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Abstract. As pointed out by Blum [Blu94], ”nearly all results in Ma-
chine Learning [...] deal with problems of separating relevant from irrele-
vant information in some way”. This paper is concerned with structural
complexity issues regarding the selection of relevant Prototypes or Fea-
tures. We give the first results proving that both problems can be much
harder than expected in the literature for various notions of relevance. In
particular, the worst-case bounds achievable by any efficient algorithm
are proven to be very large, most of the time not so far from trivial
bounds. We think these results give a theoretical justification for the nu-
merous heuristic approaches found in the literature to cope with these
problems.

1 Introduction

With the development and the popularization of new data acquisition technolo-
gies such as the World Wide Web (WWW), computer scientists have to analyze
potentially huge data sets. The available technology to analyze data has been
developed over the last decades, and covers a broad spectrum of techniques and
algorithms. The overwhelming quantities of such easy data represent however a
noisy material for learning systems, and filtering it to reveal its most informative
content has become an important issue in the fields of Machine Learning (ML)
and Data Mining.

In this paper, we are interested in two important aspects of this issue: the
problem of selecting the most relevant examples (named prototypes), a problem
to which we refer as ”Prototype selection” (PS), and the problem of selecting the
most relevant variables, a problem to which we refer as ”Feature selection” (FS).
Numerous works have addressed empirical results about efficient algorithms for
PS and FS [Koh94, KS95, KS96, SN00a, SN00b, Ska94, WM97] and many others.
However, in comparison, very few results have addressed the theoretical issues of
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both PS and FS, and more particularly have given insight into the hardness of
FS and PS. This is an important problem because almost all efficient algorithms
presented so far for PS or FS are heuristics, and no theoretical results are given
for the guarantees they give on the selection process. The question of their behav-
ior in the worst case is therefore of particular importance. Structural complexity
theory can be helpful to prove lowerbounds valid for any time-efficient algorithm,
and negative results for approximating optimization problems are important in
that they may indicate we can stop looking for better algorithms [Bel96]. On
some problems [KKLP97], they have even ruled out the existence of efficient
approximation algorithms in the worst case.

In this paper, we are interested in PS and FS as optimization problems. So
far, one theoretical result exists [BL97], which links the hardness of approximat-
ing FS and the hardness of approximating the Min-Set-Cover problem. We
are going to prove in that paper that PS and FS are very hard problems for var-
ious notions of what is ”relevance”, and our results go far beyond the negative
results of [BL97]. The main difficulty in our approach is to capture the essential
notions of relevance for PS and FS. As underlined in [BL97], there are many def-
initions for relevance, principally motivated by the question ”relevant to what?”,
and addressing them separately would require large room space. However, these
notions can be clustered according to different criteria, two of which seem to be
of particular interest. Roughly speaking, relevance is generally to be understood
with respect to a distribution, or with respect to a concept. While the former
encompasses information measures, the latter can be concerned with the target
concept (governing the labeling of the examples) or the hypothesis concept built
by a further induction algorithm. In this work, we have chosen to address two
notions of relevance, each representative of one cluster, for each of the PS and
FS problems.

We prove for each of the four problems, that any time-efficient algorithm
shall obtain very bad results in the worst case, much closer than expected to
the ”performances” of approaches consisting in not (or randomly) filtering the
data ! From a practical point of view, we think our results give a theoretical
justification to heuristic approaches of FS and PS. While these hardness results
have the advantage of covering the basic notions of relevance found throughout
the literature (of course by investigating four particular definitions of relevance),
they have two technical commonpoints. First, the results are obtained by reduc-
tion from the same problem (Min-Set-Cover), but they do not stem from
a simple coding of the instance of Min-Set-Cover. Second, the proofs are
standardized: they all use the same reduction tool but in a different way. From a
technical point of view, the reduction technique makes use of blow-up reductions,
a class of reductions between optimization problems previously sparsely used in
Computational Learning Theory [HJLT94, NJ98a, NJS98]. Informally, blow-up
reductions (also related to self-improving reductions, [Aro94]) are reductions
which can be made from a problem onto itself: the transformation is such that
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it depends on an integer d which is used to tune the hardness result: the higher d,
the larger the inapproximability ratio obtained. Of course, there is a price to
pay : the reduction time is also an increasing function of d; however, sometimes,
it is possible to show that the inapproximability ratio can be blown-up e.g. up
to exponent d, whereas the reduction time increases reasonably as a function
of d [NJS98].

The remaining of this paper is organized as follows. After a short preliminary,
the two remaining parts of the paper address separately PS and FS. Since all our
results use reductions from the same problem, we detail one proof to explain the
nature of self-improving reductions, and give proof sketches for the remaining
results.

2 Preliminary

Let LS be some learning sample. Each element of LS is an example consisting
of an observation and a class. We suppose that the observations are described
using a set V of n Boolean (0/1) variables, and there are only two classes, named
”positive” (1) and ”negative” (0) respectively. The basis for all our reductions
is the minimization problem Min-Set-Cover:

Name: Min-Set-Cover.
Instance: a collection C = {c1, c2, ..., c|C|} of subsets of a finite set S =
{s1, s2, ..., s|S|} (|.| denotes the cardinality).
Solution: a set cover for S, i.e. a subset C′ ⊆ C such that every element
of S belongs to at least one member of C.
Measure: cardinality of the set cover, i.e. |C′|.

The central theorem which we use in all our results is the following one.

Theorem 1. [ACG+99, CK00] Unless NP ⊂ DTIME[nlog logn], the problem
Min-Set-Cover is not approximable to within (1− ε) log |S| for any ε > 0.

By means of words, theorem 1 says that any (time) efficient algorithm shall not
be able to break the logarithmic barrier log |S|, that is, shall not beat signifi-
cantly in the worst case the well-known greedy set cover approximation algo-
rithm of [Joh74]. This algorithm guarantees to find a solution to any instance of
Min-Set-Cover whose cost, |C′|, is not larger than

O(log |S|)× optMin-Set-Cover,

where optMin-Set-Cover is the minimal cost for this instance.
In order to state our results, we shall need particular complexity classes based
on particular time requirement functions. We say that a function is polylog(n)
if it is O(logc n) for some constant c, and quasi-polynomial, QP (n), if it is
O(npolylog(n)).
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3 The Hardness of Approximating Prototype Selection

A simple and formal objective to prototype selection can be thought of as an
information preserving problem as underlined in [BL97]. Fix some function f :
[0, 1]→ [0, 1] satisfying the following properties:

1. f is symmetric about 1/2,
2. f(1/2) = 1 and f(0) = f(1) = 0,
3. f is concave.

Such functions are called permissible in [KM96]. Clearly, the binary entropy

H(x) = −x log(x)− (1 − x) log(1− x),

the Gini criterion
G(x) = 4x(1− x)

[KM96] and the criterion
A(x) = 2

√
x(1− x)

used in [KM96, SS98] are all permissible. Define p1(LS) as the fraction of positive
examples in LS, and p0(LS) as the fraction of negative examples in LS. Define
LSv=a to be for some variable v the subset of LS in which all examples have
value a (∈ {0, 1}) for v. Finally, define the quantity If (v, LS) defined as

If (v, LS) = f(p1(LS))−
( |LSv=1|
|LS| f(p1(LSv=1)) +

|LSv=0|
|LS| f(p1(LSv=0))

)

This quantity, with f replaced by the functions H(x), G(x) or A(x), repre-
sents the common information measure to split the internal nodes of decision
trees in all state-of-the-art decision tree learning algorithms (see for exam-
ple [BFOS84, KM96, Mit97, Qui94, SS98]).

One objective in prototype selection can be to reduce the number of examples
in LS while ensuring that any informative variable before will remain informative
after the removal. The corresponding optimization problem, which we call Min-
PSf (for any f belonging to the category fixed above), is the following one:

Name: Min-PSf
Instance: a learning sample LS of examples described over a set of n vari-
ables V = {v1, v2, ..., vn}.
Solution: a subset LS′ of LS such that ∀1 ≤ i ≤ n, If (vi, LS) > 0 ⇒
If (vi, LS′) > 0.
Measure: |LS′|.

There are two components in the self-improving reduction. The first one is
to prove a basic inapproximability theorem. The second one, an amplification
lemma, ”blows-up” the result of the theorem. Then, we give some consequences
illustrating the power of the amplification lemma.
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Theorem 2. Unless NP ⊂ DTIME[nlog logn], Min-PSf is not approximable
to within (1− ε) logn for any ε > 0.

Proof. We show that Min-PSf is as hard to approximate as Min-Set-Cover:
any solution to Min-Set-Cover can be polynomially translated to a solution
to Min-PSf of the same cost, and reciprocally. Given an instance of Min-Set-
Cover, we build a set LS of |C| positive examples and 1 negative example, each
described over |S| variables. We define a set {v1, v2, ..., v|S|} of Boolean variables,
in one-to-one correspondence with the elements of S. The negative example is
the all-0 example. Each positive example is denoted e1, e2, ..., e|C|. We construct
each positive example ej so that it encodes the content of the corresponding
set cj of C. Namely, ej[k] is 1 iff sk ∈ cj , and 0 otherwise. Here we suppose
obviously that each element of S is element of at least one element of C, which
means that ∀1 ≤ i ≤ n, If (vi, LS) > 0. Suppose there exists a solution to Min-
Set-Cover of cost c. Then, we put in LS′ the negative example, and all positive
examples corresponding to the solution to Min-Set-Cover. We see that for any
variable vj , there exists some positive example of LS′ having 1 in its jth com-
ponent, since otherwise the solution to Min-Set-Cover would not cover the
elements of S. It is straightforward to check that ∀1 ≤ i ≤ n, If (vi, LS′) > 0,
which means that LS′ is a solution to Min-PSf having cost c + 1.

Now, suppose that there exists a feasible solution to Min-PSf , of size c.
There must be the negative example inside LS′ since otherwise we would have
∀1 ≤ i ≤ n, If (vi, LS′) = 0. Consider all elements of C corresponding to the
c − 1 positive examples of LS′. If some element si of S were not covered, the
variable vi would be assigned to zero over all examples of LS′, be they positive
or negative. In other words, we would have If (vi, LS′) = 0, which is impossible.
In other words, we have build a solution of Min-Set-Cover of cost c− 1.

If we denote optMin-Set-Cover and optMin-PS the optimal costs of the
problems, we have immediately optMin-PS = optMin-Set-Cover + 1. A possi-
ble interpretation of theorem 1 is the following one [Aro94]: there exists some
O(nlog logn)-time reduction from some NP -hard problem, say “SAT” for exam-
ple, to Min-Set-Cover, such that

– to any satisfiable instance of “SAT” corresponds a solution to Min-Set-
Cover whose cost is α,

– unsatisfiable instance of “SAT” are such that any feasible solution to Min-
Set-Cover will be of cost > α(1 − ε) log |S| for any ε > 0.

This property is also called a hard gap in [Bel96].
If we consider the reduction from Min-Set-Cover to Min-PSf , we see that
the ratio between unsatisfiable and satisfiable instances of “SAT” is now

ρ =
α(1− ε) logn + 1

α + 1

For any ε′ > 0, if we choose 0 < ε < ε′ (this is authorized by theorem 1), we
have ρ > (1 − ε′) log n for Min-PSf , at least for sufficiently large instances of
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“SAT”. This concludes the proof of the theorem.

The amplification lemma is based on the following self-improving reduction.
Fix some integer value d > 1. Suppose we take again the instance of Min-
Set-Cover, but we create |S|d variables instead of the initial |S|. Each variable
represents now a d-tuple of examples. Suppose we number the variables vi1,i2,...,id
with i1, i2, ..., id ∈ {1, 2, ..., |S|}, to represent the corresponding examples. The
|C| + 1 old examples are replaced by |C|d + 1 examples described over these
variables, as follows:

– for any possible d-tuple (cj1 , cj2 , ..., cjd) of elements of C, we create a positive
example ej1,j2,...,jd , having ones in variable vi1,i2,...,id iff

∀k ∈ {1, 2, ..., d}, sik ∈ cjk ,

and zeroes everywhere else. Thus, the Hamming weight of the example’s
description is exactly

∏d
k=1 |cjk |. By this procedure, we create |C|d positive

examples,
– we add the all-zero example, having negative class.

We call LSd this new set of examples. Note that the time made for the reduction
is no more thanO(|S|d|C|d). The following lemma exhibits that the inapproxima-
bility ratio for Min-PSf actually grows as a particular function of d provided d
is confined to reasonable values, in order to keep an overall reduction time not
greater than O(nlog logn). Informally, this assumption allows to use the inap-
proximability ratio of theorem 1 for our reduction. For the sake of simplicity
in stating the lemma, we say that the reduction is feasible to state that this
assumption holds.

Lemma 1. Unless NP ⊂ DTIME[nlog logn], provided the reduction is feasible,
then Min-PSf is not approximable to within

(
(1− ε) logn

d

)d

for any ε > 0.

Proof. Again, we suppose obviously that each element of S is element of at least
one element of C, which means that each variable vi1,i2,...,id has

If (vi1,i2,...,id , LSd) > 0

Note that any feasible solution to Min-PSf contains the negative example (same
reason as for theorem 2). Also, in any solution C′ = {c′1, c′2, ..., c′|C′|} to Min-
Set-Cover, the following property P is satisfied without loss of generality: any
element of C belonging to it has at least one element (of S) which is present
in no other element of C′, since otherwise the solution could be transformed
in polynomial time into a solution of lower cost (simply remove arbitrarily ele-
ments in C′ to satisfy P while keeping a cover of S). As P is satisfied, we call
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any subset of cardinality |C′| of S containing one such distinguished element for
each element of C′ a distinguished subset of S. Finally, remark that Min-PSf is
equivalent to the problem of covering the set Sd using elements of Cd, and the
minimal number of positive examples in LSd is exactly the minimal cost c′ of
the instance of this generalization of Min-Set-Cover. But, since P holds, cov-
ering Cd requires to cover any d-tuple of distinguished subsets of S and because
property P holds, c′ is at least cd where c is the optimal cost of the instance
of Min-Set-Cover. Also, if we take all d-tuples of elements of C′ feasible so-
lution to Min-Set-Cover, we get a feasible solution to the generalization of
Min-Set-Cover, which leads to the equality c′ = cd.

If we denote optMin-PS the optimal cost of Min-PSf on the new set of
examples LSd, we obtain that

optMin-PS = (optMin-Set-Cover)d + 1

Given that n = |S|d, and using the same ideas as for theorem 2, we obtain the
statement of the lemma.

What can we hope to gain by using lemma 1, which was not already proven by
theorem 2 ? It is easy to show that the largest inapproximability ratio authorized
by the same complexity assumption is

ρ = log
log

(
logn1−ε
log logn

)
n (1)

(by taking d = O(log logn)), which implies the simpler one:

Theorem 3. Unless NP ⊂ DTIME[nlog logn], Min-PSf is not approximable
to within

log(1−ε) log logn n

for any ε > 0.

Another widely encountered complexity hypothesis, stronger than the one of
theorem 3, is that NP �⊂ QP [CK00]. In that case, the result of theorem 3
becomes stronger:

Theorem 4. Unless NP ⊂ QP , ∃δ > 0 such that Min-PSf is not approximable
to within nδ.

Proof. We prove the result for δ < 1/e, and take d = (1−δ) logn. A good choice
of ε in theorem 2 proves the result.

The preceeding model takes into account the information of the variables to
select relevant prototypes. We now give a model for prototype selection based
on the notion of relevance with respect to a concept. For any set of examples
LS, denote as Copt(LS) the set of concept representations having minimal size,
and consistent with LS. The notion of size can be e.g. the overall number of
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variables of the concept (if a variable appears i times, it is counted i times).
The nature of the concepts is not really important: these could be decision
trees, decision lists, disjunctive normal form formulas, linear separators, as well
as simple clauses. Our negative results will force the concepts of Copt(LS) to
belong to a particularly simple subclass, expressible in each class. This notion
of relevance is closely related to a particular kind of ML algorithms in which
we seek consistent formulas with limited size: Occam’s razors [KV94, NJS98].
Formulated as an optimization problem, the Min-PS problem is the following
one:

Name: Min-PS.
Instance: a learning sample LS of examples described over a set of variables
{v1, v2, ..., vn}.
Solution: a subset LS′ of LS such that Copt(LS′) ⊆ Copt(LS).
Measure: |LS′|.

By means of words, PS is a problem of reducing the number of examples while
ensuring that concepts consistent and minimal with respect to the subset of
prototypes will also be valid for the whole set of examples. Our first result on
the inapproximability of this new version of Min-PS is the following one.

Theorem 5. Unless NP ⊂ DTIME[nlog logn], Min-PS is not approximable to
within (1− ε) logn for any ε > 0.

Proof. (sketch) The proof resembles the one of theorem 2. Given an instance
of Min-Set-Cover, we build a set LS of |S| positive examples and 1 negative
example, each described over |C| variables. We define a set {v1, v2, ..., v|C|} of
Boolean variables, in one-to-one correspondence with the elements of C. The neg-
ative example is the all-0 example. Each positive example is denoted e1, e2, ..., e|S|.
We construct each positive example ej so that it encodes the membership of sj
into each element of C. Namely, ej[k] is 1 iff sj ∈ ck, and 0 otherwise. Similarly
to theorem 2, the least number of examples which can be kept is exactly the cost
of the optimal solution to Min-Set-Cover, plus one.

The proof is similar to that of theorem 2, with the following remark on the
minimal concepts. It can be shown that minimal concepts belonging to each of
the classes cited before (trees, lists, etc.) will contain a number of variables equal
to the minimal solution to Min-Set-Cover, and each will be present only once.
The reduction is indeed very generic and similar results were previously obtained
by e.g. [NG95] (for linear separators and even multilinear polynomials), [NJ98b]
(for decision lists), [HR76, HJLT94] (for decision trees), [Noc98] (for Disjunctive
Normal Form formulas and simple clauses). From that, all minimal concepts will
be equivalent to a simple clause whose variables correspond to C′. Property P
in lemma 1 can still be used.

The amplification lemma follows from a particular self-improving reduction.
Again, fix some integer value d > 1. Suppose we take again the instance of Min-
Set-Cover, but we create d|C| variables instead of the initial |C|. Each variable
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is written vi,j to denote the jth copy of initial variable i, with i = 1, 2, ..., |C|
and j = 1, 2, ..., d. The |S| + 1 old examples are replaced by |S|d + 1 examples
described over these variables, as follows:

– for any possible d-tuple (sj1 , sj2 , ..., sjd) of elements of S, we create a posi-
tive example ej1,j2,...,jd , having ones in variable vk,l iff sjl ∈ ck, and zeroes
everywhere else. By this procedure, we create |C|d positive examples,

– we add the all-zero example, having negative class.

We call LSd this new set of examples. Note that the time made for the reduc-
tion is no more than O(|S|d|C|d). The following lemma is again stated under
the hypothesis that the reduction is feasible, that is, takes no more time than
O(nlog logn), to keep the same complexity assumption as in theorem 1 (proof
omitted).

Lemma 2. Unless NP ⊂ DTIME[nlog logn], provided the reduction is feasible,
then Min-PS is not approximable to within

(
(1 − ε) log

[n
d

])d

for any ε > 0.

What can we hope to gain by using lemma 2, which was not already proven by
theorem 5 ? It is easy to show that the largest inapproximability ratio authorized
by the same complexity assumption is now

ρ = loglog log( n
log logn)1−ε

n (2)

which in turn implies the following one (greater than eq. 1):

Theorem 6. Unless NP ⊂ DTIME[nlog logn], Min-PS is not approximable to
within

loglog log(n1−ε) n

for any ε > 0.

With a slightly stronger hypothesis (and using d = O(polylog(n))), we obtain

Theorem 7. Unless NP ⊂ QP , ∀c > 0, Min-PS is not approximable to within
nlogc n log log logn.

With respect to 1, lemma 2 brings results much more negative provided stronger
complexity assumptions are made. [PR94] make the very strong complexity as-
sumption NP �⊂ DTIME(2n

Ω(1)
). This is the strongest complexity assumption,

since NP is definitely contained in DTIME(2poly(n)). Using this hypothesis
with d = nΩ(1), we obtain the following, very strong result:

Theorem 8. Unless NP ⊂ DTIME(2n
Ω(1)

), ∃γ > 0 such that Min-PS is not
approximable to within

2n
γ log log n
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What theorem 8 says is that approximating prototype selection up to exponential
ratios

2n
γ+o(1)

will be hard. Note that storing the examples would require 2n examples in the
worst case. Up to what is precisely hidden in the γ notation, approximating
Min-PS might not be efficient at all with respect to the storing of all examples.

4 The Hardness of Approximating Feature Selection

The first model of feature selection is related to the distribution of the examples
in LS. Let Vi be the set of all variables except vi, i.e.

Vi = {v1, v2, ..., vi−1, vi+1, ..., vn}

Denote by v\i a value assignment to all variables in Vi.

Definition 1. [JKP94] A variable vi is strongly relevant iff there exists some
v, y and v\i for which Pr(vi = v, Vi = v\i) > 0 such that

Pr(Y = y|vi = v, Vi = v\i) �= Pr(Y = y|Vi = v\i)

Definition 2. [JKP94] A variable vi is weakly relevant iff it is not strongly
relevant, and there exists a subset of features V ′i of Vi for which there exists
some v, y and v′\i with Pr(vi = v, V ′i = v′\i) > 0 such that

Pr(Y = y|vi = v, V ′i = v′\i) �= Pr(Y = y|V ′i = v′\i)

In other words, a feature is weakly relevant if it becomes strongly relevant af-
ter having deleted some subset of features. We now show that under these two
definitions are hidden algorithmic problems of very different complexities. We
formulate the selection of relevant features as an optimization problem by focus-
ing on the class conditional probabilities, following the definition of coherency
which we give below:

Definition 3. Given a whole set V of features with which LS is described, a
subset V ′ of V is said to be coherent iff for any class y and any observation s
described with V whose restriction to V ′ is noted s′, we have

Pr(Y = y|V = s) = Pr(Y = y|V ′ = s′)

By means of words, coherency aims at keeping the class conditional probabilities
between the whole set of variables and the selected subset. Formulated as an
optimization problem, the Min-S-FS problem is the following one:

– Name: Min-S-FS.
– Instance: a learning sample LS of examples described over a set of variables

V = {v1, v2, ..., vn}.
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– Solution: a coherent subset V ′ of V containing strongly relevant features
w.r.t. LS.

– Measure: |V ′|.
The Min-W-FS problem is the following one:

– Name: Min-W-FS.
– Instance: a learning sample LS of examples described over a set of variables

V = {v1, v2, ..., vn}.
– Solution: a coherent subset V ′ of V containing weakly relevant features

w.r.t. LS.
– Measure: |V ′|.

Since strong relevance for a variable is not influenced by its peers, we easily
obtain the following theorem

Theorem 9. Minimizing Min-S-FS is polynomial.

We now show that Min-W-FS is much more difficult to approximate.

Theorem 10. Unless NP ⊂ DTIME[nlog logn], Min-W-FS is not approx-
imable to within (1 − ε) logn for any ε > 0.

Proof. The reduction is the same as for theorem 5.

The result of theorem 10 shows that Min-W-FS is hard, but it does not
rule out the possibility of efficient feature selection algorithms, since the ratio
of inapproximability is quite far from critical bounds of order nγ (given that
the number of features is n). We now show that theorem 10 is also subject to
be amplified so that we can effectively remove the possibility of efficient feature
selection. Fix some integer value d > 1. Suppose we take again the instance
of Min-Set-Cover of theorem 5, but we create |C|d variables instead of the
initial |C|. Each variable represents now a d-tuple of elements of C. Suppose we
number the variables vi1,i2,...,id with i1, i2, ..., id ∈ {1, 2, ..., |C|}, to represent the
corresponding elements of C. The |S|+ 1 old examples are replaced by |S|d + 1
examples described over these variables, as follows:

– for any possible d-tuple (sj1 , sj2 , ..., sjd) of elements of S, we create a positive
example ej1,j2,...,jd , having ones in variable vi1,i2,...,id iff

∀k ∈ {1, 2, ..., d}, sjk ∈ cjk ,

and zeroes everywhere else. By this procedure, we create |S|d positive exam-
ples,

– we add the all-zero example, having negative class.

We call LSd this new set of examples. The reduction time is no more than
O(|S|d|C|d). The following lemma is stated under the same hypothesis as for
lemma 2.
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Lemma 3. Unless NP ⊂ DTIME[nlog logn], provided the reduction is feasible,
Min-W-FS is not approximable to within

(
(1− ε) logn

d

)d

for any ε > 0.

An immediate consequence is the following.

Theorem 11. Unless NP ⊂ QP , ∃δ > 0 such that Min-W-FS is not approx-
imable to within nδ.

In other words, up to what is be the maximal δ, theorem 11 shows that any
non trivial algorithm cannot achieve a significant worst-case approximation of
the Min-W-FS problem, with respect to the simple keeping of all variables.

Our second model for feature relevance defines it with respect to the target
concept [BL97].

Definition 4. [BL97] A variable vi is said to be relevant to the target concept c
iff there exists a pair of examples eA and eB in the instance space such that their
observations differ only in their assignment to vi and they have a different class.

From this, [BL97] define the following complexity measure.

Definition 5. [BL97] Given a sample LS and a set of concept C, r(LS, C) is
the number of features relevant using definition 4 to a concept in C that, out of
all those whose error over LS is least, has the fewest relevant features.

We call Cmin(LS) to be the set of concepts from C whose error on LS is least.
It is straightforward to check that in definition 5, r(LS, C) defines the optimum
of the following minimization problem.

Name: Min-FS.
Instance: a learning sample LS of examples described over a set of variables
V = {v1, v2, ..., vn}, a class of concept C.
Solution: a subset V ′ of V such that there exists a concept in Cmin(LS)
which is described over V ′.
Measure: the cardinality of the subset of V ′ consisting of relevant features
according to definition 4.

A result stated in the paper of [BL97] says that Min-FS is at least as hard to
approximate as the Min-Set-Cover problem (thus, we get the inapproxima-
bility ratio of theorem 1). On the other hand, the greedy set cover algorithm
of [Joh74] can be used to approximate r(LS, C) when C is chosen to be the set
of monomials. If we follow [KV94] using a comment of [BL97], the number of
variables chosen is no more than

r(LS,monomials)× log |LS|,
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but |LS| can theoretically be as large as 2n. The question is therefore to what
extent we can increase the inapproximability ratio to come as close as possible
to the trivial barrier n (we keep all variables). Actually, it can easily be shown
that the amplification result of lemma 1 still holds with the reduction allowing
to prove the equivalence of Min-Set-Cover and Min-FS. Therefore, we get

Lemma 4. Unless NP ⊂ DTIME[nlog logn], provided the reduction is feasible,
then Min-FS is not approximable to within

(
(1− ε) logn

d

)d

for any ε > 0.

Similarly to theorem 4, we also get as a consequence:

Theorem 12. Unless NP ⊂ QP , ∃δ > 0 such that Min-FS is not approximable
to within nδ.
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