
On Region Merging:
The Statistical Soundness of Fast Sorting, with Applications

Frank Nielsen
Sony CS Labs, FRL

3-14-13 Higashi Gotanda
Shinagawa-Ku, Tokyo 141-0022, Japan

http://www.csl.sony.co.jp/person/nielsen/

Richard Nock
DSI-Univ. Antilles-Guyane

Campus de Schoelcher, B.P. 7209
97275 Schoelcher, France

http://www.univ-ag.fr/∼rnock

Abstract

This work explores a statistical basis for a process of-
ten described in computer vision: image segmentation by
region merging following a particular order in the choice
of regions. We exhibit a particular blend of algorithmics
and statistics whose error is, as we formally show, close to
the best possible. This approach can be approximated in a
very fast segmentation algorithm for processing images de-
scribed using most common numerical feature spaces. Sim-
ple modifications of the algorithm allow to cope with occlu-
sions and/or hard noise levels. Experiments on grey-level
and color images, obtained with a short C-code, display the
quality of the segmentations obtained.

1. Introduction

It is established since the Gestalt movement in psychol-
ogy that perceptual grouping plays a fundamental role in
Human perception. Even though this observation is rooted
in the early part of the XXth century, the adaptation and au-
tomation of the segmentation (and more generally, group-
ing) task with computers has remained so far a tantalizing
and central problem for image processing. Roughly speak-
ing, the problem can be presented as the transformation of
the collection of pixels of an image into a meaningful ar-
rangement of regions and objects. There are four large cat-
egories of approaches to image segmentation [1], one of
which is of direct interest to us : region growing and merg-
ing techniques. In region merging, regions are sets of pixels
with homogeneous properties and they are iteratively grown
by combining smaller regions or pixels, pixels being ele-
mentary regions. Region growing/merging techniques usu-
ally work with a statistical test to decide the merging of re-
gions [1]. A merging predicate uses this test, and builds the
segmentation on the basis of (essentially) local decisions.

Figure 1. A natural RGB image and the seg-
mentation found by our segmentation method
(regions white bordered & averaged inside).

This locality in decisions has to preserve global proper-
ties, such as those responsible for the perceptual units of the
image [2]. In Figure 1, the grassy region below the castle
is one such unit, even when its variability is high compared
to the other regions of the image. In that case, a good re-
gion merging algorithm has to find a good balance between
preserving this unit and the risk of overmerging for the re-
maining regions. The right image in Figure 1 shows the
result of our approach.

As long as the approach is greedy, two essential compo-
nents participate in defining a region merging algorithm: the
merging predicate, and the order followed to test the merg-
ing of regions. There is a lack of theoretical results on the
way these two components interact together, and can benefit
from each other. This might partially be due to the fact that
most approaches use assumptions on distributions, more or
less restrictive, which would make any theoretical insight



into how region merging works restricted to such settings,
and therefore of possibly smaller interest (see e.g. [3] for
related criticisms).

Following [4], we chose to tackle the segmentation prob-
lem with a model which, basically, only keeps indepen-
dence as its main assumption, and is otherwise essentially
hypothesis-free. Therefore, there is no ad hoc prior on the
nature of the distributions. Our main result is a region merg-
ing algorithm tailored to this model, and a proof of its per-
formance guarantees. Our proof completes previous results
on this line of work [4], in particular by showing that the
algorithm has an accuracy in segmentation close to the op-
timum, up to low order terms. The algorithm has some de-
sirable features: it relies on a simple interaction between
a merging predicate easily implementable, and an order in
merging approximable in linear time. Furthermore, it can be
adapted to most numerical feature description spaces. The
practical standpoints emphasize some desirable features of
the algorithm: its implementation requires only a few kilo-
bytes C code, and no pre-processing prior to segmentation
is needed (neither any extensive tuning of its parameters).
Finally, its simplicity makes it, as we show, a simple tool
for extensions to segmentations handling hard noise and/or
significantly occluded images, at very affordable algorith-
mic complexity.

The next section details our model of image generation.
It is followed by a section presenting and analyzing the
merging predicate. Section 4 proves our main Theorem on
the accuracy of the resulting segmentation algorithm. Sec-
tion 5 presents our experimental setups for the algorithm’s
implementation. Section 6 presents and discusses general
experimental results, as well as results on adapting the al-
gorithm to occlusion and/or noise handling.

2. Image Generation Model

Throughout this paper, the notation |.| stands for cardi-
nal. The observed image, I , contains |I| pixels, each con-
taining one of g grey-levels. For the sake of simplicity, our
primary analysis relies on the grey-level setting, i.e. for a
single color band. On this basis, the extension of the results
to more numerical channels, such as RGB, does not require
an involved analysis. It is presented in Section 5. Our model
of image generation and our basic machinery follow [4].

A theoretical “image” (or scene) I∗, represents the true
objects (or true regions) as distributions. We aim at approx-
imating the contour of these objects through the observation
of an image, I , which is sampled from I∗. We suppose that
there are sopt true objects in I∗. I∗ is composed of the-
oretical pixels, to each of which corresponds a pixel of I .
Each theoretical pixel is a set of Q > 0 independent ran-
dom variables (r.v.). These r.v. are supposed discrete, and
take positive values so as to sum for each pixel in the set

defining the grey-levels (say, {1, 2, ..., g}). The true objects
in I∗ satisfy the following properties:

• an homogeneity property: for each true object, the sum
of expectations of the Q r.v. of each of its theoretical
pixels is the same.

• a separability property: for any two theoretical pixels
belonging to adjacent true objects, the sum of expecta-
tions of their Q r.v. are different.

Let us consider a segmentation as a partition of an image
into 4-connex regions. Our model allows to define the ideal
segmentation of I , s∗(I) : it is the partition of I according
to the sopt true objects of I∗. Our objective is to build an
observed segmentation of I , s(I), approximating as best as
possible s∗(I), that is, having the lowest error. The quality
of s(I) with respect to s∗(I) is estimated by the following
quantity:

Err(s(I), s∗(I)) = ER∩O,R∈s(I),O∈s∗(I) (|E(O) − E(R)|)
Here, E (slanted) denotes the expectation with associated

probability measure µ(R ∩ O) = |R ∩ O|/|I|. The nota-
tion E(T ) for some arbitrary region T ∈ s(I)∪ s∗(I) is the
expectation over all corresponding theoretical pixels of I∗

of their sum of expectations of their Q r.v. . For the sake
of clarity, the letter R (eventually with subscripts) refers to
regions of s(I), whereas the letter O (eventually with sub-
scripts) refers to regions of s∗(I). Finally, notation R (resp.
O) refers to the observed grey-level average on image I of
some R ∈ s(R) (resp. O ∈ s∗(I)).

Notice that the frequent i.i.d. assumption is relaxed in
this model to that of ordinary independence. Inside a true
region, it can be the case that all distributions associated to
each pixel are different, as long as the homogeneity prop-
erty is satisfied. This freedom has a counterpart, which led
us to introduce Q, not necessarily to make our model more
general, but essentially for practical purposes : the conven-
tional choice Q = 1 would make it actually hard to estimate
reliably anything for small regions, or equivalently, would
make it necessary to consider very large images to improve
the segmentation’s statistical accuracy. Notice that Q is a
parameter which makes sense: it quantifies the complexity
of the scene, the generality of the model, and the statistical
hardness of the task as well. Experimentally, Q turns out
to be a parameter that the user can chose to tune to control
the coarseness of the segmentation, even if we shall see that
this tuning does not absolutely seem to be necessary, as an
intermediate value (Q = 32) brings accurate results for a
large body of images from different domains.

3. Merging Predicate

A first result states that, with high probability, the ob-
served average of any region in I shall not deviate too much



from its theoretical expectation.

Theorem 1 [4] Let R be a region in I . Let Rl be the
set of regions having l pixels in I . Then the probability
that there exists a region in R|R| such that

∣

∣R − E(R)
∣

∣ ≥
g
√

1
2Q|R| ln

2|R|R||
δ′ is no more than δ′.

The use of Theorem 1 is straightforward. The proba-
bility that there exists a region in I (regardless of its size)
for which its average deviates from its expectation by more
than the right-hand-side of the ineq. in Theorem (1) is no
more than |I|δ′, since the region can have size 1, 2, ..., or
|I|. If we fix

δ = |I|δ′ (1)

and

b(R) = g

√

1

2Q|R|

(

ln
2

δ′
+ ln |R|R||

)

, (2)

then we know that, with high probability (i.e. > 1 − δ),
for any region R, R ∈ [E(R) − b(R), E(R) + b(R)]. In
that case, because of the triangle inequality, we know that
for any two regions R and R′ having the same expectation
(E(R′) = E(R) = q), we have |R′ − R| ∈ [−(b(R) +
b(R′)), b(R)+ b(R′)], since |R′−R| ≤ |R′− q|+ |R− q|.
From a practical point of view, if |R′ −R| ≤ b(R) + b(R′),
then we can suppose that R and R′ belong to the same true
region in I∗, and merge them. The merging predicate for a
single color level is therefore:

P(R,R′) =

{

true if |R′ − R| ≤ b(R) + b(R′)
false otherwise

.

We also replace |R|R|| in b(.) by an upperbound |R|R|| ≤
(|R| + 1)g [4]. To complete our discussion on the impor-
tance of Q in section 2, let us consider a simple numerical
case. Suppose that |R| = 30 × 30 (a typical segment size),
with |I| = 1000× 1000 (a large image). If we fix δ = 2−7,
then b(R) ≈ 256 (= g) for Q = 1, a choice clearly not rea-
sonable. However, if we fix e.g. Q = 32, then b(R) ≈ 45,
a reasonable bound.

4. Algorithm and Analysis

Given the predicate P , it basically remains to give the or-
der in which the region merging tests should be carried out.
[4] shows that there exists a theoretical order in the merg-
ing tests which leads to an interesting global property on the
segmentation’s error. More precisely, consider algorithm A
which satisfies the following:

A makes the merging tests in such a way that when any
test between two (parts of) true regions occurs, that
means that all tests inside each of the two true regions
have previously occurred.

Informally, the merging predicate on I defines a total order-
ing, admitting a partial sub-ordering with a simple property
relying on I∗. It is important to notice that this assump-
tion does not make a priori A an efficient algorithm at all
(even theoretically). In particular, the algorithm still faces
the three kind of segmentation errors. First, while some
ideal regions may coincide with the regions found in s(I),
some ideal regions may be grouped together into regions
of s(I), which represents over-merging (more merges than
necessary are done). Second, there is the “opposite” case
where true regions can be split into many small regions in
s(I), a situation to which we refer as under-merging (not
enough merges). Third, there is a hybrid case, in which
some regions obtained in s(I) span sub-parts of different
true regions. These three sources of errors cohabit together
in s(I), and obtaining a good segmentation with low error
can only be obtained by the control of all of them. It is
possible to show that, when A is associated to P , only one
source of errors (out of the three) remains.

Theorem 2 [4] With probability > 1− δ (eq. (1)), the seg-
mentation on I is an over-merging of I∗, that is: ∀O ∈
s∗(I),∃R ∈ s(I) : O ⊆ R.

What Theorem 2 says is that with high probability, the
only source of error will be through over-merging, and nei-
ther from under-merging nor the splitting of true regions of
s∗(I) between more than one region found. It limits the
sources of error, but unfortunately not the error incurred by
these sources. We now show that this error can effectively
be upperbounded. The remaining of this Section is devoted
to the proof and discussion of the following Theorem.

Theorem 3 For any images I∗ (with sopt > 1) and I ,
∀0 < δ′ < 1, suppose that we use our merging predicate P
together with algorithm A. Then, with probability > 1 − δ
where δ = |I|δ′, the segmented image suffers an error with
respect to the optimal segmentation satisfying

Err(s(I), s∗(I))

≤ O
(

g

√

sopt ln sopt

|I|Q

(

ln
1

δ′
+ g ln |I|

)

)

.

Since Theorem 2 holds, for any region R obtained in I ,
we define n(R) = |{O ∈ s∗(I) : O ⊆ R}|. Notice
that because we are in an over-merging setting, any region
R for which n(R) = 1 does not participate in increasing
the error. Therefore, w.l.o.g., we concentrate only on re-
gions R for which n(R) > 1. We introduce a more ade-
quate representation for regions in s(I), which shall come



mergings

4O 3O 2O 1O

N1

= RN3

N2N1

N1

3O

N2

4

3O 2O

= RN3

4 1O

O

O

Figure 2. The tree-representation of a region
R (with n(R) = 4) in s(I), depicting the step-
wise construction of R by merging four re-
gions O1, O2, O3, O4 of s∗(I).

in handy for our proof. A region R is represented by a bi-
nary tree, the leaves of which are the ideal regions contained
in R, and labeled O1, O2, ... and so on. The root repre-
sents the region R, and each internal node has two chil-
dren, representing the two regions in I that A has merged
to obtain their parent node. Figure 2 displays the tree of
a simple region R containing four ideal regions. For any
node C of this tree, we also use the notation “i-node(C)”
to represent the set of all internal nodes of the subtree
rooted at C (therefore, containing also C). In Figure 2,
we would have i-node(O1)= i-node(O2)= i-node(O3)= i-
node(O4)= ∅, i-node(N1)= {N1}, i-node(N2)= {N2}, and
i-node(N3)= i-node(R)= {N1, N2, N3}= {N1, N2, R}. In
our over-merging setting, denote ∀O ∈ s∗(I) :

I(O) = R ∈ s(I) : O ⊆ R . (3)

For any region T , either in s(I), or in s∗(I), we rewrite b(.)
(section 3) using the upperbound on |R|R|| as

b(T ) = g

√

1

2Q|T |

(

ln
2

δ′
+ g ln(|T | + 1)

)

. (4)

We also fix S = {O ∈ s∗(I) : O 6= I(O)} in the next
Lemmas.

Lemma 1 Err(s(I), s∗(I)) ≤
∑

O∈S
|O|
|I|

(b(I(O)) + b(O))+
∑

O∈S
|O|
|I|

|I(O) − O|.

Proof: ∀R ∈ s(I),∀O ∈ s∗(I), we have by the
triangle inequality |E(O) − E(R)| ≤ |E(O) − O| +
|O − R| + |R − E(R)|. Since the segmentation is
an over-merging of I∗, we have Err(s(I), s∗(I)) =
∑

O∈s∗(I),O 6=I(O)
|O|
|I| |E(O) − E(I(O))|, and since we are

in the > 1 − δ probability event that for each region
R ∈ s(I) its theoretical grey-level expectation does not
deviate by more than b(R) from its observed average, we
have also |E(O) − O| ≤ b(O) and |I(O) − E(I(O))| ≤

b(I(O)). Putting this altogether, we obtain the statement of
the Lemma.
We upperbound separately the two terms of the error in
Lemma 1.

Lemma 2

∑

O∈S

|O|

|I|
|I(O) − O| ≤ 2g

√

sopt log(sopt)

|I|Q

(

ln
2

δ′
+ 2g ln |I|

)

.

Proof: We have
∑

O∈s∗(I),O 6=I(O) |O||I(O) − O|/|I| ≤
∑

(R∈s(I),n(R)>1)

∑

(O∈s∗(I),O⊂R) |O||I(O) − O|/|I|.
Let us consider the local error for some fixed re-
gion R with n(R) > 1 in the last summation :
∑

O∈s∗(I),O⊂R
|O|
|I| |R − O|. Consider the two true re-

gions O1 and O2 that were merged at first prior to creating
R (see Figure 2). Their participation to the local error
due to R is |O1||R − O1|/|I| + |O2||R − O2|/|I|.
Straightforward derivations yield (i) |O1||R − O1|/|I| ≤
|O1|

(

|R − O1 ∪ O2| + |O1 ∪ O2 − O1|
)

/|I|, (ii)
|O1 ∪ O2 − O1| ≤ |O2||O2 − O1|/|O1 ∪ O2| (the
same relationships hold when permuting O1 and O2), (iii)
|O1 − O2| ≤ b(O1) + b(O2) (because O1 and O2 were
merged). Putting altogether all these inequalities, we get:

|O1|
|I| |R − O1| +

|O2|
|I| |R − O2|

≤ |O1 ∪ O2|
|I| |R − O1 ∪ O2|

+
2|O1||O2|

|I||O1 ∪ O2|
(b(O1) + b(O2)) (5)

=
|N1|
|I| |R − N1|

+
2|O1||O2|

|I||O1 ∪ O2|
(b(O1) + b(O2)) , (6)

where N1 is the direct common ancestor (the parent) of O1
and O2 (see also Figure 2). Therefore, if we except the pe-
nalizing term depending on b(O1)+b(O2), the contribution
of R to the error can be upperbounded by the error of the
leaves of the tree representation of R (the ideal regions) in
which we replace the two terms due to O1 and O2 by a new
term due to the parent of O1 and O2, thus producing a new
tree in which we still have to measure the contribution to
the error. Repeating recursively this procedure consisting
in measuring the error of a tree which is stepwise reduced
by replacing the contribution of the currently merged re-
gions by their parent’s, plus a penalizing term whose value
is known and depends on b(.), we easily obtain the follow-
ing relationship:

∑

O ∈ s∗(I)
O ⊂ R

|O|

|I|
|R − O| ≤

∑

N∈i-node(R)

2|C1||C2|

|I||N |
(b(C1) + b(C2)) ,

where C1 and C2 are the two children of N in the tree rep-
resentation of R, themselves internal nodes (∈ i-node(R))



or leaves (∈ {O1, O2, ...}). Now, note that

2|C1||C2|
|I||N | (b(C1) + b(C2))

=

√
2g

|I|√Q

(

|C2|
|N |

√

|C1|
(

ln
2

δ′
+ g ln(|C1| + 1)

)

+
|C1|
|N |

√

|C2|
(

ln
2

δ′
+ g ln(|C2| + 1)

)

)

.

Function f(x) =
√

x(a + b ln(x + 1)) for constants a > 0,
b > 1 (an integer) is concave in x ≥ 1, which means by
Jensen’s inequality that α1f(x)+α2f(y) ≤ f(α1x+α2y)
whenever α1 + α2 = 1, α1, α2 ≥ 0. If we fix x = |C1|,
y = |C2|, α1 = |C2|/|N | and α2 = |C1|/|N |, then we
obtain the upperbound:

2|C1||C2|
|I||N | (b(C1) + b(C2))

≤
√

2g

|I|√Q

√

2|C1||C2|
|N |

(

ln
2

δ′
+ g ln

(

2|C1||C2|
|N | + 1

))

.

Now, fix aN = 2|C1||C2|
|N | and bN = ln 2

δ′ + g ln(aN + 1).
We have

∑

O∈s∗(I),O 6=I(O)

|O|
|I| |I(O) − O|

≤
√

2g

|I|√Q

∑

(R∈s(I),n(R)>1)

∑

N∈i-node(R)

√
aN

√

bN

≤
√

2g

|I|√Q

√

ANBN , (7)

with

AN =
∑

(R∈s(I),n(R)>1)

∑

N∈i-node(R)

aN , (8)

BN =
∑

(R∈s(I),n(R)>1)

∑

N∈i-node(R)

bN . (9)

The two next Lemmas bound respectively AN and BN .

Lemma 3 For any region R ∈ s(I) for which n(R) > 1,
∑

N∈i-node(R)

aN ≤ |R| log(n(R)) . (10)

(proof omitted due to the lack of space; it relies on an in-
duction on the depth of R’s tree shown in Figure 2, that is,
on the maximum number of edges to go from the root to a
leaf of the tree.) Because of the fact that n(R) ≤ sopt for
any region R in s(I), we have by Lemma 3 and eq. (8):

AN ≤ log(sopt)|I| . (11)

Lemma 4 For any region R ∈ s(I) for which n(R) > 1,

∑

N∈i-node(R)

bN ≤ n(R)

(

ln
2

δ′
+ 2g ln |I|

)

.(12)

Proof: We have
∑

N∈i-node(R) bN =
∑

N∈i-node(R)

(

ln 2
δ′ + g ln(aN + 1)

)

. Therefore

∑

N∈i-node(R)

bN

≤n(R) ln
2

δ′
+ g ln





∏

R∈s(I),n(R)>1

(aN + 1)



 .(13)

Note that aN + 1 = 2|C1||C2|+|C1|+|C2|
|C1|+|C2| ≤ (|C1| + |C2|)2,

where C1 and C2 are the two children of N in the tree
representation of R. Note also that |C1| + |C2| ≤ |I|,
and |i-node(R)| = n(R) − 1. Putting this altogether with
ineq. (13), we get

∑

N∈i-node(R) bN ≤ n(R) ln 2
δ′ + 2g ×

n(R) ln |I|, as claimed.
Using the notation of eq. (9), we get

BN ≤ sopt

(

ln
2

δ′
+ 2g ln |I|

)

. (14)

Putting altogether ineqs (7), (8), (9), (11) and (14), we get
the statement of Lemma 2.
The next Lemma upperbounds the last term in Lemma 1.

Lemma 5

∑

O∈S

|O|

|I|
(b(I(O)) + b(O)) ≤ g

√

2sopt

|I|Q

(

ln
2

δ′
+ g ln |I|

)

.

Proof: For the sake of clarity, fix A =
∑

O∈s∗(I),O 6=I(O)
|O|
|I| (b(I(O)) + b(O)). Remark that

O ⊂ I(O) implies b(I(O)) < b(O), and we get

A≤
∑

O∈s∗(I),O 6=I(O)

√
2g

|I|√Q

√

|O|
(

ln
2

δ′
+ g ln(|O| + 1)

)

.

Let us fix for short A1 =
∑

O∈s∗(I),O 6=I(O) |O|, A2 =
∑

O∈s∗(I),O 6=I(O)

(

ln 2
δ′ + g ln(|O| + 1)

)

. We get A ≤
√

2g

|I|
√

Q

√
A1A2, and few more inequations leads to the state-

ment of the Lemma.
Lemmas 1, 2, 5 put altogether end the proof of Theorem 3;
they also show that the constant hidden in the O notation
of Theorem 3 is small (actually <

√
6). Now, consider the

result of Theorem 3. If we ignore logarithmic factors, then
the upperbound on the error is driven by g

√

sopt/(|I|Q), a
close order approximation to the optimal error [5].



medical PSIS no sorting

street[2] PSIS no sorting

Figure 3. Sorting’s importance. Regions ob-
tained in the segmentations are grey-level av-
eraged with white borders.

5. Color Images and Ordering

The extension of our analysis to RGB images is straight-
forward. The single color band of a pixel is replaced by a
triple of values, each in the same range: {1, 2, ..., g}. The
model of Section 2 is therefore replaced by a tri-model, each
true pixel being described by a triple of Q r.v., for each
of the R, G and B color levels. The homogeneity prop-
erty is the same as the single color setting for each level
a ∈ {R, G, B} taken apart. Therefore, the separability
property postulates that at least one sum of expectations in
{R, G, B} is different for adjacent true regions. The merg-
ing predicate for the RGB setting is [4]:

P(R,R′) =







true if ∀a ∈ {R, G, B},
|R′

a − Ra| ≤ b(R) + b(R′)
false otherwise

.

Here, Ra denotes the observed average for color level
a in region R. Provided the same assumption is made on
algorithm A as in Section 4, our predicate preserves over-
merging, and the same bound as that of Theorem 3 holds on
the error if we measure it as the sum of errors over the three
color levels. Only the constant multiplicative factor in the
O notation slightly increases.

From an experimental point of view, following exactly
A is impossible (we do not have access to I∗), but we
can approximate it by a simple and fast algorithm. Sup-
pose that I contains r rows and c columns. Then we have
2rc − r − c couples of adjacent pixels in 4-connexity, and
as many merging tests to do in the worst case. We order
these couples in increasing order of their absolute grey-
level difference (for grey-level images), or in increasing
order of their maximal R, G, B difference (for RGB im-

hand PSIS Region

snowy-road PSIS Region

rock PSIS Region

Figure 4. Results of PSIS on color images.
The left column displays the original images,
the center column is PSIS’s results (regions
are color averaged with white borders). The
right column displays an example of region
found by PSIS on the images.

ages). Then, we test the merging between the correspond-
ing regions of the pixels inside each couple, following this
order, and using our merging predicate P . Let us name
PSIS this algorithm (after [4]). Since we do not update
the order in PSIS when two regions are merged, the algo-
rithm obtained is algorithmically very fast, and can be im-
plemented without much programming tricks : for example,
using radix sorting with color differences as the keys brings
time complexity O(|I| log(g)) — linear in |I| —. How-
ever, this choice which emphasizes complexity might seem
to be quite a loose approximation for the order in A proned
in Section 4. A simple experiment seems to display nice
evidences that it is, fortunately, not the case.

It consists in comparing PSIS to the algorithm in which
everything but the order is the same : the order in PSIS is
replaced by a conventional scanning of the image covering
the pixels from the top to the bottom of the image, and from
the left to the right of the image (and we test the merging
of the current pixel’s region with those of its eventual left
and up neighbors). Due to the lack of space, Figure 3 shows
few eloquent experiments on grey-level images, in which
PSIS clearly brings an advantage over conventional scan-
ning (which, in addition, scarcely detects any region). Ex-
periments were carried out with Q = 32, δ′ = 1/|I|2, and
without any pre-processing of the images.



hand Reg. #0 Reg. #1 Reg. #2

Figure 5. Occlusions handling on image hand
(first row), and with many artificial random
occlusions (second row). The largest regions
found are shown (see text for details).

6. Experimental Results

Our implementation of PSIS to segment color images
is a few kilobytes C code. All experiments are carried out
without any pre-processing. Furthermore, we pick Q = 32
for all images (as proned in [4]), and δ′ = 1/(3|I|2) for
RGB images. Therefore, there is no extensive domain- or
image-dependent tuning of the parameters.

6.1. General Results

Results on the initial approach of PSIS can be found in
[4]. Figure 4 presents few more results (see also Figure 1).
Notice that on the road image, PSIS manages to segment
two parts of what seems to be a vehicle, while it does not
undermerge the snowy regions, with high variability.

6.2. Handling Occlusions

Suppose we make the hypothesis that the true regions of
I∗ can be occluded, that is, we relax the 4-connexity con-
straint. No part of our theoretical analysis relies on connex-
ity: its removal keeps our properties on an extended model
of image generation. This time, for each triple of expecta-
tions in (R, G, B) and set of pixels in I∗ that match these ex-
pectations, the homogeneity constraint implies that the set
is part of a true region of I∗, regardless of the position of
its pixels in I∗. The modification of PSIS to cope with oc-
clusions is simple: we first find the connex components of
regions using PSIS, and then test merging between these
components, regardless of connexity. In the next step, we
run again PSIS, but with the couples of adjacent pixels re-
placed by all couples of regions found after the first step. In
the order, the pixels color levels are replaced by the aver-
ages of color levels (of regions).

Figure 5, first row, shows image hand [1], with the three
regions found by PSIS with occlusion handling. They ap-

bowl +t(30%) [2] PSIS

bldg +s(60%) [2] PSIS

Figure 6. Sample results comparing the per-
formances of the approach of [2] and PSIS on
noisified images (left: images prior to noisi-
fication). Segmentation conventions are the
same (region colors are chosen at random).

proximate exactly the three perceptual regions of the im-
age (hand, donut, and background). Following [6], we
have tested occlusion handling on artificially occluded im-
ages, consisting in generating strips with variable orienta-
tion, width, and position in the image. However, where [6]
generate a single fixed strip per image, we choose a heavier
corruption by thirty random strips. Obviously, this hardens
the task: 45.31% of the pixels in the image hand in Fig-
ure 5 (second row) are occluded. PSIS has managed to
find an accurate segmentation of the hand, as four regions
are found this time: the three original regions, plus a re-
gion containing all occlusions merged together (not shown
in Figure 5).

6.3. Handling Noise

Occlusions are sometimes presented as particular forms
of noise generation [6]. We have chosen to study two types
of hard noise corruption. Each is parameterized by a real
q ∈ [0, 1]. Each color level ∈ {R, G, B} of each pixel ∈ I
is transformed with probability q into a new value, (i) cho-
sen uniformly in {1, 2, ..., g} for transmission noise (noted
t(q)), (ii) chosen uniformly in {1, g} (the extremes) for salt
and pepper noise (noted s(q)). We have experienced that
PSIS already handles significant amount of noise. More-
over, noisification of the image tends to increase dramat-
ically its advantage over approaches such as [2], a phe-
nomenon not previously reported. Two representative re-
sults are displayed in Figure 6. Notice the result of PSIS on
the bldg corrupted by 60% of salt and pepper noise on each
pixel, each channel. In the corrupted image, only roughly
6% of the pixels remain uncorrupted.

However, on some images, PSIS obtained a degradation
of its performances for significant noise levels. Fortunately,



castle [3] [2] PSIS

+t(50%) [3] [2] PSIS

+s(50%) [3] [2] PSIS

Figure 7. Results of [3, 2] and PSIS with our
order modification. Left: original images,
eventually corrupted by noise.

a simple modification of the algorithm makes it possible
to increase experimentally its performances, by making the
ordering prior to merges more robust. More precisely, the
new ordering is not based on pixel color levels, but on aver-
aged color levels, computed on a neighborhood of width ∆
around each pixel (using the Manhattan distance).

Figure 7 reports results on the castle of Figure 1.
Conventions for the segmentations results are as follows:
[3]’s regions are averaged with the original colors, [2]’s are
averaged with random colors, and PSIS’s follow [3]’s (with
white bordered regions). Notice that the number of regions
found by [3, 2] explode with corruption, a phenomenon
which does not appear for PSIS modified. The segmen-
tation time for the three algorithms gives a clear advantage
to [2] and PSIS modified (non-optimized). Figure 8 shows
more results on images taken from photographs or video,
with larger noise corruption. In these cases, PSIS is the
clear winner ([3, 2] obtain random results).

7. Acknowledgements

R. Nock would like to thank Sony CSL Tokyo for a gen-
erous invitation grant during which this work was finalized.

rock [3] [2] PSIS

+t(70%) [3] [2] PSIS

road [3] [2] PSIS

+t(70%) [3] [2] PSIS

Figure 8. More noise results (Cf Fig. 7).

PSIS (Linux/Win) is available on the authors web pages.

References

[1] S.-C. Zhu and A. Yuille, “Region competition: unifying
snakes, region growing, and bayes/MDL for multiband image
segmentation,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, vol. 18, pp. 884–900, 1996.

[2] P. F. Felzenszwalb and D. P. Huttenlocher, “Image segmen-
tation using local variations,” in Proc. of IEEE Interna-
tional Conference on Computer Vision and Pattern Recogni-
tion. 1998, pp. 98–104, IEEE CS Press.

[3] D. Comaniciu and P. Meer, “Robust analysis of feature
spaces: Color image segmentation,” in Proc. of IEEE Inter-
national Conference on Computer Vision and Pattern Recog-
nition. 1997, pp. 750–755, IEEE CS Press.

[4] R. Nock, “Fast and Reliable Color Region Merging in-
spired by Decision Tree Pruning,” in Proc. of IEEE Inter-
national Conference on Computer Vision and Pattern Recog-
nition. 2001, pp. 271–276, IEEE CS Press.

[5] M. J. Kearns and Y. Mansour, “A Fast, Bottom-up Decision
Tree Pruning algorithm with Near-Optimal generalization,”
in Proc. of the 15 th International Conference on Machine
Learning, 1998, pp. 269–277.

[6] D. Roth, M.-H. Yang, and N. Ahuja, “Learning to recog-
nize objects,” in Proc. of IEEE International Conference on
Computer Vision and Pattern Recognition. 2000, pp. 724–731,
IEEE CS Press.


