]: VO, VI, LE, GL, IR. Holte [HoI93]: VO, VI, GL, G2, IR. Gascuel and Gallinari [GG95]:

WB, WT. Kohavi [Koh95]: VO, VI, GL, G2, IR, Ml, M2, M3, HE, AU, LA.

error frequency on the 5 trials for each b, the min- than CART, C4 and mc. They either come from

imal value of error frequency gives the value of b mentioned publications or are available at the UCI

to learn with the whole learning sample. repository of machine learning database (results dis-
. . . tin g uished by "0" ). sx2 corresponds to a probabilIty of overtakmg a = .

0.05 for a X2 random variable with c - 1 degrees Table 2 shows that mc can perform good results not

of freedom. only in simulated and noisy domains (e.g. LE and L24,

for which Bayes accuracy is 74%), but also in simu-
Cross-validations: When there is only one set of ex- lated unnoisy domains (M2). If we exclude GL (where,

amples without any test set, we proceed by .averaging however, mc's result is not significantly different from

over 10 iterations the result of the followmg cross- CART's), this is also the case in real domains (HE, AU,

validation: randomly split th~ whole sample into avo, IR). These results are to be compared in the light

learning sample (2/3 of the examples) and a test sam- of the corresponding sizes of the decision committees.

pIe (1/3 of the examples); use the learning sample to Rules are neither numerous nor complex.

construct a decision committee with mc, and test it

oil the test set. This is the same experimental process ..
for cross-validation as the one of Holte [HoI93]. 5 DIScussIon

4.2 Experimental results mc's heuristic is not the first we have studied to
construct decision committees. Particularly, we have

mc was tested on the datasets summed up in Ta- already studied stochastic techniques (genetic algo-

ble 1. There are 15 datasets. Datasets VO, VI, GL, rithms, simulated annealing in the same way as De

IR, Ml, M2, M3, HE,. AU, LA and Aha's programs Carvalho Gomes and Gascuel [dCGG94]), and vari-

(for LE and L24) are from the collection available ous greedy techniques. But we abandoned them be-

at the UCI Repository of machine learning database, cause of their results. Indeed, the results we obtained

and were used exactly as they are found in the J an- were never as good as mc's. Their common point is

uary 1995 distribution. Datasets WB, WT are avail- that the problem of constructing decision committees

able on request. Below Table 1 are additional refer- was solved in one step, and not two like for mc (con-

ences for further informations or results concerning the struction of rules/combination of rules). In fact, this

datasets. one-step constructions implied that rules did not have

. individual value, since any judgment was made only
Table 2 sho,,!s the performances of mc compared with on the base of the whole decision committee.

other algorIthms (values are of the form "Mean :I:

Standard Deviation"). Column "Best reported" is a On almost every dataset, mc gave good results. Par-

non-exhaustive review of results about the best known ticularly, in a way, it proved experimentally to be

results. These results concerns algorithms different noise-tolerant. For simulated problems such as LE
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Table 2: Performances of IDC, compared with decision trees algorithms, and others.

Accuracies Sizes
IDC D. Trees Best reported IDC D. Trees

VO 95.24:f: 1.1 95.5:f: 1.0~ 95.3 NN [HoI93] 1.0:f: 0.0 9.2 :f: 5.0~
VI 89.11:f: 1.8 87.2:f: 1.5~ 86.8 1R [HoW3] 6.4:f: 1.9 15.8:f: 8.0~
LE 74.27:f: 0.6 66.2:f: 3.1 t 73.3 IWN° 12.2:f: 1.9 24.6:f: 5.4t
L24 73.60:f: 2.0 70t 71.5 NT-growthO 17.6:f: 3.5
WB 76.25:f: 2.3 71.2:f: 1.6t 79.1 NN [GG95] 15:f: 6.4
WT 80.36:f: 1.6 70.5:f: 1.8t 81.9 NN [GG95] 36:f: 12.7
GL 55.89:f: 6.4 60.4:f: 6.2t 62.0 BruteDL [SE94] 20:f: 7.2 14.2:f: 8.0t
G2 72.96:f: 8.0 70.6:f: 2.0 72.9 1R [HoI93] 12.1:f: 5.9
IR 96.00:f: 2.7 95.0:f: 3.1 t 98.0 Lin. Disc. [HoI93] 4.3:f: 2.8 5:f: It
M1 83.34 75.7 100 AQ-17 [TBBB91] 5
M2 70.61 65.0 100 AQ-17 [TBBB91] 18
M3 97.33 97.2 100 AQ-17 [TBBB91] 2
HE 82.11:f: 4.6 76.7:f: 1.8 80.4 IDTM [Koh95] 15.2:f: 7.8
AU 85.43:f: 1.4 85.4:f: 1.1 84.9 IDTM [Koh95] 1.8:f: 1.9
LA 83.69:f: 7.0 85.7:f: 3.5 90.0 AQ-15 [HoI93] 6.8:f: 2.9

1-+ Results for decision trees (D. Trees) are given for C4.5 (Kohavi [Koh95]), except:
t Induction of decision trees based on Kolmogorov-Smirnov distance (Celeux and Lechevallier [CL82], Gascuel and Galli-
nari [GG95]).
t CART results (Breiman et al. [BFOS84] for 124), and Buntine and Niblett results [BN92] for VO, VI, LE, GL.
1-+ Sizes are the number of literals for mc, and the number of edges for decision trees.

and L24, this tolerance is optimal or nearly optimal. firmed for several problems the importance of redun-
WB, WT, M3 also reflect this property. Cestnik and dant and multiple knowledge (Cestnik and Bratko
Bratko [CB88] present redundancy as ways to cope [CB88] , Gams [Gam89] , Kononenko and Kovacic
with noise. It seems that IDC confirms this remark [KK92]).
for several datasets. IDC is to be judged not only by
its performances on testing, but also in the light of
the corresponding sizes of the decision committees it References
creates. These decision committees are comprehensi-
ble, easy-to-interpret concepts. Firstly, this is due to [BFOS84] L. Breiman, J. H. Friedman, R. A. 01-
the choice of the subclass of decision committees used shen, and C. J. Stone. Classification and
by IDC. Secondly, note that the qualities of a rule are Regression Trees. Wadsworth Inc., 1984.
judged O? the wh?le learning sample, independently of [BN92] W. Buntine and T. Niblett. A further
the preVIOUS retamed rules. Learned rules can there- . f l ' tt ' I " D ..
" b .d d I . . I . (S I d E . . comparIson 0 sp 1 mg ru es lor eclslon-
lore e consl ere a so m ISO atlon ega an tzlom T . d t . M h. L -
[ ]) ' . . ree m uc Ion. ac ane earnang pagesSE94 . But obvIously, the smaller the deCISIon com- 75-85 1992 '
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