
Complexity in the Case Against Accuracy:

When Building One Function-Free Horn Clause
Is as Hard as Any

Richard Nock

Department of Mathematics and Computer Science, Université des Antilles-Guyane,
Campus de Fouillole, 97159 Pointe-à-Pitre, France

rnock@univ-ag.fr

Abstract. Some authors have repeatedly pointed out that the use of
the accuracy, in particular for comparing classifiers, is not adequate.
The main argument discusses the validity of some assumptions underly-
ing the use of this criterion. In this paper, we study the hardness of the
accuracy’s replacement in various ways, using a framework very sensi-
tive to these assumptions: Inductive Logic Programming. Replacement
is investigated in three ways: completion of the accuracy with an addi-
tional requirement, replacement of the accuracy by the ROC analysis,
recently introduced from signal detection theory, and replacement of the
accuracy by a single criterion. We prove strong hardness results for most
of the possible replacements. The major point is that allowing arbitrary
multiplication of clauses appears to be totally useless. Another point is
the equivalence in difficulty of various criteria. In contrast, the accuracy
criterion appears to be tractable in this framework.

1 Introduction

As the number of classification learning algorithms is rapidly increasing, the
question of finding efficient criteria to compare their results is of particular rel-
evance. This is also of importance for the algorithms themselves, as they can
naturally optimize directly such criteria to achieve good results. A criterion fre-
quently encountered to address both problems is the accuracy, which received
recently on these topics some criticisms about its adequacy [7].
The primary inadequacy of the accuracy stems from a tacit assumption that the
overall accuracy controls by-class accuracies, or similarly that class distributions
among examples are constant and relatively balanced [6]. This is obviously not
true : skewed distributions are frequent in agronomy, or more generally in life
sciences. As an example, consider the human DNA, in which no more than 6%
are coding genes [7]. In that cases, the interesting, unusual class is often the
rare one, and the well-balanced hypothesis may not lead to discover the unusual
individuals. Moreover, in real-world problems, not only is this assumption false,
but also of heavy consequences may be the misclassification of some examples,
another cost which is not integrated in the accuracy. Fraud detection is a good

O. Watanabe, T. Yokomori (Eds.): ALT’99, LNAI 1720, pp. 182–193, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Complexity in the Case Against Accuracy 183

example of such situations [7], but medical domains are typical. As an example,
consider the case where a mutagen molecule is predicted as non-mutagen, and
the case where an harmless molecule is predicted as mutagen. In that cases, the
interesting class has the heaviest misclassification costs, and the equal error costs
assumption may produce bad results. Finally, the accuracy may be inadequate in
some cases because other parameters are to be taken into account. Constraints
on size parameters are sometimes to be used because we want to obtain small
formulae, for interpretation purposes. As an example, consider again the problem
of mutagenesis prediction, where two equally accurate formulae are obtained. If
one is much smaller, it is more likely to provide useful descriptions for the mining
expert.
We have chosen for our framework a field particularly sensitive to these prob-
lems, Inductive Logic Programming (ILP). ILP is a rapidly growing research
field, concerned by the use of variously restricted subclasses of Horn clauses to
build Machine Learning (ML) algorithms. According to [9], almost seventy ap-
plications use ILP formalism, twenty of which are science applications, which
can be partitioned into biological (four) and drug design (sixteen) applications.
ILP-ML algorithms have been applied with some success in areas of biochemistry
and molecular biology [9]. Using ILP formalism, we argue that the replacement
of the accuracy raises structural complexity issues. The argument is structured
as follows.
First, to address the latter problems, we explain that the single accuracy require-
ment can be completed by an additional requirement to provide more adequate
criteria. We integrate various constraints over two important kinds of param-
eters: by-class error functions, and representation parameters such as feature
selection ratios, size constraints. We show that any of such integration leads to
a very negative structural complexity result, similar to NP -Hardness, which is
not faced by the accuracy optimization alone. The result has a side effect which
can be presented as a “loss” in the formalism’s expressiveness, a rare property
in classical ML complexity issues. Indeed, it authorizes the construction of ar-
bitrary large (even exponential sized) sets of Horn clauses, but which we prove
having no more expressive power than a single Horn clause. We prove a threshold
in intractability since it appears immediately with the additional requirement,
and is not a function of the tightness of it. Furthermore, the effects of the con-
straints on optimal accuracies vanish as the number of predicates increases, as
optimal accuracies with or without the additional constraints are asymptotically
equal. Finally, for some criteria, their mixing with the accuracy brings the most
negative result: not only does the intractability appears immediately with the
criterion, but also the error cannot be dropped down under that of the unbiased
coin. We then study the replacement of the accuracy criterion using a general
method [6, 7], derived from statistical decision theory, based on a specific bi-
criteria optimization. We show that this method leads to the same drawbacks.
Finally, we investigate the replacement of the error by a single criterion, and
show that it is also to be analyzed very carefully, as some of the “candidates”
lead exactly to the same negative results presented before. The reductions are

184 Richard Nock

presented for a subclass of Horn formalism simple enough to be an element of
the intersection of all classically encountered theoretical ILP studies.

2 Mono and Bi-criteria Solutions to Replace the
Accuracy

Denote as C and H two classes of concepts representations, respectively called
target’s class and hypothesis class. In real-world domains, we do not know the
target concept’s class, that is why we have to make ad hoc choices for H with a
powerful enough formalism, yet ensuring tractability. Even if some benchmarks
problems appear to be easily solvable [3], ML applications, and particularly
ILP, face more difficult problems [9], for which the choice of H is crucial. Since
most of the studies dealing with the accuracy replacement problem have been
investigated with two classes [7], we also consider two-classes problems and not
multi-class cases. It is not really important for us, as results already become hard
in that setting. Let c ∈ C. Suppose that we have drawn examples following some
unknown but fixed distribution D, labelled according to c. We can denote the
accuracy of h ∈ H with respect to (w.r.t.) c by PD(h = c) =

∑
h(x)=c(x) D(x).

2.1 Extending the Accuracy

The principal drawbacks of the accuracy are of two kinds: the equal costs as-
sumption [6], and the well balanced assumption [7]. We propose a solution to
the problem by the maximization of the accuracy subject to constraints. We
also propose criteria on related problems, an example of such being the feature
selection problem, in which we want to build formulae on restricted windows
of the total features set. For any fixed positive rational ν, we use the follow-
ing adequate notion of distance between two reals u, v : dν(u, v) = |u−v|

u+v+ν . We
also use eight rates on the examples (definitions differ slightly from [7]): TP =∑

h(x)=1=c(x) D(x) ; TPR = TP/P ; FP =
∑

h(x)=16=c(x) D(x) ; FPR = FP/N ;
TN =

∑
h(x)=0=c(x) D(x) ; TNR = TN/N ; FN =

∑
h(x)=06=c(x) D(x) ; FNR =

FN/P , with N =
∑

c(x)=0 D(x) and P =
∑

c(x)=1 D(x). In order to complete
the accuracy requirements, we imagine seven types of additional constraints,
each of them being parameterized by a number ζ (between 0 and 1). Each of
them defines a subset ofH, which shall be parameterized by D if the distribution
controls the subset through the constraint. The first three subsets of H contain
hypotheses for which the FP and FN are not far from each other, or a one-
side error is upper bounded: HD,1(ζ) = {h ∈ H|dν(FP, FN) ≤ ζ};HD,2(ζ) =

{h ∈ H|FN ≤ ζ};HD,3(ζ) =
{
h ∈ H|FN ≤ 1

ζ FP
}
. The two following sub-

sets are parameterized by constraints equivalent to some frequently encountered
in the information retrieval community [8], respectively (1 minus) the preci-
sion and (1 minus) the recall criteria: HD,4(ζ) = {h ∈ H|FP/(TP + FP) ≤ ζ}
; HD,5(ζ) = {h ∈ H|FN/(TP + FN) ≤ ζ}. Define #P(h) as the total num-
ber of different predicates of h, #W(h) as the whole number of predicates of

Complexity in the Case Against Accuracy 185

h(if one predicate is present k times, it is counted k times), and #T as the
total number of different available predicates. The two last subsets of H are
parameterized by formulae respectively having a sufficiently small fraction of
the available predicates, or having a sufficiently small overall size: H6(ζ) =
{h ∈ H|#P(h)/#T ≤ ζ} ;H7(ζ) = {h ∈ H|#W(h)/#T ≤ ζ}. The division by the
total number of different predicates in H7(ζ) is made only for technical reasons:
to obtain hardness results for small values of ζ and thus, already for small sizes
of formulae (in the last constraint). The first problem we address can be sum-
marized as follows:
Problem 1: Given ζ and a ∈ {1, 2, ..., 7}, can we find an algorithm re-
turning a set of Horn clauses from H(D,)a(ζ) whose error is no more
than a given γ, if such an hypothesis exists ?

2.2 Replacing the Accuracy: The ROC Analysis

Receiver Operating Characteristic (ROC) analysis is a traditional methodology
from signal detection theory [1]. It has been used in machine learning recently
[6, 7] in order to correct the main drawbacks of the accuracy. In ROC space (this
is the coordinate system), we visualize the performance of a classifier by plot-
ting TPR on the Y axis, and FPR on the X axis. Figure 1 presents the ROC
analysis, along with three possible outputs which we present and analyze. If a

1

10 0,5

0,5

set of Horn Clauses
TPR

FPR

continuous prediction

random continuous prediction

Fig. 1. The ROC analysis of a learning algorithm.

classifier produces a continuous output (such as an estimate of posterior prob-
ability of an instance’s class membership [7]), for any possible value of FPR,
we can get a value for TPR, by thresholding the output between its extreme
bounds. If a classifier produces a discrete output (such as Horn clauses), then
the classifier gives rise to a single point. If the classifier is the random choice
of the class, either (if it is continuous) the curve is the line y = x, or (if it
is discrete) there is a single dot, on the line y = x. One important thing to
note is that the ROC representation gives the behavior of an algorithm without
regarding the class distribution or the error cost [6]. And it allows to choose
the best of some classifiers, by the following procedure. Fix as K+ the cost

186 Richard Nock

of misclassifying a positive example, and K− the cost of misclassifying a neg-
ative example (these two costs depend on the problem). Then the expected
cost of some classifier represented by point (FPR, TPR) is given by the follow-
ing formula:

∑
c(x)=1 D(x)× (1 − TPR)×K+ +

∑
c(x)=0 D(x)× FPR×K−.

Two algorithms, whose corresponding point are respectively (FPR1, TPR1) and
(FPR2, TPR2), have the same expected cost iff (TPR2 − TPR1)/(FPR2 −
FPR1) = (

∑
c(x)=1 D(x)K+)/(

∑
c(x)=0 D(x)K−). This gives the slope of an

isoperformance line, which only depends on the relative weights of the exam-
ples, and the respective misclassification costs. Given one point on the ROC, the
classifiers performing better are those on the “northwest” of the isoperformance
line with the preceding slope, and to which the point belongs. If we want to
find an algorithm A performing surely better than an algorithm B, we therefore
should strive to find A such that its point lies into the rectangle whose opposite
vertices are the (0, 1) point (the perfect classification) and B’s point (a grey
rectangle is shown on the top left of figure 1). From that, the second problem
we address is the following (Note the constraint’s weakness : the algorithm is
required to work only on a single point):
Problem 2: Given one point (TPRx, FPRx) on the ROC, can we find
an algorithm returning a set of Horn clauses whose point falls into
the rectangle with opposite vertices (0, 1) and (TPRx, FPRx), if such
an hypothesis exists ?

2.3 Replacing the Accuracy by a Single Criterion

The question of whether the accuracy can be replaced by a single criterion instead
of two (such as in ROC) has been raised in [6]. Some researchers [6] propose the
use of the following criterion: (1− FPR)× TPR. A geometric interpretation of
the criterion is the following [6]: it corresponds to the area of a rectangle whose
opposite vertices are (FPR, TPR) and (1, 0). The typical isoperformance curve
is now an hyperbola. The third problem we address is therefore:
Problem 3: Given γ, can we find an algorithm returning a set of Horn
clauses such that (1− FPR)× TPR ≥ γ, if such an hypothesis exists ?

3 Introduction to the Proof Technique

We present here the basic ILP notions which we use, with a basic introduction
to our proofs. Technical parts are proposed in two appendices.

3.1 ILP Background Needed

The ILP background needed to understand this article can be summarized as
follows. More formalization and details are given in [4], but they are not needed
here. Given a Horn clause language L and a correct inference relation on L,
an ILP learning problem can be formalized as follows. Assume a background
knowledge BK expressed in a language LB ⊆ L, and a set of examples E in

Complexity in the Case Against Accuracy 187

a language LE ⊆ L. The goal is to produce an hypothesis h in an hypothesis
class H ⊆ L consistent with BK and E such that h and the background knowl-
edge cover all positive examples and none of the negative ones. Sometimes the
formalism cannot correctly classify all examples according to the preceding sce-
nario, for the reason that the examples describe a complex concept. We may
transform the ILP learning problem to a relaxed version, where we want the
formulae to make sufficiently small errors over the examples. The choice of the
representation languages for the background knowledge and the examples, and
the inference relation greatly influence the complexity (or decidability) of the
learning problem. A common restriction for both BK and E is to use ground
facts. As in [5], we use θ-subsumption as the inference relation (a clause h1 θ-
subsumes a clause h2 iff there exists a substitution θ such that h1θ ⊆ h2 [5, 4]).
In order to treat our problem as a classical ML problem, we use the following
lemma, which authorizes us to create ordinary examples:

Lemma 1. [5] Learning a Horn clause program from a set of ground background
knowledge BK and ground examples E , the inference relation being generalized
subsumption, is equivalent to learning the same program with θ-subsumption,
and empty background knowledge and examples defined as ground Horn clauses
of the form e← b, where e ∈ E and b ∈ BK.

In the following, we are interested in learning concepts in the form of (sets of)
non recursive Horn clauses. It is important to note that all results are still valid
when considering propositional, determinate or local Horn clauses, similarly to
the study of [4], to which we refer for all necessary definitions. For the sake of
simplicity in stating our results, we sometimes abbreviate “Function free Horn
Clauses” by the acronym “FfHC”.

3.2 Basic Tools for the Hardness Results

Concerning problem 1, fix a ∈ {1, 2, 3, 4, 5, 6, 7}. We want to approximate the
best concept in H(D;)a(ζ) by one still in H(D;)a(ζ). However, the best concept
in H(D;)a(ζ) generally does not have an error equal to the optimal one over H
given D, optHD (c). In fact, it has an error that we can denote optH(D;)a(ζ)(c) =
minh′∈H(D;)a(ζ)

∑
h(x) 6=c(x) D(x) ≥ optHD (c). The goodness of the accuracy of a

concept taken from H(D;)a(ζ) should be appreciated with respect to this latter
quantity. Our results on problem 1 are all obtained by showing the hardness of
solving the following decision problem:

Definition 1. Approx-Constrained(H, (a, ζ)):
Instance : A set of negative examples S−, a set of positive examples S+, a
rational weight 0 < w(xi) = ni

di
< 1 for each example xi, a rational 0 ≤ γ < 1.

We assume that
∑

x∈S+∪S− w(xi) = 1.
Question : ∃?h ∈ H(D;)a(ζ) satisfying

∑
h(x) 6=c(x) w(x) ≤ γ ?

Define as ne the size of the largest example we dispose of. Note that when the
constraint is too tight, it can be the case that H(D;)a(ζ) = ∅. Define as |h| the

188 Richard Nock

size of some h ∈ H (in our case, it is the number of Horn clauses of h). In the non-
empty subset of H where formulae are the most constrained (i.e. strengthening
further the constraint gives an empty subset), define noptH(D;)a(ζ)(c) as the size of

the smallest hypothesis. Then, our reductions all satisfy noptH(D;)a(ζ)(c) ≤ (ne)3.
Note that the constraint makes generally optH(D;)a(ζ)(c) > optHD(c). However,

the reductions all satisfy dν

(
optHD (c), optH(D;)a(ζ)(c)

)
= o(1), i.e. asymptotic

values coincide. In addition, the principal result we get (similar for all other
problems) is that we can suppose that the whole time used to write the total set
of Horn clauses is assimilated to O(ne), for any set. By writing time, we mean
time of any procedure consisting only in writing down clauses. Examples of such
a procedure are “write down all clauses having k literals”, or even “write down
all Horn clauses”. Such procedures can be viewed as for-to, or repeat algorithms.
This property authorizes the construction of Horn clause sets having arbitrary
sizes, even exponential. Problem 2 is addressed by studying the complexity of
the following decision problem.

Definition 2. Approx-Constrained-ROC(H, γFPR, γTPR):
Instance : A set of negative examples S−, a set of positive examples S+, a
rational weight 0 < w(xi) = ni

di
< 1 for each example xi, a rational 0 ≤ γ < 1.

We assume that
∑

x∈S+∪S− w(xi) = 1.
Question : ∃?h ∈ H satisfying 1− FPR ≥ 1− γFPR and TPR ≥ γTPR?

Concerning problem 3, the reductions study a single replacement criterion Γ ,
and the following decision problem.

Definition 3. Approx-Constrained-Single(H, Γ, γ):
Instance : A set of negative examples S−, a set of positive examples S+, a
rational weight 0 < w(xi) = ni

di
< 1 for each example xi, a rational 0 ≤ γ < 1.

We assume that
∑

x∈S+∪S− w(xi) = 1.
Question : ∃?h ∈ H satisfying Γ (h) ≤ γ?

4 Hardness Results

Theorem 1. We have:
[1] ∀0 < ζ < 1, Approx-Constrained(FfHC, (1, ζ)) is Hard, when ν < (1− ζ)/ζ.
[2] ∀0 < ζ < 1

2 , Approx-Constrained(FfHC, (2, ζ)) is Hard.
[3] ∀a ∈ {3, 4, 5, 6, 7}, ∀0 < ζ < 1, Approx-Constrained(FfHC, (a, ζ)) is Hard.

At that point, the notion of “hardness” needs to be clarified. By “Hard” we
mean “cannot be solved in polynomial time under some particular complexity
assumption”. The notion of hardness used encompasses that of classical NP -
completeness, since we use the results of [2] involving randomized complexity
classes. All our hardness results are to be read with that precision in mind.
Due to space constraints, only proof of point [1] is presented in appendix 2;
all other results strictly use the same type of reduction. Also, in appendix 1,
we sketch the proof that all distributions under which our negative results are

Complexity in the Case Against Accuracy 189

proven lead to trivial positive results for the same problem when we remove the
additional constraint, and optimize the accuracy alone. While negative results
for optimizing the accuracy itself would naturally hold when considering the
additional constraints, we therefore prove that optimizing the accuracy under
constraint is a strictly more difficult problem, with non-trivial additional draw-
backs. Furthermore, the upperbound error value (γ in def. 1) in constraints 4,
5, 6, 7 can be fixed arbitrarily in]0, 1/2[, i.e. requiring the Horn clauses set to
perform slightly better than the unbiased coin does not make the problem easier.
We now show that the classical ROC components as described by [7] lead to the
same results as those we claimed for the preceding bi-criteria optimizations. The
problem is all the more difficult as the difficulty appears as soon as we choose
to use ROC analysis, and is not a function of the ROC bounds.

Theorem 2. Approx-Constrained-ROC(FfHC, γFPR, γTPR) is Hard; the result
holds ∀0 < γFPR, γTPR < 1.

The distribution under which the negative result is proven is an easy distribution
for the accuracy’s optimization alone, similarly to those of the seven constraints.
We now investigate the replacement of the accuracy by a single criterion. The
negative result stated in the following theorem is to be read with all additional
drawbacks mentioned for the previous theorems. Again, the distribution under
which the theorem is proven is easy when optimizing the accuracy alone.

Theorem 3. ∃γmax > 0 such that ∀0 < γ < γmax, the problem Approx-
Constrained-Single(FfHC,(1 − FPR)× TPR, γ) is Hard.

(Proof sketch included in appendix 2). As far as we know, γmax ≥ 175
41616 (roughly

4.2× 10−3), but we think that this bound can be much improved.

5 Appendix 1: The Global Reduction

Reductions are achieved from the NP -Complete problem “Clique” [2], whose
instance is a graph A graph G = (X, E), and an integer k. The question is
“Does there exist a clique of size ≥ k in G?”. Of course, “Clique” is not hard to
solve for any value of k. The following lemma establishes values of k for which
we can suppose that the problem is hard to solve (

(
n
k

)
= n!/((n − k)!k!) is the

binomial coefficient):

Theorem 4. (i) We can suppose that
(
k
2

) ≤ |E|, and k is not a constant, oth-
erwise “Clique” is polynomial. (ii) For any α ∈]0, 1[, “Clique” is hard for the
value k = α|X | or k = |X |α.

Proof. (i) is immediate ; (ii) follows from [2]: it is proven that the largest clique
size is not approximable to within |X |β, for any constant 0 < β < 1. Therefore,
the graphs generated have a clique number which is either l, or greater than
l × |X |β , with l < |X |1−β. Therefore, the decision problem is intractable for
values of k > l, which is the case if k = α|X | or k = |X |α, with α ∈]0, 1[. ut

190 Richard Nock

The structure of the examples is the same for any of our reductions. Define
a set of |X | unary predicates a1(.), ..., a|X|(.), in bijection with the vertices of
G. To this set of unary predicates, we add two unary predicates, s(.) and t(.).
The inferred predicate is denoted q(.). The choice of unary predicates is made
only for a simplicity purpose. We could have replaced each of them by l-ary
predicates without changing our proof. Define a set of constant symbols useful
for the description of the examples: {li,j, ∀(i, j) ∈ E} ∪ {l1, l2, l3, l4} ∪ {mi, ∀i ∈
{1, 2, ..., |X |}}. Examples are described in the following way. Positive examples
from S+ are as follows:

∀(i, j) ∈ E, pi,j = q(li,j)← ∧k∈{1,2,...,|X|}\{i,j}ak(li,j) ∧ t(li,j) (1)
p1 = q(l1)← ∧k∈{1,2,...,|X|}ak(l1) ∧ t(l1) (2)
p2 = q(l2)← a1(l2) (3)

Negative examples from S− are as follows:

∀i ∈ {1, 2, ..., |X |}, ni = q(mi)← ∧k∈{1,2,...,|X|}\{i}ak(mi) ∧ t(mi) (4)
n′1 = q(l3)← ∧k∈{1,2,...,|X|}ak(l3) ∧ s(l3) ∧ t(l3) (5)
n′2 = q(l4)← ∧k∈{1,2,...,|X|}ak(l4) ∧ s(l4) (6)

It comes that noptH(D,)a(ζ)(c) = O(|X |3) (coding size of positive examples) and
ne = O(|X |). Non-uniform weights are given to each example, depending on the
constraint to be tackled with. The common-point to all reductions is that the
weights of all examples nj (resp. all pi,j) are equal (resp. to w− and w+). In
each reduction, examples and clauses satisfy:

H1 p2 is forced to be badly classified.
H2 n′1 is always badly classified.
H3 w(n′2) ensures that n′2 is always given the right class, forcing any clause to

contain literal t(.) (When we remove n′2, we ensure that p2 is removed too).

Lemma 2. Any clause containing literal s(.) can be removed.

Proof. Suppose that one clause contains s(.). Then it can be θ-subsumed by n′1
and by no other example (even if n′2 exists, because of H3); but n′1 θ-subsumes
any clauses and also the empty clause. Therefore, removing the clause does not
modify the value of any criteria based on the examples weights. Concerning the
sixth constraint, the fraction of predicates used after removing the clause is at
most the one before, thus, if the clause is an element of H6(ζ) before, it is still
an element after. The same remark holds for the seventh constraint. ut
As a consequence, p1 is always given the positive class (even by the empty
clause!). We now give a general outline of the proof for Problem 1 ; reductions
are similar for the other problems. Given h = {h1, h2, ..., hl} a set of Horn clauses,
we define the set I = {i ∈ {1, 2, ..., |X |}|∃j ∈ {1, 2, ..., l}, ai(.) 6∈ hj}, and we fix
|I| = k′. In our proofs, we define two functions taking rational values, E(k′) and
Fa(k′) (k′ ∈ {1, 2, ..., |X |}, a = 1, 2, 3, 4, 5, 6, 7). They are chosen such that:

Complexity in the Case Against Accuracy 191

– E(k′) is strictly increasing,
∑

x∈S+∪S−|h(x) 6=c(x) w(x) ≥ E(k′) and E(k) = γ.
– Fa(k′) is strictly decreasing, is a lowerbound of the function insideH(D,)a(ζ),

and Fa(k) = ζ (excepted for a = 3, F3(k) = 1/ζ).

∀a ∈ {1, 2, 3, 4, 5, 6, 7}, if there exists an unbounded set of Horn clauses h ∈
H(D,)a(ζ) satisfying

∑
(x∈S+∧h(x)=0)∨(x∈S−∧h(x)=1) w(x) ≤ γ, its error rate im-

plies k′ ≤ k and constraint implies k′ ≥ k. So |I| = k′ = k. The interest of the
weights is then to force

(
k
2

)
positive examples from the set {pi,j}(i,j)∈E to be well

classified, while we ensure the misclassification of at most k negative examples
of the set {ni}i∈{1,2,...,|X|}. It comes that these

(
k
2

)
examples correspond to the(

k
2

)
edges linking the |I| = k vertices corresponding to negative examples badly

classified. We therefore dispose of a clique of size ≥ k.
Conversely, ∀a ∈ {1, 2, 3, 4, 5, 6, 7}, given some clique of size k whose set of ver-
tices is denoted I, we show that singleton h = q(X) ← ∧i∈{1,2,...,|X|}\Iai(X) ∧
t(X) is ∈ H(D,)a(ζ), satisfying

∑
(x∈S+∧h(x)=0)∨(x∈S−∧h(x)=1) w(x) ≤ γ. In this

case, noptH(D,)a(ζ)(c) drops down to O(ne).

All distributions used in theorems 1 and 3 are such that w+ < w−/|X |, at least
for graphs exceeding a fixed constant size. Also, due to the negative examples of
weights w−, if we remove the additional constraints and optimize the accuracy
alone, we can suppose that the optimal Horn clause is a singleton: merging all
clauses by keeping over predicates aj(.) only those present in all clauses does
not decrease the accuracy. Under such a distribution, the optimal Horn clause
necessarily contains all predicates aj(.), and the problem becomes trivial. The
distribution in theorem 2 satisfies w+ = w−. This is also a simple distribution
for the accuracy’s optimization alone: indeed, the optimal Horn clause over pred-
icates aj(.) is such that it contains no predicates aj(.) that does not appear at
least in one positive example. If the graph instance of “Clique” is connex (and
we can suppose so, otherwise the problem boils down to find the largest clique
in one of the connected components), then the optimal Horn clause does not
contain any of the aj(.).

6 Appendix 2: Proofs of Negative Results

6.1 Proof of Point [1], Theorem 1

Weights of positive examples: w(p2) = 1
2(1−ζ)

(
ζν + |X |2w−(1 + ζ)

)
; ∀(i, j) ∈ E,

w(pi,j) = w+ = w−
(|X|+k)2 ; w(p1) = 1

2

(
1− ζν

1−ζ

)
− 1

2

(
w−|X |2

[
1+ζ
1−ζ + |X | − k

])
−

1
2

(
w+

[
1−ζ
1+ζ

(
|E| − (

k
2

))
+ |X |

])
. Weights of negative examples: w(n′2) = 1/2;

∀j ∈ {1, 2, ..., |X |}, w(nj) = w− = 1
|X|2|E|2 ; w(n′1) = 1

2

(
1−ζ
1+ζ

(
|E| − (

k
2

))
w+

)
+

1
2

(
(|X |2 − k)w−)

.

Fix γ =
(
w(p2) + w(n′1) + kw− +

(
|E| − (

k
2

)))
/2 (note that w(n′2) ensures that

n′2 is given the right class), and kmax = 1 + max
2≤k′′≤|X|:|E|−(k′′

2)≥0
k′′. From

192 Richard Nock

the choice of weights, lcm(∪xi∈S+∪S−di) = O(|X |8) (“lcm” is the least com-
mon multiple), which is polynomial. Define the functions: ∀k′ ∈ {0, 1}, E(k′) =
|E|w++k′w−+w(p2)+w(n1); ∀2 ≤ k′ ≤ kmax, E(k′) =

(
|E| − (

k′
2

))
w++k′w−+

w(p2)+w(n1); ∀kmax < k′ ≤ |X |, E(k′) = k′w−+w(p2)+w(n1). From the choice
of weights, E(k) = γ. ∀k′ ∈ {0, 1}, F1(k′) = ||E|w+ − k′w− + w(p2)− w(n1)|/q;
∀2 ≤ k′ ≤ kmax, F1(k′) = |

(
|E| − (

k′

2

)) − k′w− + w(p2) − w(n1)|/q; ∀kmax <

k′ ≤ |X |, F1(k′) = | − k′w− + w(p2) − w(n1)|/q, with q = ν + |E|w+ + k′w− +
w(p2) + w(n1). From the choice of weights, F1(k) = ζ.
The equation obtained when k′ < kmax takes its maximum for integer val-
ues when k′ = (|X | + k)2 + 0, 5 ± 0, 5 > |X |. Furthermore, ∀1 ≤ kmax ≤
|X |,

(
|E| − (

kmax−1
2

))
w+ < w− , which leads to E(kmax − 1) < E(kmax). In

a more general way, E(k′) is strictly increasing over natural integers. Now
remark that the numerator of F1(k′) is strictly decreasing, and its denomi-
nator strictly increasing. Therefore, F1(k′) is strictly decreasing. Furthermore
dν

(∑
h(x) 6=1=c(x) w(x),

∑
h(x) 6=0=c(x) w(x)

)
≥ F1(k′). If ∃h ∈ H{wi},1(ζ) satisfy-

ing
∑

h(x) 6=c(x) w(x) ≤ γ, the error rate implies k′ ≤ k and the constraint implies
k′ ≥ k. Thus |I| = k′ = k. As pointed out in the preceding appendix, this leads
to the existence of a clique of size ≥ k.
Reciprocally, the Horn clause h constructed in Appendix 1 satisfies both relations
h ∈ H{wi},1(ζ), and

∑
h(x) 6=c(x) w(x) ≤ γ. Indeed, we have

∑
h(x) 6=1=c(x) w(x) =(

|E| − (
k
2

))
w+ + w(p2), but also

∑
h(x) 6=0=c(x) w(x) = kw− + w(n1). Therefore,

dν

(∑
h(x) 6=1=c(x) w(x),

∑
h(x) 6=0=c(x) w(x)

)
= F1(k) = ζ and h ∈ H{wi},1(ζ). We

have also
∑

h(x) 6=c(x) w(x) = E(k) = γ. The reduction is achieved. We end by re-

marking that dν

(
optH{wi}(c), optH{wi},1(ζ)(c)

)
≤ (|E|w+ + |X |w−)/

(
ζν

1−ζ + ν
)
,

which is o(1) (as |X | → ∞ or |E| → ∞), as claimed in subsection 3.2.

6.2 Proof Sketch of Theorem 3

Remark that TPR(1−FPR) = TPR×TNR. Weights are as follows for positive
examples (we do not use p2):

∀(i, j) ∈ E, w(pi,j) = w+ =
γ

(|X | − k)w− ×
[(

k
2

)
+

(|X|+1)2−
(
k− |X|+1

3

)2−3|X|
6

]

w(p1) = w+ ×
(

(|X |+ 1)2 −
(
k − |X|+1

3

)2

− 3|X |
)

/6. Weights are as follows

for negative examples (we do not use n′2): ∀j ∈ {1, 2, ..., |X |}, w(nj) = w− =
1/(|X | + k); w(n′1) = 1 − |E|w+ − |X |w− − w(p1). The choice of γmax comes
from the necessity of keeping weights within correct limits. We explain how to the
existence of a clique, by describing a polynomial of degree 3, F (k′) which upper-
bounds TPR×TNR, and of course has the desirable property of having its maxi-

Complexity in the Case Against Accuracy 193

mum for k′ = k, with value γ, and with no other equal or greater values on the in-
terval [0, |X |]. Similarly to the other proofs, the value γ can only be reached when
k′ = k represents k “holes” among predicates {aj(.)}, and this induces a size-k
clique in the graph. Define the function F (k′) as follows. ∀k′ ∈ {0, 1}, F (k′) =
w(p1)× (|X | − k′)w−; ∀2 ≤ k′ ≤ kmax, F (k′) =

((
k′
2

)
w+ + w(p1)

)
(|X | − k′)w−;

∀kmax < k′ ≤ |X |, F (k′) = (|E|w+ + w(p1))(|X | − k′)w−. With our choice of
weights, and inside the values of k′ for which we described k (clearly, in the
second F (k′)), F describes a polynomial of degree 3, shown in figure 2. F upper-

k’=k

|X |+1)/3k’=(k’=2(|X |+1)/3- k

|X |

γ

>0

<

=

k’

k’

F k’)(

γ

Fig. 2. Scheme of F (k′) =
((

k′

2

)
w+ + w(p1)

)
(|X | − k′)w−.

bounds TPR×TNR of any set of Horn clauses, and the demand on TPR×TNR
leads to a single favorable case: the ”holes” inside the set of Horn clauses describe
a clique of size k′ = k in the graph.

	Introduction
	Mono and Bi-criteria Solutions to Replace the Accuracy
	Extending the Accuracy
	Replacing the Accuracy: The ROC Analysis
	Replacing the Accuracy by a Single Criterion

	Introduction to the Proof Technique
	ILP Background Needed
	Basic Tools for the Hardness Results

	Hardness Results
	Appendix 1: The Global Reduction
	Appendix 2: Proofs of Negative Results
	Proof of Point [1], Theorem ref {th1}
	Proof Sketch of Theorem ref {th3}

