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Abstract. Two recent breakthroughs have dramatically improved the
scope and performance of k-means clustering: squared Euclidean seeding
for the initialization step, and Bregman clustering for the iterative step.
In this paper, we first unite the two frameworks by generalizing the for-
mer improvement to Bregman seeding — a biased randomized seeding
technique using Bregman divergences — while generalizing its important
theoretical approximation guarantees as well. We end up with a complete
Bregman hard clustering algorithm integrating the distortion at hand in
both the initialization and iterative steps. Our second contribution is to
further generalize this algorithm to handle mixed Bregman distortions,
which smooth out the asymetricity of Bregman divergences. In contrast
to some other symmetrization approaches, our approach keeps the al-
gorithm simple and allows us to generalize theoretical guarantees from
regular Bregman clustering. Preliminary experiments show that using
the proposed seeding with a suitable Bregman divergence can help us
discover the underlying structure of the data.

1 Introduction

Intuitively, the goal of clustering is to partition a set of data points into clusters
so that similar points end up in the same cluster while points in different clusters
are dissimilar. (This is sometimes called hard clustering, since each data point
is assigned to a unique cluster. In this paper we do not consider so-called soft
clustering.) One of the most influential contributions to the field has been Lloyd’s
k-means algorithm [Llo82]. It is beyond our scope to survey the vast literature
on the theory and applications of the k-means algorithm. For our purposes, it
is sufficient to note three key features of the basic algorithm that can serve
as starting points for further development: (i) Each cluster is represented by
its centroid. (ii) Initial seeding chooses random data points as centroids. (iii)
Subsequently the algorithm improves the quality of the clustering by locally
optimizing its potential, defined as the sum of the squared Euclidean distances
between each data point and its nearest centroid.

Our starting points are two recent major improvements that address points (ii)
and (iii) above. First, Banerjee et al. [BMDG05] have generalized the k-means
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algorithm to allow, instead of just squared Euclidean distance, any Bregman
divergence [Bre67] as a distortion measure in computing the potential. Bregman
divergences are closely associated with exponential families of distributions and
include such popular distortion measures as Kullback-Leibler divergence and
Itakura-Saito divergence. As these divergences are in general not symmetrical,
they introduce nontrivial technical problems. On the other hand, they give us
a lot of freedom in fitting the performance measure of our algorithm to the
nature of the data (say, an exponential family of distributions we feel might
be appropriate) which should lead to qualitatively better clusterings. Bregman
divergences have found many applications in other types of machine learning
(see e.g. [AW01]) and in other fields such as computational geometry [NBN07],
as well.
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Fig. 1. Clusterings obtained by minimizing Euclidean (left) and Kullback-Leibler
(right) potential. The centroids are shown as black dots.

To appreciate the effect of the distortion measure on clustering results, con-
sider the exaggerated toy example in Figure 1. Visually, the data consists of
four clusters. The first one is centered around the origin and spreads along the
x and y axes. It can be seen as an approximate Itakura-Saito ball [NN05]. The
other three clusters come from isotropic Gaussian distributions with different
variances and centers at (2, 2), (4, 4) and (11, 11). The cluster around (11, 11)
has 600 data points, while the other three clusters have 200 data points each. For
k = 4, a Euclidean distortion measure favors clusterings that use a single cen-
troid to cover the two small clusters close to the origin and uses two centroids to
cover the one big cluster. In contrast, Kullback-Leibler divergence gives a better
score to solutions that correspond to the visually distinguishable clusters.

A second recent improvement to k-means clustering is D2 seeding by Arthur
and Vassilvitskii [AV07]. Instead of choosing the k initial cluster centroids uni-
formly from all the data points, we choose them in sequence so that in choosing
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the next initial centroid we give a higher probability to points that are not close
to any of the already chosen centroids. Intuitively, this helps to get centroids
that cover the data set better; in particular, if the data does consist of several
clearly separated clusters, we are more likely to get at least one representative
from each cluster. Surprisingly, this simple change in the seeding guarantees
that the squared Euclidean potential of the resulting clustering is in expectation
within O(log k) of optimal. For another recent result that obtains approximation
guarantees by modifying the seeding of the k-means algorithm, see [ORSS06].

The first contribution in this paper is to combine the previous two advances by
replacing squared Euclidean distance in the D2 seeding by an arbitrary Bregman
divergence. The resulting Bregman seeding gives a similar approximation guar-
antee as the original D2 seeding, except that the approximation factor contains
an extra factor ρψ ≥ 1 that depends on the chosen Bregman divergence and the
location of the data in the divergence domain. For Mahalanobis divergence this
factor is always 1; for others, such as Itakura-Saito, it can be quite large or quite
close to 1 depending on the data. The key technique allowing this generalization
is a relaxed form of the triangle inequality that holds for Bregman divergences;
this inequality is a sharper form of a recent bound by Crammer et al. [CKW07].
Empirically, for different artificial data sets we have found that choosing the ap-
propriate Bregman divergence can noticeably improve the chances of the seeding
including a centroid from each actual cluster. Again, for an exaggerated example
consider that data in Figure 1. Experimentally, Kullback-Leibler seeding picks
exactly one point from each of the four visible clusters about 15% of the time,
while the original D2 seeding achieves a rate of only 2%. It should be noted,
however, that while the proof of the approximation guarantee in [AV07] relies
crucially on a successful seeding, in practice it seems that the iteration phase of
the algorithm can quite often recover from a bad seeding.

Our second contribution concerns point (i) above, the representation of clus-
ters by a centroid. Since Bregman divergences are asymmetric, it is very signif-
icant whether our potential function considers divergence from a data point to
the centroid, or from the centroid to a data point. One choice keeps the arith-
metic mean of the data points in a cluster as its optimal centroid, the other does
not [BMDG05, BGW05]. The strong asymmetricity of Bregman divergences may
seem undesirable in some situations, so a natural thought is to symmetrize the
divergence by considering the average of the divergences in the two different
directions. However, this makes finding the optimal centroid quite a nontrivial
optimization problem [Vel02] and makes the statistical interpretation of the cen-
troid less clear. As a solution, we suggest using two centroids per cluster, one
for each direction of the Bregman divergence. This makes the centroid computa-
tions easy and allows a nice statistical interpretation. We call this symmetrized
version with two centroids a mixed Bregman divergence.

Previously, approximation bounds for Bregman clustering algorithms have
been given by [CM08] and [ABS08]. Chadhuri and McGregor [CM08] consider
the KL divergence, which is a particularly interesting case as the KL divergence
between two members of the same exponential family is a Bregman divergence
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between their natural parameters [BMDG05]. Ackermann et al. [ABS08] con-
sider a statistically defined class of distortion measures which includes the KL
divergence and other Bregman divergences. In both of these cases, the algorithms
achieve (1 + ε)-approximation for arbitrary ε > 0. This is a much stronger guar-
antee than the logarithmic factor achieved here using the technique of [AV07].
On the other hand, the (1 + ε)-approximation algorithms are fairly complex,
whereas our algorithm based on [AV07] is quite easy to implement and runs in
time O(nkd).

Section 2 presents definitions; Section 3 presents our seeding and clustering
algorithm. Section 4 discusses some results. Section 5 provides experiments, and
Section 6 concludes the paper with open problems.

2 Definitions

Divergences. Let ψ : X → R be a strictly convex function defined on a convex set
X ⊆ R

d, with the gradient ∇ψ defined in the interior of X. (Hereafter, for the sake
of simplicity, we do not make the difference between a set and its interior.) We
denote by ψ�(x) .= 〈x, (∇ψ)−1(x)〉 − ψ((∇ψ)−1(x)) its convex conjugate. The
Bregman divergence Δψ(x‖y) between any two point x and y of X is [Bre67]:

Δψ(x‖y) .= ψ(x) − ψ(y) − 〈x − y, ∇ψ(y)〉 .

Popular examples of Bregman divergences include Mahalanobis divergence with
DM(x‖y) .= (x − y)�M(x − y) (X = R

d, M symmetric positive definite),
Kullback-Leibler divergence, DKL(x‖y) .=

∑d
i=1(xi log(xi/yi) − xi + yi) (X =

R
d
+∗), Itakura-Saito divergence, DIS(x‖y) .=

∑d
i=1((xi/yi) − log(xi/yi) − 1)

(X = R
d
+∗), and many others [NBN07, BMDG05]. It is not hard to prove that

Mahalanobis divergence is the only symmetric Bregman divergence. This general
asymmetry, which arises naturally from the links with the exponential families
of distributions [BMDG05], is not really convenient for clustering. Thus, we let:

	ψ,α(x‖y‖z) .= (1 − α)Δψ(x‖y) + αΔψ(y‖z) (1)

denote the mixed Bregman divergence of parameters (ψ, α), with 0 ≤ α ≤ 1.
When α = 0, 1, this is just a regular Bregman divergence. The special case
α = 1/2 and x = z is known as a symmetric Bregman divergence [Vel02].

Clustering. We are given a set S ⊆ X. For some A ⊆ S and y ∈ X, let

ψα(A, y) .=
∑

x∈A
	ψ,α(y‖x‖y) ,

ψ�
α(A, y) .= ψ1−α(A, y) =

∑

x∈A
	ψ,α(x‖y‖x) . (2)

Let C ⊂ X
2. The potential for Bregman clustering with the centroids of C is:

ψα(C) .=
∑

x∈S
min

(c,c�)∈C
	ψ,α(c�‖x‖c) . (3)



158 R. Nock, P. Luosto, and J. Kivinen

When α = 0 or α = 1, we can pick C ⊂ X, and we return to regular Bregman
clustering [BMDG05]. The contribution to this potential of some subset A, not
necessarily defining a cluster, is noted ψα(A), omitting the clustering that shall
be implicit and clear from context. An optimal clustering, Copt, can be defined
either as its set of centroids, or the partition of S induced. It achieves:

ψopt,α
.= min

C⊂X2,|C|=k
ψα(C) . (4)

In this clustering, the contribution of some cluster A is:

ψopt,α(A) .=
∑

x∈A
	ψ,α(c�

A‖x‖cA) ,

where (cA, c�
A) ∈ Copt is the pair of centroids which minimizes ψα(A) over all

possible choices of (c, c�) in (3). It turns out that these two centroids are always
respectively the arithmetic and Bregman averages of A:

cA
.=

1
|A|

∑

x∈A
x , (5)

c�
A

.= (∇ψ)−1

(
1

|A|
∑

x∈A
∇ψ(x)

)

. (6)

To see that it holds for the arithmetic average, we may write:

∀c ∈ A,
∑

x∈A
Δψ(x‖c) −

∑

x∈A
Δψ(x‖cA) = |A|Δψ(cA‖c) . (7)

Since the right hand side is not negative and zero only when c = cA, (5) is the
best choice for c. On the other hand, if we compute (7) on ψ� and then use the
following well-known dual symmetry relationship which holds for any Bregman
divergence,

Δψ(x‖y) = Δψ�(∇ψ(y)‖∇ψ(x)) ,

then we obtain:

∀c ∈ A,
∑

x∈A
Δψ(c‖x) −

∑

x∈A
Δψ(c�

A‖x) = |A|Δψ(c‖c�
A) , (8)

and we conclude that (6) is the best choice for c�. Since c�
A �= cA except when

	ψ,α is proportional to Mahalanobis divergence, the mixed divergence (1) is only
a partial symmetrization of the Bregman divergence with respect to approaches
like e.g. [Vel02] that enforce c�

A = cA. There are at least two good reasons for
this symmetrization to remain partial for Bregman divergences. The first is sta-
tistical: up to additive and multiplicative factors that would play no role in its
optimization, (1) is an exponential family’s log-likelihood in which α tempers
the probability to fit in the expectation parameter’s space versus the natural
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Algorithm 1. MBS(S, k, α, ψ)
Input: Dataset S , integer k > 0, real α ∈ [0, 1], strictly convex ψ;
Let C ← {(x, x)};
//where x is chosen uniformly at random in S ;
for i = 1, 2, ..., k − 1 do

Pick at random point x ∈ S with probability:

πS(x) .=
�ψ,α(cx‖x‖cx)

∑
y∈S �ψ,α(cy‖y‖cy )

, (9)

//where (cx, cx) .= arg min(z,z)∈C �ψ,α(z‖x‖z);
C ← C ∪ {(x, x)};

Output: Set of initial centroids C;

parameter’s space [BMDG05]. This adds a twist in the likelihood for the uncer-
tainty of the data to model which is, in the context of clustering, desirable even
against regular Bregman divergences. However, it does not hold for approaches
like [Vel02]. The second reason is algorithmic: mixed divergences incur no com-
plexity counterpart if we except the computation of the inverse gradient for c�

A;
in the complete symmetric approaches, there is no known general expression for
the centroid, and it may be time consuming to get approximations even when
it is trivial to compute c�

A [Vel02]. Finally, we define a dual potential for the
optimal clustering, obtained by permuting the parameters of the divergences:

ψ�
opt,α(A) .=

∑

x∈A
	ψ,1−α(cA‖x‖c�

A) =
∑

x∈A
(αΔψ(cA‖x) + (1 − α)Δψ(x‖c�

A)) .

3 Mixed Bregman Clustering

3.1 Mixed Bregman Seeding

Algorithm 1 (Mixed Bregman Seeding) shows how we seed the initial cluster
centroids. It is generalizes the approach of [AV07] and gives their D2 seeding as
a special case when using the squared Euclidean distance as distortion measure.
Since the Bregman divergence between two points can usually be computed
in the same O(d) time as the Euclidean distance, our algorithm has the same
O(nkd) running time as the original one by [AV07]. The main result of [AV07]
is an approximation bound for the squared Euclidean case:

Theorem 1. [AV07] The average initial potential resulting from D2 seeding sat-
isfies E[ψ] ≤ 8(2 + log k)ψopt, where ψopt is the smallest squared Euclidean po-
tential possible by partitioning S in k clusters.

We prove a generalization of Theorem 1 by generalizing each of the lemmas used
by [AV07] in their proof.



160 R. Nock, P. Luosto, and J. Kivinen

Lemma 1. Let A be an arbitrary cluster of Copt. Then:

Ec∼UA [ψα(A, c)] = ψopt,α(A) + ψ�
opt,α(A)) , (10)

Ec∼UA [ψ�
α(A, c)] = ψopt,1−α(A) + ψ�

opt,1−α(A)) , (11)

where UA is the uniform distribution over A.

Proof. We use (7) and (8) in (13) below and obtain:

Ec∼UA [ψα(A, c)] =
1

|A|
∑

c∈A

∑

x∈A
{αΔψ(x‖c) + (1 − α)Δψ(c‖x)} (12)

=
1

|A|
∑

c∈A

{

α

(
∑

x∈A
Δψ(x‖cA) + |A|Δψ(cA‖c)

)

+ (1 − α)

(
∑

x∈A
Δψ(c�

A‖x) + |A|Δψ(c‖c�
A)

)}

(13)

= α
∑

x∈A
Δψ(x‖cA) + α

∑

x∈A
Δψ(cA‖x)

+(1 − α)
∑

x∈A
Δψ(c�

A‖x) + (1 − α)
∑

x∈A
Δψ(x‖c�

A)

= αψopt,1(A) + (1 − α)ψopt,0(A) + αψ�
opt,1(A) (14)

+(1 − α)ψ�
opt,0(A)

= ψopt,α(A) + ψ�
opt,α(A) .

This gives (10). Applying (2) to (10) gives (11).

Analyzing the biased distribution case requires a triangle inequality for Bregman
divergences, stated below. For any positive semidefinite matrix M, M1/2 denotes
the positive semidefinite matrix such that M1/2M1/2 = M.

Lemma 2. For any three points x, y, z of co(S), the convex closure of S,

Δψ(x, z) ≤ 2ρ2
ψ(Δψ(x, y) + Δψ(y, z)) , (15)

where ρψ is defined as:

ρψ
.= sup

s,t,u,v∈co(S)

‖H
1/2
s (u − v)‖2

‖H
1/2

t (u − v)‖2

, (16)

where Hs denotes the Hessian of ψ in s.

Proof. The key to the proof is the Bregman triangle equality:

Δψ(x‖z) = Δψ(x‖y) + Δψ(y‖z) + (∇ψ(z) − ∇ψ(y))�(y − x) . (17)

A Taylor-Lagrange expansion on Bregman divergence Δψ yields:

Δψ(a‖b) =
1
2
(a − b)�Hab(a − b) =

1
2
‖H

1/2

ab(a − b)‖2
2 , (18)
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for some value Hab of the Hessian of ψ in the segment ab ⊆ co(S). Another
expansion on the gradient part of (17) yields:

∇ψ(z) − ∇ψ(y) = Hzy(z − y) . (19)

Putting this altogether, (17) becomes:

Δψ(x‖z)
(19)
= Δψ(x‖y) + Δψ(y‖z) + (H1/2

zy(z − y))�(H1/2
zy(y − x))

≤ Δψ(x‖y) + Δψ(y‖z) + ‖H1/2
zy(z − y)‖2‖H1/2

zy(y − x)‖2 (20)

≤ Δψ(x‖y) + Δψ(y‖z) + ρ2
ψ

(
‖H1/2

yz(z − y)‖2‖H1/2
xy(y − x)‖2

)

(18)
= Δψ(x‖y) + Δψ(y‖z) + 2ρ2

ψ

√
Δψ(x‖y)Δψ(y‖z)

where (20) makes use of Cauchy-Schwartz inequality. Since ρψ ≥ 1, the right-
hand side of the last inequality is of the form a+b+2ρ2

ψ

√
ab ≤ ρ2

ψ(a+b+2
√

ab) ≤
ρ2

ψ(2a + 2b) = 2ρ2
ψ(a + b). Since a = Δψ(x‖y) and b = Δψ(y‖z), we obtain the

statement of the Lemma.

Lemma 2 is a sharper version of the bound used by [CKW07]. The improvement
is basically that we use the same vector u−v in the numerator and denominator
in (16), so we are not automatically hurt by anisotropy in the divergence. In
particular, we have ρψ = 1 for any Mahalanobis distance.

The following lemma generalizes [AV07, Lemma 3.2]. We use Lemmas 1 and
2 instead of special properties of the squared Euclidean distance. Otherwise the
proof is essentially the same.

Lemma 3. Let A be an arbitrary cluster of Copt, and C an arbitrary clustering.
If we add a random pair (y, y) from A2 to C in Algorithm 1, then

Ey∼πS [ψα(A, y)|y ∈ A] = Ey∼πA [ψα(A, y)] ≤ 4ρ2
ψ(ψopt,α(A) + ψ�

opt,α(A)) .

Proof. The equality comes from the fact that the expectation is constrained to
the choice of y in A. The contribution of A to the potential is thus:

Ey∼πA [ψα(A, y)]

=
∑

y∈A

{
	ψ,α(cy‖y‖cy)

∑
x∈A 	ψ,α(cx‖x‖cx)

∑

x∈A
min {	ψ,α(cx‖x‖cx), 	ψ,α(y‖x‖y)}

}

.(21)

We also have:

	ψ,α(cy‖y‖cy)
= αΔψ(y‖cy) + (1 − α)Δψ(cy‖y)
≤ αΔψ(y‖cx) + (1 − α)Δψ(cx‖y)
≤ 2ρ2

ψ(αΔψ(y‖x) + αΔψ(x‖cx) + (1 − α)Δψ(cx‖x) + (1 − α)Δψ(x‖y))

= 2ρ2
ψ(	ψ,α(cx‖x‖cx) + 	ψ,α(x‖y‖x)) ,
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where we have used Lemma 2 on the last inequality. Summing over x ∈ A yields:

	ψ,α(cy‖y‖cy) ≤ 2ρ2
ψ

(
1

|A|
∑

x∈A
	ψ,α(cx‖x‖cx) +

1
|A|

∑

x∈A
	ψ,α(x‖y‖x)

)

;

plugging this into (21) and replacing the min by its left or right member in the
two sums yields:

Ey∼πA [ψα(A, y)] ≤ 4ρ2
ψ

1
|A|

∑

y∈A

∑

x∈A
	ψ,α(x‖y‖x)

= 4ρ2
ψ(ψopt,α(A) + ψ�

opt,α(A)) ,

where we have used (12).

For any subset of clusters A of some optimal clustering Copt, let ψ̃opt,α(A) .=
(1/2)(ψopt,α(A) + ψ�

opt,α(A)). We remark that:

Ey∼πA [ψα(A, y)] ≤ 8ρ2
ψψ̃opt,α(A) , (22)

∀A, B : A ∩ B = ∅, ψ̃opt,α(A ∪ B) = ψ̃opt,α(A) + ψ̃opt,α(B) . (23)

Lemma 4. Let C be an arbitrary clustering. Choose u > 0 clusters from Copt
that are still not covered by C, and let Su denote the set of points in these clusters.
Also, let Sc

.= S −Su. Now suppose that we add t ≤ u random pairs of centroids,
chosen according to πS as in Algorithm 1. Let C′ denote the resulting clustering.
Define Ht

.= 1 + (1/2) + ... + (1/t). Then

Ec∼πS [ψα(C′)] ≤ (1 + Ht)
(
ψα(Sc) + 8ρ2

ψψ̃opt,α(Su)
)

+
(

u − t

u

)

ψα(Su) .

Again, the proof is obtained from the proof of [AV07, Lemma 3.3] by just apply-
ing (22) and (23) to handle ψ̃. We omit the details. As in [AV07] we now obtain
the main approximation bound as a special case of Lemma 4.

Theorem 2. The average initial potential obtained by Mixed Bregman Seeding
(Algorithm 1) satisfies E[ψα] ≤ 8ρ2

ψ(2+log k)ψ̃opt,α, where ψ̃opt,α is the minimal
mixed Bregman divergence possible by partitioning S into k clusters as defined
in (4).

When the Hessian of ψ satisfies H. = σI for σ > 0, we return to regular k-means
and the bound of Theorem 1 [AV07]. Interestingly, the bound remains the same
for general Mahalanobis divergence (ρψ = 1, ψopt,α(S) = ψ�

opt,α(S) = ψ̃opt(S)).

3.2 Integrating Mixed Bregman Seeding into Clustering

Bregman seeding in the special case α = 1 can be integrated with Bregman
clustering [BMDG05] to provide a complete clustering algorithm in which the
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Algorithm 2. MBC(S, k, α, ψ)
Input: Dataset S , integer k > 0, real α ∈ [0, 1], strictly convex ψ;
Let C = {(cAi , c

�
Ai

)}k
i=1 ← MBS(S , k, α, ψ);

repeat
//Assignment
for i = 1, 2, ..., k do

Ai ← {s ∈ S : i = arg minj �ψ,α(c�
Aj

‖s‖cAj )};
//Re-estimation
for i = 1, 2, ..., k do

cAi ← 1
|Ai|

∑
s∈Ai

s;

c�
Ai

← (∇ψ)−1
(

1
|Ai|

∑
s∈Ai

∇ψ(s)
)
;

until convergence ;
Output: Partition of S in k clusters following C;

divergence at hand is integrated in all steps of clustering. What remains to
do is take this algorithm as a whole and lift it further to handle mixed Breg-
man divergences, that is, generalize the Bregman clustering of [BMDG05] to
hold for any 0 ≤ α ≤ 1. This is presented in Algorithm 2 (Mixed Bregman
Clustering). This algorithm is conceptually as simple as Bregman clustering
[BMDG05], and departs from the complexity of approaches that would be in-
spired by fully symmetrized Bregman divergences [Vel02]. However, for this al-
gorithm to be a suitable generalization of Bregman clustering, we have to ensure
that it monotonously achieves a local minimum of the mixed potential in finite
time. This is done in the following Lemma, whose proof, omitted to save space,
follows similar steps as in [BMDG05] while making use of (7) and (8).

Lemma 5. Algorithm 2 monotonically decreases the function in (3). Further-
more, it terminates in a finite number of steps at a locally optimal partition.

4 Discussion

One question arises on such a scheme, namely how the choice of the main free
parameter, the generator ψ, impacts on the final output. This question is less
relevant to the clustering phase, where the optimization is local and all that
may be required is explicitly given in Lemma 5, independently of ψ. It is more
relevant to the seeding phase, and all the more interesting as the upper bound
in Theorem 2 exhibits two additional penalties that depend on ψ: one relies on
the way we measure the potential and seed centroids (ψ̃), the other relies on
convexity (ρψ). The analysis of D2 seeding by [AV07] is tight on average, as
they show that for some clusterings the upper bound of 1 is within a constant
factor of the actual performance of the algorithm.

Beyond D2 seeding, it is not hard to show that the analysis of [AV07] is in fact
tight for Mahalanobis divergence. To see this, we only have to make a variable
change, and set x̃

.= M−1/2x for any point x in the lower bound proof of [AV07].
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Mahalanobis divergence on the new points equals the k-means potential on the
initial points, the optimal centroids do not change, and the proof remains as
is. For arbitrary divergences, the upper bound of Theorem 2 gets unfastened
in stronger convex regimes of the generator, that is when ρψ increases. Some
non-metric analysis of seeding that would avoid the use of a triangle inequality
might keep it tighter, as stronger convex regimes do not necessarily penalize
that much seeding. Sometimes, artificial improvements are even possible. The
following Lemma, whose proofsketch is available in an appendix at the end of the
paper, gives a lower bound for the uniform approximation that seeding achieves
in some cluster.

Lemma 6. Let A be an arbitrary cluster. Then:

Ec∼UA [ψα(A, c)] ≥
2ρ2

ψ

2ρ2
ψ − 1

ψα(A) . (24)

(24) matches ratio 2 that follows from Lemma 1 for Mahalanobis divergence. The
average participation of the seeds in (24) hides large discrepancies, as there do
exist seeds whose clustering potential come arbitrarily close to the lower bound
(24) as ρψ increases. In other words, since this lower bound is decreasing with
ρψ, increasing ρψ may make seeding artificially more efficient if we manage to
catch these seeds, a fact that Theorem 2 cannot show. A toy example shows
that we can indeed catch such seeds with high probability: we consider k = 2
clusters on n > 2 points with α = 1. The first cluster contains two points p and
q as in Figure 2, with p located at abscissa 0 and q at abscissa δ (for the sake of
simplicity, ψ is assumed defined on [0, +∞)). Add n − 2 points x1, x2, ..., xn−2,
all at abscissa Δ > δ, and pick Δ sufficiently large to ensure that these n − 2
points define a single cluster, while p and q are grouped altogether in cluster A.
It follows that ψopt,1 = 2BRψ({0, δ}) = ψopt,1(A). The probability to seed one of
the xi in the two centers is at least (n−2)/n+(2/n) · (n−2)/(n−1) > 1−4/n2,
which makes that the expected potential is driven by the event that we seed
exactly one of the xi. The associated potential is then either Δψ(δ‖0) (we seed
p with xi) or Δψ(0‖δ) (we seed q with xi). Take ψ(x) = (x + 1)K for K �∈ [0, 1].
Then the ratio between these seeding potentials and ψopt,1 respectively satisfy
ρp ≤ 2K−1/(2K−1 − 1) and ρq = θ(K), while ρ2

ψ = (1 + Δ)K . When K → +∞,
we have (i) ρp → 1, and so seeding p rapidly approaches the lower bound (24);
(ii) ρq → +∞, and so seeding q drives E[ψ1]; (iii) ratio ρ2

ψ is extremely large
compared to ρq.

5 Experiments

Empirical tests were made with synthetic point sets which had a distinctive
structure with high probability. The number of clusters was always 20 and every
cluster had 100 points in R

50
+∗. Each of the 20 distributions for the clusters

was generated in two phases. In the first phase, for each coordinate lots were
drawn independently with a fixed probability p whether the coordinate value is a
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Table 1. Percentage of seeding runs in which one center was picked from every original
cluster. Numbers in the labels KL-0, KL-0.25 etc. refer to different values of α.

p unif. D2 KL-0 KL-0.25 KL-0.5 KL-0.75 KL-1 IS-0 IS-0.25 IS-0.5 IS-0.75 IS 1
0.1 0 9.70 56.8 75.5 77.1 76.1 57.2 34.4 94.3 95.4 96.0 48.4
0.5 0 24.0 77.8 83.1 81.8 80.7 79.3 94.9 95.9 96.5 95.8 94.4
0.9 0 7.10 34.6 38.8 42.2 39.4 29.5 28.1 72.6 75.8 68.6 20.5
1.0 0 4.10 7.20 10.0 7.90 9.30 5.90 0 0 0 0 0.100

Table 2. Percentage of original clusters from which no point was picked in the seeding
phase. Average over 1000 runs.

p unif. D2 KL-0 KL-0.25 KL-0.5 KL-0.75 KL-1 IS-0 IS-0.25 IS-0.5 IS-0.75 IS-1
0.1 35.8 7.60 2.48 1.32 1.19 1.24 2.32 5.50 0.285 0.230 0.200 3.39
0.5 35.5 5.47 1.18 0.880 0.945 0.975 1.09 0.260 0.205 0.180 0.210 0.285
0.9 35.8 8.54 4.15 3.75 3.45 3.74 4.68 4.42 1.46 1.31 1.67 6.45
1.0 35.9 9.81 8.27 7.86 8.27 8.27 9.00 27.8 23.1 23.4 25.1 21.7

Table 3. Bregman clustering potentials with Kullback-Leibler divergence (α = 0.25)

p unif. D2 KL-0 KL-0.25 KL-0.5 KL-0.75 KL-1 IS-0 IS-0.25 IS-0.5 IS-0.75 IS-1
0.1 31.2 4.59 2.64 1.59 1.46 1.46 1.85 6.45 1.10 1.09 1.06 2.33
0.5 19.5 4.55 1.74 1.59 1.50 1.66 1.74 1.14 1.14 1.08 1.10 1.15
0.9 7.29 2.92 1.97 1.82 1.73 1.92 2.05 1.90 1.34 1.29 1.39 2.57
1.0 4.13 2.21 1.97 1.99 2.01 2.05 2.11 3.93 3.64 3.69 3.89 3.54

Poisson distributed random variable or the constant 0. Then in the second phase
the expectations of the Poisson random variables were chosen independently and
uniformly from range ]0, 100[. 100 points were generated from each distribution
and after that the value ε = 10−6 was added to every coordinate of every point
in order to move the points to the domain of Kullback-Leibler and Itakura-
Saito divergences. Because not only the seeding methods but also the datasets
were random, 10 datasets were generated for each value of p. The seeding and
clustering test were repeated 100 times for each dataset.

When p was less than 1, each cluster was characterized with high probability
by the position of coordinates whose value was not ε. That made the mixed
Itakura-Saito divergences between two points belonging to different clusters very
high, and picking one point from every original cluster was strikingly easy using
those distortion measures (Tables 1 and 2). However, when all the coordinates
were Poisson distributed, the task of finding a center candidate from every cluster
was far more difficult. In that case the Kullback-Leibler seeding performed best.

In the clustering tests uniform, D2, Kullback-Leibler and Itakura-Saito seed-
ing (α ∈ {0, 0.25, . . . , 1}) were used with KL-divergences (same set of values for
α as in the seeding) in the iterative phase and by evaluation of the clustering
potential. Table 3 illustrates the situation when value α = 0.25 is used in the
iterative phase. All the values in the table were normalized using the clustering
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potentials which were achieved by refining the known centers of the distribu-
tions with Bregman clustering. When p was 0.1 uniform seeding brought an over
twenty-eight times and D2 seeding over four times larger average potential than
the mixed versions of Itakura-Saito seeding.

In general, there was a clear correlation between the quality of the seeding and
the final clustering potential, even if the relative differences in the final potentials
tended to diminish gradually when p increased. That means the mixed versions of
Bregman seeding algorithms led to low clustering potentials also when a regular
Bregman divergence was used in the clustering phase. Additional tests were run
with Poisson random variables replaced by Binomial(n, r) distributed variables,
so that n = 100 and r was taken uniformly at random from range ]0, 1[. The
results were quite similar to those shown here.

6 Conclusions and Open Problems

We have seen that the D2 seeding of [AV07] can be generalized for Bregman
clustering while maintaining some form of approximation guarantee. Our other
main contribution was symmetrization of Bregman clustering by using pairs of
centroids. Experiments suggest that the resulting new algorithm can significantly
improve the quality of both the seeding and the final clustering. The experiments
are somewhat preliminary, though, and should be extended to cover more real-
istic data sets. We also need a better understanding of how much the seeding
affects the end result in practice.

On theoretical side, it is not clear if the factor ρψ really is necessary in the
bounds. Conceivably, some proof technique not relying on the triangle inequality
could give a sharper bound. Alternatively, one could perhaps prove a lower bound
that shows the ρψ factor necessary. It would also be interesting to consider other
divergences. One possibility would be the p-norm divergences [Gen03] which in
some other learning context give results similar to Kullback-Leibler divergence
but do not have similar extreme behavior at the boundary of the domain.
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Appendix: Proofsketch of Lemma 6

Fix A = {x1, x2, ..., xK} and let

BRψ(A) .=
∑K

i=1 ψ(xi)
K

− ψ

(∑K
i=1 xi

K

)

be the Burbea-Rao divergence generated by ψ on A, that is, the non negative
remainder of Jensen’s inequality [DD06]. It shall be convenient to abbreviate the
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a
b

c

d

e

p (p + q)/2 q

ψ

Δψ(q‖p)Δψ((p + q)/2‖p)

BRψ({p, q})

Fig. 2. Plot of some convex function ψ defined on some segment [p, q]. Here, a =
(p,ψ(p)), b = (q, ψ(q)) and segment ae is tangent to ψ in a. Thales theorem in triangles
(a, b, c) and (a, d, e) proves (29), as it gives indeed |de|/|bc| = |ad|/|ab| = |ae|/|ac| (here,
|.| denotes the Euclidean length).

arithmetic and Bregman averages of A as c and c� respectively. Then we want
to estimate the ratio between the uniform seeding potential and the optimal
potential for A:

ρA
.=

1
K

K∑

i=1

∑
x∈A 	ψ,α(xi‖x‖xi)

∑
x∈A 	ψ,α(c�‖x‖c)

. (25)

Fix i ∈ {1, 2, ..., K}. First, it comes from (7) that∑
x∈A Δψ(x‖xi) −

∑
x∈A Δψ(x‖c) = KΔψ(c‖xi), and we also get from (8)

that
∑

x∈A Δψ(xi‖x) −
∑

x∈A Δψ(c�‖x) = KΔψ(xi‖c�). The numerator of
(25) becomes:

∑

x∈A
	ψ,α(xi‖x‖xi) = α

(
∑

x∈A
Δψ(x‖c) + KΔψ(c‖xi)

)

+(1 − α)

(
∑

x∈A
Δψ(c�‖xi) + KΔψ(xi‖c�)

)

(26)

=
∑

x∈A
	ψ,α(c�‖x‖c) + K	ψ,1−α(c‖xi‖c�) . (27)

The left summand in (27) is the optimal potential for the cluster. Finally, the
denominator of (25) can be rewritten as

∑K
i=1 	ψ,α(c�‖xi‖c) = K(αBRψ(A) +

(1 − α)BRψ�(∇ψA)), where ∇ψA is the set of gradient images of the elements
of A. We get:

ρA = 1 +
1
K

K∑

i=1

	ψ,1−α(c‖xi‖c�)
αBRψ(A) + (1 − α)BRψ�(∇ψA)

. (28)

For the sake of simplicity, let ci,j denote the weighted arithmetic average of A in
which the weight of each xk is 1

2jK for k �= i, and the weight of xi is 1
2jK +1− 1

2j
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(∀j ≥ 0). We also let c�
i,j denote the weighted Bregman average of A under this

same distribution. Thus, as j increases, the averages get progressively close to
xi. Then, we have ∀j ≥ 0:

Δψ(ci,j‖xi) = 2(BRψ({ci,j , xi}) + Δψ((ci,j + xi)/2‖xi)) (29)
= 2(BRψ({ci,j , xi}) + Δψ(ci,j+1‖xi)) .

Δψ(xi‖c�
i,j) = Δψ�(∇ψ(c�

i,j)‖∇ψ(xi)) (30)
= 2(BRψ�({∇ψ(c�

i,j), ∇ψ(xi)}) (31)
+Δψ�((∇ψ(c�

i,j) + ∇ψ(xi))/2‖∇ψ(xi))) (32)
= 2(BRψ�({∇ψ(c�

i,j), ∇ψ(xi)}) + Δψ(xi‖c�
i,j+1)) .

While (30) is just stating the convex conjugate, Thales Theorem proves both
(29) and (32). Figure 2 presents a simple graphical view to state this result in
the context of Bregman and Burbea-Rao divergences. We get:

	ψ,1−α(ci,j‖xi‖c�
i,j) = αΔψ(ci,j‖xi) + (1 − α)Δψ(xi‖c�

i,j)
= 2(αBRψ({ci,j , xi}) (33)

+(1 − α)BRψ�({∇ψ(c�
i,j), ∇ψ(xi)}))

+	ψ,1−α(ci,j+1‖xi‖c�
i,j+1) . (34)

Note that c = ci,0 and c� = c�
i,0, ∀i = 1, 2, ..., K. We let:

b0
.=

2
K

·
∑K

i=1

{
αBRψ({ci,0, xi}) + (1 − α)BRψ�({∇ψ(c�

i,0), ∇ψ(xi)})
}

αBRψ(A) + (1 − α)BRψ�(∇ψA)

and for all j > 0

bj
.= 2 ·

∑K
i=1

{
αBRψ({ci,j , xi}) + (1 − α)BRψ�({∇ψ(c�

i,j), ∇ψ(xi)})
}

∑K
i=1

{
αBRψ({ci,j−1, xi}) + (1 − α)BRψ�({∇ψ(c�

i,j−1), ∇ψ(xi)})
} .

Furthermore, ∀j ≥ 0, we let:

rj
.=

∑K
i=1 	ψ,1−α(ci,j‖xi‖c�

i,j)

2
∑K

i=1

{
αBRψ({ci,j , xi}) + (1 − α)BRψ�({∇ψ(c�

i,j), ∇ψ(xi)})
} .

Plugging (34) into (28) and using the last notations yields:

ρA = 1 + b0(1 + b1(...(1 + bJrJ )))
≥ 1 + b0(1 + b1(...(1 + bJ−1)))

≥
J−1∑

j=0

(
1

2ρ2
ψ

)j

=
(2ρ2

ψ)J − 1
(2ρ2

ψ)J
·

2ρ2
ψ

2ρ2
ψ − 1

, ∀J ≥ 0 .

The last inequality is obtained after various suitable Taylor expansions of ψ are
used for bi, i ≥ 0, which gives bi ≥ 1/(2ρ2

ψ) (not shown to save space).
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