Approximating Smallest Enclosing Disks

Frank Nielsen*

Abstract

We describe a short and fast algorithm for finding ar-
bitrarily fine approximations of the smallest enclosing
disk of a planar point/disk set. Experimental results of
an implementation are presented.

1 Introduction

The smallest enclosing disk (SED for short) problem
dates back to 1857 when J. J. Sylvester [7] first asked
for the smallest disk enclosing n points on the plane.
Although O(nlogn)-time algorithms were designed for
the planar case in the early 1970s [4, 6], the problem
complexity was only settled in 1984 with N. Megiddo’s
first linear time algorithm [3] for solving linear programs
in fixed dimension. Unfortunately, these algorithms ex-
hibit a large constant hidden in the big-Oh notation and
do not perform so well in practice. E. Welzl [8] devel-
oped a simple recursive O(n) randomized algorithm for
point sets, called "move-to-front” heuristic, that is often
used by practitioners (see Section 6). Recently, Fischer
et al. [2, 1] described a pivoting scheme resembling the
simplex method for linear programming that, despite
no theoretical time bounds (besides guaranteed termi-
nation), can tackle exactly problems in large dimensions
for ball sets. Computing smallest enclosing disks are
useful for metrology, machine learning and computer
graphics problems. Fast constant approximation heuris-
tics are popular in computer graphics [5]. Our paper
aims at designing a fast deterministic (i.e., worst-case
time bounded) approximation algorithm that is suitable
for real-time demanding applications. Since they gain
in speed as the precision requirement decreases, approx-
imation algorithms are well suited for such purposes.
Our simple implementation for point /disk sets is a mere
30-line C code which does not require to compute the
basic primitive of the smallest disk enclosing three disks.
In fact, surprisingly, we exhibit a robust approximation
algorithm using only algebraic predicates of degree 2 us-
ing integer arithmetic. Moreover, as shown in Section 6,
our floating-point implementation outperforms or fairly
competes with traditional methods while guaranteeing
worst-case termination time.

*Sony Computer Science Laboratories Inc.
E-mail: Frank.NielsenQacm.org
TUniversité Antilles-Guyane, DST GRIMAAG.

E-mail: rnock@martinique.univ-ag.fr

Richard Nock!

Bz(’l”)
A J———
T B

P

e

Figure 1: Covering/piercing duality for a point set.
Points Py, P,, P5 are associated to corresponding disks
Bi(r), Ba(r),B3(r) such that C(B;(r)) = P; and
r(Bi(r)) = rfori € {1,2,3}. We have By (r*)N By (r*)N
Bs(r*) = {C*}. For r > r*, there exists a disk of radius
r — r* fully contained in B (r) N Ba(r) N Bs(r). In-
set: SEB of 10 points (green), DP(1.2r*) (purple) and
enclosed ball (red) of radius 0.27*.

2 Piercing/Covering Duality Principle

We consider the general case of a disk set D =
{D; = Disk(P;,r;),i € {1,...,n}} to explain the pierc-
ing/covering duality. Our approximation algorithm pro-
ceeds by solving dual piercing decision problems (DPs
for short; see Figure 1): given a set of corresponding
dual disks B(r) = {B; = Disk(P;,r—r;),1 € {1,...,n}},
determine whether NB(r) = N, B; = § or not.

Lemma 1 Observe that for r > r*, there exists a
(unique) disk B of radius r(B) = r — r* centered at
C(B) = C* fully contained inside NB.

Proof. In order to ensure that C* is inside each
B;(r), a sufficient condition is to have r > max;{r; +
da2(P;, C*)}. Since B; C Disk(C*,r*),Vi € {1,2,...,n},
we have max;{r; + d2(P;,C*)} < r*(%). Thus, pro-
vided » > r*, we have C* € NB(r). Now, no-
tice that Vi € {1,2,..,n},V0 < ¢ < (r — 1) —
dy(P;, C*),Disk(C*,r') C Bj(r). Thus, if we en-
sure that ' < r — max?,(r; + d2(P;,C*)), then

Disk(C*,r") C NB(r). From ineq. (%), we choose
r" = r—r* and obtain the lemma (see Figure 1). Unique-
ness follows from the proof by contradiction of [8]. 1

3 Approximating SED of Points

Let P ={P; = (zi,yi),i € {1,...,n}} be a set of n pla-
nar points. We use notations z(P;) = z; and y(P;) = y;
to refer to point coordinates. Let D* = Disk(C*,r*)
be the unique smallest enclosing disk of P of center
point C* = C(D*) (also called circumcenter or Eu-
clidean 1-center) and minimum radius r* = r(D*). We
want to compute a (1 + €)-approximation, that is, a disk
Disk(C,r) such that r < (1+¢€)r* and P C Disk(C,r).

3.1 Solving Decision Problems

We relax the 1-piercing point problem to that of find-
ing a common piercing er*-disk (i.e., a disk of ra-
dius er*): Namely, report whether there exists a disk
B = Disk(C,er*) such that B C NB(r) or not. More
precisely, the procedure below either finds a common
piercing point in NB(r), or guarantees that no er*-disk
pierce NB(r). Let [z, z)] be an interval on the z-
axis where an er*-disk center might be located if it
exists. (That is z(C) € [zm,zp] if it exists.) We
initialize x,,,zp as the z-abscissae extrema: z, =
max;{x;} —r, xp = ming{a;} +r. I 2y < 24, then
clearly vertical line L : z = W separates two ex-
tremum disks (namely those whose corresponding cen-
ters give rise to x,, and zs) and therefore B(r) is not
1-pierceable (and not er*-disk pierceable). Otherwise,
the algorithm proceeds by dichotomy (see Figure 2).
Let e = Z=F2M and let L denotes the vertical line
L : 2z = e Denote by B = {B;nL|i € {1,...,n}}
the set of n y-intervals obtained as the intersection of
the disks of B with line L. We check whether By =
{B;iN L = [a;,b])|i € {1,...,n}} is 1-pierceable or not.
Since By, is a set of n y-intervals, we just need to check
whether min; b; > max; a; or not. If NBr # (), then we
have found a piercing point (e, min; b;) in the intersec-
tion of all disks of B and we stop recursing. (In fact we
found a (z = e,y = [ym = max; a;, yp = min; b)) ver-
tical piercing segment.) Otherwise, we have "B = 0
and we need to choose on which side of L to recurse.
W.lo.g., let By and B, denote the two disks whose cor-
responding y-intervals on L are disjoint. We choose to
recurse on the side where By N Bs is located (if the
intersection is empty then we clearly stop by report-
ing the two non-intersecting disks By and Bs). Oth-
erwise, B; N By # () and we branch on the side where
TR, By = I(C(Bl));rz(c(&)) lies. At each stage of the di-
chotomic process, we halve the x-axis range where the
solution is to be located (if it exists). We stop the recur-
sion as soon as Ty — T < €. Indeed, if zpr — z, < e%

2
then we know that no center of a disk of radius er is

.Lm e /%jv[

Figure 2: A recursion step: L : x = e intersects all disks.
Two y-intervals do not intersect on L. We recurse on
x-range [e, zp].

contained in NB. (Indeed if such a disk exists then both
NBL(z,,) # 0 and NBp(,,,) # 0.) Overall, we recurse at
most 3 + [log, 1] times since the initial interval width
Ty — Ty 18 less than 27 and we consider 2r* > r > %

3.2 Radius Dichotomy Search

Finding the minimum enclosing disk radius amounts to
find the smallest value r € R such that NB(r) # 0.
That is r* = argmin, N B(r) # 0. We seek for an
(1 + ¢)-approximation of the minimum enclosing disk
of points by doing a straightforward dichotomic process
on relaxed decision problems. We always keep a solu-
tion interval [a, b] where r* lies, such that at any stage
we have NB(a — <) = @ and NB(b) # 0. W.lo.g., let
P; denote the leftmost x-abscissae point of P and let
P, € P be the maximum distance point of P from P;.
We have r = dy(Py, P2) > r* (since P C Disk(Py,r)).
But do(Py, P,) < 2r* since both P, and P, are con-
tained inside the unique smallest enclosing disk of ra-
dius 7*. Thus we have r* € [§,r]. We initialize the
range by choosing a = § < r* and b = r < 2r*. Then
we solve the 77-disk piercing problem with disks of ra-
dius e = “T“’ If we found a common piercing point for
NB(e) then we recurse on [a,e]. Otherwise we recurse
on [e,b]. We stop as soon as b —a < ef. (Therefore
after O(log, 1) iterations since the initial range width
b—a < r*). At any stage, we assert that NB(a—) =0
(by answering that NB(a) does not contain any disk of
radius §) and B(b) # 0. At the end of the recursion
ET

process, we get an interval [a — 5, b] where 7* lies in.

Since b —a < e} < e% and |[r* —a| < § < % (be-
cause B(a —) = 0), we get: b < r* + 2ej. Since
r < 2r*, we obtain a (1 + ¢)-approximation of the min-

imum enclosing disk of the point set. Thus, by solving

O(log, 1) decision problems, we obtain a O(n log3 1)-
time deterministic (14 €)-approximation algorithm (see
Algorithm 1).

3.3 Bootstrapping

We bootstrap the previous algorithm in order to get a
O(nlog, 1)-time algorithm. The key idea is to shrink
potential range [a, b] of 7* by selecting iteratively differ-
ent approximation ratios €; until we ensure that, at kth
stage, e, < €. Let Disk(C,r) be a (1+¢)-approximation
enclosing disk. Observe that |z(C) — z(C*)| < er*.
We update the z-range [z,,2y] according to the so
far found piercing point abcissae z(C) and current ap-
proximation factor. We start by solving the approxi-
mation of the smallest enclosing disk for ¢; = % It
costs O(n log, &) = O(n). Using the final output range
[a,b], we now have b — a < e;7*. Consider e = < and

2
reiterate until ¢, < e. The overall cost of the proce-

dure is 22[252 d O(nlog,2) = O(nlog, 1). We get the
following theorem:

Theorem 2 A (1 + €)-approzimation of the minimum
enclosing disk of a set of n points on the plane can be
computed efficiently in O(nlog, 1) deterministic time.

4 Predicate Degree

Predicates are the basic computational atoms of algo-
rithms that are related to their numerical stabilities.
In the exact smallest enclosing disk algorithm [8], the
so-called InClircle containment predicate of algebraic de-
gree 4 is used on Integers. Since we only use /- function
to determine the sign of algebraic numbers, all compu-
tations can be done on Rationals using algebraic degree
2 (also observed in [1] in their Gaussian elimination).
We show how to replace the predicates of algebraic de-
gree! 4 by predicates of degree 2 for Integers: ”Given a
disk center (z;,y;) and a radius r;, determine whether
a point (z,y) is inside, on or outside the disk”. It boils
down to compute the sign of (z — z;)% + (y — y;)% — r2.
This can be achieved using another dichotomy search
on line L : x = [. We need to ensure that if y,,, > yas,
then there do exist two disjoint disks B,, and Bj;. We
regularly sample line L such that if y,, > ys, then there
exists a sampling point in [yar, ym] that does not belong
to both disks B,, and Bj;. In order to guarantee that
setting, we need to ensure some fatness of the intersec-
tion of NB(r) N L by recursing on the z-axis until we
have zp — z, < % In that case, we know that if

!Comparing expressions y1 + /r2—(—21)2 > y2 +

r?2 — (I — x2)? is of degree 4 for Integers. Indeed, by isolat-
ing and removing the square roots by successive squaring, the
predicate sign is the same as (2r2 — (I — x1)% — (I — 22)2)2 >
4(r%2 — (1 —21)?)(r? — (I — 22)?). The last polynomial has highest
monomials of degree 4.

3

Data :AsetS ={S; = (zi,y:)]i € {1,....,n}} of
n points and an approximation factor e.
Result : Disk((z,y),r): a (1+¢)-approximation of

the minimum enclosing disk of S. That is
we have r* < r < (1 + ¢)r*, where 7* is
the minimum radius of enclosing disks.

1 Tmin = mine(y, .. 0} Ti;
2 TMAT = MaX;e(1, .. n} Ti;
8 di = maXc(y,.. n} ||Si — S1ll;
4 b= dl;
5 a= ?1;
6 €< 7(b—a)e
7 pierceable = false;
8 qdisjoint = false;
9 while b — a > € and —pierceable and —qdisjoint do
10 r= aT+b;
12 Ty = xmin + T
13 Ty = TMAT — T}
15 pierceable = false;
16 while zp; — z,, > € do
17 | = Zutim,
18 Ym = MaXieq1, . ny i — /12 — (= 2)%
20 m = argmax;eqq, . ,}Yi — r2 — (I —xz;)%
21 ym =mingery oy ¥i + /12— (1= 24)%
22 M = argminc gy 3y + r2 — (I — ;)%
23 if yy >y, then
24 T =1
25 y = Umtun,
26 pierceable = true;
else
// m and M are arg indices of y,,, and yas;
27 if ||Sim — Sumll > 2(r — €) then
| qdisjoint = true;
else
28 if ZmtIM > [then
29 | Tm =1;
else
30 | Ty =1
end
end
end
end
31 if pierceable then
32 | b=r;
else
if gdisjoint then
‘ 0= Hsm;SMH te;
else
33 | a=m
end
end
end

Algorithm 1: (1 + €)-approximation algorithm of the
minimum enclosing disk of a 2d point set.

| Method/Distribution || O Square max

| © Ring max || O Square avg | O Ring avg

D. H. Eberly (e = 1077) 0.7056 0.6374 0.1955 0.2767
J. Ritter (e > 0.15) 0.0070 0.0069 0.0049 0.0049
ASED (e = 1072) 0.0343 0.0338 0.0205 0.0286
ASED (e = 1079) 0.0515 0.0444 0.0284 0.0405
ASED (e=10"1) 0.0646 0.0617 0.0392 0.0449
ASED (e = 1079) 0.0719 0.0726 0.0473 0.0527

Table 1: Timings. Experiments done on 1000 trials for point sets of size 100000. Maximum (max) and average (avg)

running times are in fractions of a second.

there was a common er*-disk intersection, then its cen-
ter x-coordinate is inside [,,zps]: this means that on
L, the width of the intersection is at least % There-
fore, a regular sampling on vertical line L with step
width Lz guarantees to find a common piercing point if
it exists. A straightforward implementation would yield
a time complexity O(n? log, 1). However it is sufficient
for each of the n disks, to find the upper most and bot-
tom most lattice point in O(log,)-time using the floor
function. Using the bootstrapping method, we obtain
the following theorem:

Theorem 3 A (1 + €)-approzimation of the minimum
enclosing disk of a set of n points on the plane can be
computed in O(nlog, L) time using Integer arithmetic
with algebraic predicates InCircle of degree 2.

5 Approximating SED of Disks

Our algorithm extends straightforwardly for sets of
disks. Consider a set of n planar disks D = {Ds, ..., Dy}
with C(Dz) = P = (.’Ei,yi) and ’I“(Dl) = r;. Let
B(r) = {B;|C(B;) = P; and r(B;) =r — r;}. Using the
dual piercing principle, we obtain that r* = argmin, .pN
B(r) # 0. (We have C* = NB(r*).) Observe also that
r* > maX;cqy,..) ri- Initialization is done by choosing
b=r1 +maxieqr, n}(da(P1, P) +1;) and a = 5. We

rgfrf+(r1+r2)2

5-
now let £p, B, = &, + 257,y (zB, — B,)-

6 Experimental Results

We compare our implementation (see pseudo-code) with
D. H. Eberly’s C++ implementation using double types
that guarantees precision ¢ = 107° and has expected
running time 10n but no known worst-case bound bet-
ter than trivial O(n!) bound. We also compare our
code with J. Ritter’s constant approximation (e ~ 15%)
single-pass greedy heuristic used in game program-
ming [5] (eg., Sphere-Tree construction). Timings are
obtained on an Intel Pentium(R) 4 1.6 GHz with 1 GB
of memory for points uniformly distributed inside a unit

square () and inside a unit ring of width 0.01 (). Ta-
ble 1 reports our timings. The experiments show that
over a thousand square/ring random point sets, our al-
gorithm maximum time is much smaller than that of
D. H. Eberly’s (in addition, this latter algorithm re-
quires O(logs n) calls [8] to the expensive basic primi-
tives of computing the exact circle passing through three
points).

References

[1] K. Fischer and B. Gértner. The smallest enclos-
ing ball of balls: combinatorial structure and algo-

rithms. In Proc. 19th Conference on Computational
Geometry, pages 292-301. ACM Press, 2003.

[2] K. Fischer, B. Gértner, and M. Kutz. Fast smallest-
enclosing-ball computation in high dimensions. In
Proc. 11th Annual FEuropean Symposium on Algo-
rithms, LNCS 2832, pages 630—-641. Springer-Verlag,
2003.

[3] N. Megiddo. Linear programming in linear time
when the dimension is fixed. Journal of the ACM,
Vol. 31(1), pages 114-127, January 1984.

[4] F. P. Preparata and M. I. Shamos. Computational
Geometry: An Introduction. Springer-Verlag, New
York, NY, 1985.

[5] J. Ritter. An efficient bounding sphere. In A. Glass-
ner (Ed.), Game Programming Gems, pages 301—
303. Academic Press, Boston, 1990.

[6] S. Skyum. A simple algorithm for computing the
smallest enclosing circle. Information Processing
Letters, Vol. 37, pages 121-125, 1991.

[7] J. J. Sylvester. A question in the geometry of sit-
uation. Quarterly Journal of Mathematics, Vol. 1,
page 79, 1857.

[8] E. Welzl. Smallest enclosing disks (balls and ellip-
soids). In H. Maurer (Ed.), New Results and New
Trends in Computer Science, LNCS 555, pages 359—
370. Springer-Verlag, 1991.

