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Abstract

Scaling discrete AdaBoost to handle real-valued weak hypotheses has often been done under the auspices of convex optimization,
but little is generally known from the original boosting model standpoint. We introduce a novel generalization of discrete AdaBoost
which departs from this mainstream of algorithms. From the theoretical standpoint, it formally displays the original boosting
property, as it brings fast improvements of the accuracy of a weak learner up to arbitrary high levels; furthermore, it brings
interesting computational and numerical improvements that make it significantly easier to handle “as is”. Conceptually speaking,
it provides a new and appealing scaling to R of some well known facts about discrete (ada)boosting. Perhaps the most popular
is an iterative weight modification mechanism, according to which examples have their weights decreased iff they receive the
right class by the current discrete weak hypothesis. In our generalization, this property does not hold anymore, as examples that
receive the right class can still be reweighted higher with real-valued weak hypotheses. From the experimental standpoint, our
generalization displays the ability to produce low error formulas with particular cumulative margin distribution graphs, and it
provides a nice handling of those noisy domains that represent Achilles’ heel for common Adaptive Boosting algorithms.
© 2006 Published by Elsevier B.V.
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1. Introduction

In supervised learning, it is hard to exaggerate the importance of boosting algorithms. Loosely speaking, a boosting
algorithm repeatedly trains a moderately accurate learner, gets its weak hypotheses, combines them, to finally output
a strong classifier which boosts the accuracy up to arbitrary high levels [14,15]. (Discrete) Adaboost, undoubtfully
the most popular provable boosting algorithm [7], uses weak hypotheses with outputs restricted to the discrete set
of classes that it combines via leveraging coefficients in a linear vote. Strong theoretical issues have motivated the
extension of this discrete AdaBoost [8] to handle real-valued weak hypotheses as well [8,17,26,29]. Even when only
few of them are true generalizations of discrete AdaBoost [17,29], virtually all share a strong background in convex

✩ Extends the paper from the same name that was awarded the Best Paper Award at the 17th European Conference on Artificial Intelligence
(2006).

* Corresponding author. Fax: (+596) 596 72 74 03.
E-mail addresses: Richard.Nock@martinique.univ-ag.fr (R. Nock), Nielsen@csl.sony.co.jp (F. Nielsen).
URLs: http://www.univ-ag.fr/~rnock (R. Nock), http://www.csl.sony.co.jp/person/nielsen/ (F. Nielsen).
Please cite this article as: R. Nock, F. Nielsen, A Real generalization of discrete AdaBoost, Artificial Intelligence (2006),
doi:10.1016/j.artint.2006.10.014

50

51

52
0004-3702/$ – see front matter © 2006 Published by Elsevier B.V.
doi:10.1016/j.artint.2006.10.014



ARTICLE IN PRESS
JID:ARTINT AID:2230 /FLA [m3SC+; v 1.66; Prn:9/11/2006; 11:44] P.2 (1-17)

2 R. Nock, F. Nielsen / Artificial Intelligence ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52
U
N

C
O

R
R

E
C

TE
D

P
R

O
O

F

optimization originally rooted in a “key” to boosting in AdaBoost: a strictly convex exponential loss integrated into
a weight update rule for the examples, loss which upperbounds the error and approximates the expected binomial
log-likelihood. However, very little is often known for these algorithms from the seminal boosting model standpoint
[14,15,27], a model which roughly requires convergence to reduced true risk under very weak assumptions (with high
probability).

In this paper, we propose a new real AdaBoost, a generalization of discrete AdaBoost that handles arbitrary real-
valued weak hypotheses. With respect to former real AdaBoosts, the weight update is fundamentally different as it
does not integrate anymore the convex exponential loss; also, the leveraging coefficients for the weak hypotheses
differ in the output; finally, these leveraging coefficients are given in closed form and their computation can now
easily be delayed until the end of boosting, which is not the case for conventional real AdaBoosts [8,17,29]. The major
theoretical key feature of this algorithm is that it is a provable boosting algorithm in the original sense. Another point is
that it saves computation time with respect to previous generalizations of discrete AdaBoost, that need to approximate
the solution of a convex minimization problem at each boosting iteration [17,29]. From the experimental standpoint,
the weight update rule, which does not require anymore the approximation of logarithms or exponentials, is less prone
to numerical errors. Finally, it prevents or reduces some numerical instabilities that previous generalizations [17,29]
face when the weak hypotheses reach perfect, or perfectly wrong, classification. This might explain why experiments
clearly display that our algorithm handles noise more efficiently than discrete or real AdaBoosts. Noise handling has
soon be described as AdaBoost’s potential main problem, see [2].

As a matter of fact, it is quite interesting that our algorithm is indeed a generalization of discrete AdaBoost, as when
the weak hypotheses have outputs constrained to the set of classes, both algorithms coincide. From this standpoint,
our paper also brings a relevant conceptual contribution to boosting. Indeed, we give a complete generalization to R of
popular (discrete) boosting properties, and this is sometimes clearly not trivial. For example, discrete AdaBoost is very
often presented as an algorithm that reweights lower the examples that have received the right class. Scaled to R, this
is not true anymore. Roughly speaking, provided a so-called Weak Learning Assumption holds (which states that the
classifier is slightly different from random), lower reweighting occurs only for examples that receive the right class,
and on which a measure of the classifier’s confidence exceeds a measure of its average confidence (over all examples,
known as a margin). Only on the discrete prediction framework do these two properties coincide. Furthermore, this
scaling property does not hold for previous real AdaBoosts [8,17,26,29].

Section 2 presents some definitions, followed by a section on our generalization of discrete AdaBoost. Section 4
presents and discusses experimental results, and a last section concludes the paper.

2. Definitions and related work

Our framework is rooted into the original weak/strong learning and boosting frameworks, and Valiant’s PAC (Prob-
ably Approximately Correct) model of learnability [7,15,30]. We have access to a domain X of observations, which
could be {0,1}n, R

n, etc. Here, n is the number of description variables. More precisely, we collect examples, that is,
couples (observation, class) written (x, y) ∈ X × {−1,+1}. “+1” is called the positive class (or label), and “−1” the
negative class. In this paper, we deal only with the two-classes case. Well known transformations exist that allow its
extension to multiclass, multilabel frameworks [29]. In this paper, boldfaces such as x denote n-dimensional vectors,
calligraphic faces such as X denote sets and blackboard faces such as S denote subsets of R, the set of real numbers.
Unless explicitely stated, sets are enumerated following their lower-case, such as {xi : i = 1,2, . . .} for vector sets,
and {xi : i = 1,2, . . .} for other sets (and for vector entries). We make the assumption that examples are sampled inde-
pendently, following an unknown but fixed distribution D over X × {−1,+1}. Our objective is to induce a classifier
or hypothesis H :X → R, that matches the best possible the examples drawn according to D.

For this objective, we define a strong learner as an algorithm which is given two parameters 0 < ε, δ < 1, samples
according to D a set S of m examples, and returns a classifier or hypothesis H :X → R such that with probability
� 1 − δ, its true risk εD,H is bounded as follows:

Pr(x,y)∼D

[
sign

(
H(x)

) �= y
] = εD,H � ε. (1)

Here, sign(a) is +1 iff a � 0, and −1 otherwise. The time complexity of the algorithm is required to be polynomial in
relevant parameters, among which 1/ε,1/δ,n. To be rigorous, the original models [15,30] also mention dependences
on concepts that label the examples. Examples are indeed supposed to be labeled by a so-called target concept,
Please cite this article as: R. Nock, F. Nielsen, A Real generalization of discrete AdaBoost, Artificial Intelligence (2006),
doi:10.1016/j.artint.2006.10.014
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Input: sample S = {(xi , yi ),xi ∈ X , yi ∈ {−1,+1}}
w1 ← u;
for t = 1,2, . . . , T do

Get (ht :X → S) ← WL(S,wt );
Find αt ∈ R;
Update: ∀1 � i � m,

wt+1,i ← wt,i × exp(−αt yiht (xi ))/Zt ; (2)

end
Output: HT (x) = ∑T

t=1 αtht (x)

Fig. 1. An abstraction of AdaBoost.

which is unknown but fixed. Distribution D is in fact used to retrieve the examples from this target concept, and
the time complexity of the algorithm is also required to be polynomial in its size. Hereafter, we shall omit for the
sake of clarity this notion of target concept, which is not important for our purpose, since our analysis may also be
fit to handle it as well. A weak learner (WL) has basically the same constraints, with two notable exceptions: (i) the
weak hypotheses it delivers have outputs that can be restricted to a subset S ⊆ R, and (ii) (1) is only required to
hold with ε = 1/2 − γ for some γ > 0 a constant or inverse polynomial in relevant parameters (this still has to
be verified regardless of D). Since predicting the classes at random, such as with an unbiased coin, would yield
Pr(x,y)∼D[sign(random(x)) �= y] = 1/2,∀D, it comes that a weak learner is only required to perform slightly better
than random prediction. In the original models, it is even assumed that δ is also an inverse polynomial in relevant
parameters, which makes that the constraints on WL are somehow the lightest possible from both the statistical and the
computational standpoints. The (discrete) Weak Learning Assumption (WLA) assumes the existence of WL [14,27].
Simple simulation arguments of WL [16] allow to show that the weakening on δ is superficial, as we can in fact weak
learn with the same arbitrary δ as for strong learning. However, the conditions on ε are dramatically different, and
the question of whether weak and strong learning are equivalent models has been a tantalizing problem until the first
proof that there exists boosting algorithms that strong learn under the sole access to WL [27], thus proving that these
models are indeed equivalent. This first boosting algorithm outputs a large tree-shaped classifier with majority votes
at the nodes, each node being built with the help of WL. The point is that it is not easy to implement, and it does not
yield classifiers that correspond to familiar concept representations.

AdaBoost [7] has pioneered the field of easily implementable boosting algorithms, for which S = {−1,+1}. After
[7], we refer to it as discrete AdaBoost (see Fig. 1 for an abstraction of the algorithm). Basically, AdaBoost uses
a weak learner as a subprocedure and an initial distribution u over S , generally uniform, which is repeatedly skewed
towards the hardest to classify examples. After T rounds of boosting, its output, HT , is a linear combination of the
weak hypotheses. Below, we give a useful abstraction of AdaBoost, in which Zt is the normalization coefficient,
the elements of S are enumerated si = (xi , yi) and their successive weight vector is noted wt , for t � 1. In discrete
Adaboost, we would have:

αt = 1

2
ln

1 − εwt ,ht

εwt ,ht

, (3)

where “ln” denotes the natural logarithm. The two key steps in AdaBoost are the choice of αt and the weight up-
date rule (see Fig. 1). They are strongly related and follow naturally if we seek to minimize the following observed
exponential loss [8,29] through the induction of HT :

ε
exp
w1,HT

= E(x,y)∼w1

(
exp

(−yHT (x)
))

, (4)

with E. the mathematical expectation. Since I [sign(HT (x)) �= y] � exp(−yHT (x)) (with I the indicator function),
εw1,HT

� ε
exp
w1,HT

, and so minimizing the exponential loss amounts to minimizing the empirical risk as well [8,17,
26,28], and it turns out that it brings a boosting algorithm as well [7,28]. There are other excellent reasons to focus
on the exponential loss instead of the empirical risk: it is smooth differentiable and it approximates the binomial
log-likelihood [8]. Its stagewise minimization brings both the weight update in (2), and the following choice for αt :

αt = arg min E(x,y)∼wt

(
exp

(−αyht (x)
)) = arg minZt . (5)
Please cite this article as: R. Nock, F. Nielsen, A Real generalization of discrete AdaBoost, Artificial Intelligence (2006),
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One more reason, and not the least, to focus on the exponential loss, is that it brings a stagewise maximization of
margins. While the empirical risk focuses only on a binary classification task (the class assigned is either good or
bad), margins scale it to real classification, as they integrate both the binary classification task (sign) and a real
magnitude which quantifies a “confidence” in the label given. Large margin classification can bring very fast true
risk minimization [28]. Margins justify to scale S = {−1,+1} to an interval such as [−1,+1] [8,29]; in this case, the
sign of the output gives the class predicted. Whenever we still enforce ht :X → {−1,+1}, (5) admits a closed-form
solution, which is naturally (3), and the boosting algorithm is discrete AdaBoost [7,8].

In many domains, real-valued classification with AdaBoost encompasses by far the concept itself. One of the most
important and challenging application field for ensemble classifiers is vision [32,33], a domain in which it is easy
to obtain weak classifiers via simple features. The task requires however both fast and accurate combinations, which
is everything but simple. In these pioneering papers, the authors have chosen to use AdaBoost, which brings the
accuracy of the combination. To satisfy the condition of fast processing, the authors consider simple features for weak
classifiers, and they choose the discrete version of AdaBoost [7], which makes it necessary to discretize the real values
of features by thresholding, and thus eventually loses some useful information (it costs also a little time to compute
the thresholds).

Relaxing S to [−1,+1] can still be handled by algorithm AdaBoost (Fig. 1) and (5), but (5) does not have a closed-
form solution in this case [29]. The algorithm obtained is called real AdaBoost, and can be found in [8,17,29]; it
is popular, as demonstrated by many applications in language or image processing [11,21,35]. Iterative techniques
exist for its fast approximation [24], but they have to be performed at each boosting iteration (which buys overall
a significant load increase), and it may be the case that the solution found lies outside the boosting regime if the
number of approximation steps is too small. Approximations exist to (5), but they do not necessarily yield a valid
generalization of discrete AdaBoost [12,24]. For the purpose of fast processing, some authors have devised various
ad-hoc approximations of real AdaBoost, but almost all of them are not known to be formal boosting algorithms: for
example, Huang et al. [9] use a version of real AdaBoost in which αt = 1, and the update rule is adapted from discrete
AdaBoost (they roughly do the same in [10]). Friedman et al. [8], Ridgeway [26] also pick αt = 1. Ridgeway [26]
further proposes to leverage the vote by arbitrary values λ ∈ (0,1] to dampen the variation of the leveraging coeffi-
cients. Other authors have devised modifications of discrete AdaBoost to integrate class-dependent misclassification
costs, that can be viewed as lifting discrete AdaBoost to handle (few) real values [6,19]. Finally, many papers have
modified AdaBoost, to optimize other losses; many of them are rooted into the maximization of the expected binomial
log-likelihood [8,18] instead of just the exponential loss (4).

3. Our Real generalization of AdaBoost

We now give up with the direct minimization of (4), and scale S = {−1,+1} up to any subset of R itself. This
means that the weak classifiers can even be authorized to output values outside interval [−1,+1]. Suppose we replace
the weight update (2) and Eq. (5) by what follows:

wt+1,i ← wt,i ×
(

1 − (μtyiht (xi )/h�
t )

1 − μ2
t

)
, (6)

αt = 1

2h�
t

ln
1 + μt

1 − μt

. (7)

Here, we have fixed h�
t = max1�i�m |ht (xi )| ∈ R, the maximal value of ht over S , and:

μt = 1

h�
t

m∑
i=1

wt,iyiht (xi ) ∈ [−1,+1] (8)

the normalized margin of ht over S . For the sake of clarity, we suppose in the following subsection that ∀1 � t �
T ,h�

t < ∞. Infinite values for h�
t can be handled in two ways: either we bias/threshold the output of ht to make it

finite [29], or we code it as ∞, which yields αt = 0 and μt = ∑
i:|ht (xi )|=∞ wt,isign(yiht (xi )). In both cases, wt+1

is a valid distribution and the properties below are kept. Let us call AdaBoostR our real generalization of discrete
AdaBoost. Notice that (6) and (7) can be retrieved from AdaBoost via the following gentle approximations: (i) approx-
imate the leveraging coefficient as αt ≈ μt (first order approximation to the logarithm in (7)), and (ii) approximate the
Please cite this article as: R. Nock, F. Nielsen, A Real generalization of discrete AdaBoost, Artificial Intelligence (2006),
doi:10.1016/j.artint.2006.10.014
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exponential update rule via a first-order approximation of the exponential, exp(z) ≈ 1 + z. These two approximations
are typically not the ones carried out for the implementations of real AdaBoost, as they usually prefer to keep the ex-
ponential update rule (AdaBoost’s main “trademark”), and the eventual approximations of the leveraging coefficients
approximate the solution of (5) via logarithmic quantities [24] (they do not carry out “one more approximation”).

3.1. Basic properties

We first show that AdaBoostR is indeed a generalization of discrete AdaBoost.

Lemma 1. When S = {−1,+1}, AdaBoostR = discrete Adaboost.

Proof. In this case, we have h�
t = 1 and μt = 1 − 2εwt ,ht , which brings that Eq. (7) is also αt = (1/2) ln((1 −

εwt ,ht )/εwt ,ht ), i.e. like in discrete AdaBoost. Our update rule simplifies to:

wt+1,i ← wt,i(1 − yiht (xi ) + 2yiht (xi )εwt ,ht )

2εwt ,ht (1 − εwt ,ht )
,

i.e.:

wt+1,i ←
{

wt,i/(2(1 − εwt ,ht )) iff yiht (xi ) = +1,

wt,i/(2εwt ,ht ) iff yiht (xi ) = −1.

This is the same expression for the weight update of discrete AdaBoost. �
Now, we show that AdaBoostR is a boosting algorithm for arbitrary real-valued weak hypotheses. In fact, we show

a little bit more, and for this objective, we define the margin of HT on example (x, y) as:

νT

(
(x, y)

) = exp(yHT (x)) − 1

exp(yHT (x)) + 1
∈ [−1,+1]. (9)

This definition of margin extends a previous one for discrete AdaBoost [34], and its choice is discussed in Section 3.3.
∀θ ∈ [−1,+1] we also define the classifier’s “margin error” as the proportion of examples whose margin does not
exceed θ (see also [28]):

νu,HT ,θ =
m∑

i=1

uiI
[
νT

(
(xi , yi)

)
� θ

]
. (10)

Whenever no example has zero margin (i.e. HT predicts a label for all examples), εu,HT
= νu,HT ,0, and νu,HT ,θ

generalizes εu,HT
. Ties are extremely seldom, but even when they occur, νu,HT ,0 is still an upperbound for εu,HT

.
We let H ∗ denote some real-valued prediction that matches the empirical Bayes rule, computed over S : for any
observation x ∈ S , the sign of H ∗(x) would be the majority class over all examples of S whose observation matches x.
We now prove a first theorem on AdaBoostR.

Theorem 1. ∀S ⊆ R, ∀θ ∈ [−1,+1], after T � 1 iterations, we have:

νu,HT ,θ � εu,H ∗ + max

{
1,

(
1 + θ

1 − θ

)}
× exp

(
−1

2

T∑
t=1

μ2
t

)
. (11)

Proof. We need the following simple lemma.

Lemma 2. ∀a ∈ [−1,1],∀b ∈ [−1,1], 1 − ab �
√

1 − a2 exp(− b
2 ln 1+a

1−a
).

Proof. The function in the right-hand side is strictly convex in b for a �= 0, and both functions match for b = ±1 and
a = 0. Writing the right-hand side (1 + a)(1−b)/2(1 − a)(1+b)/2 implies that its limits when a → ±1 are zero. �

Please cite this article as: R. Nock, F. Nielsen, A Real generalization of discrete AdaBoost, Artificial Intelligence (2006),
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Consider some example (xi , yi) ∈ S and some 1 � t � T . The way we use Lemma 2 is simple: fix a = μt and
b = yiht (xi )/h�

t . They satisfy the assumptions of the lemma, and we obtain:

1 − (
μtyiht (xi )/h�

t

)
�

√
1 − μ2

t exp

(
−yiht (xi )

2h�
t

ln
1 + μt

1 − μt

)
. (12)

Unraveling the weight update rule, we obtain:

wT +1,i ×
T∏

t=1

(1 − μ2
t ) = ui ×

T∏
t=1

(
1 − (

μtyiht (xi )/h�
t

))
. (13)

Using T times (12) on the right-hand side of (13) and simplifying yields:

(wT +1,i/ui) ×
T∏

t=1

√
1 − μ2

t � exp
(−yiHT (xi )

)
. (14)

For any (xi , yi) ∈ S , we have 1 = I [νT ((xi , yi)) � θ ] + I [νT ((xi , yi)) � −θ ] − I [−θ � νT ((xi , yi)) � θ ],∀θ � 0,
and 1 = I [νT ((xi , yi)) � θ ] + I [νT ((xi , yi)) � −θ ] + I [θ < νT ((xi , yi)) < −θ ],∀θ < 0.

We let u∗
x (resp. u◦

x ) denote the total weight in u for the examples of S whose observation matches x, and whose
class is (resp. is not) the one chosen by the empirical Bayes rule. We also let y∗

x denote this Bayes class. Finally, we let
S∗ ⊆ S to be the set that contains, for each observation x present in S , exactly one example (x, y∗

x). Suppose θ � 0.
∀(x, y∗

x) ∈ S∗, since νT ((xi , yi)) = −νT ((xi ,−yi)),∀1 � i � m, we obtain:

m∑
i=1

uiI [xi = x]I [
νT

(
(xi , yi)

)
� θ

]
= I

[
νT

(
(x, y∗

x)
)
� θ

] × u∗
x + I

[
νT

(
(x, y∗

x)
)
� −θ

] × u◦
x

= I
[
νT

(
(x, y∗

x)
)
� θ

] × (u∗
x − u◦

x) + (
1 + I

[−θ � νT

(
(x, y∗

x)
)
� θ

]) × u◦
x

� u◦
x + I

[
νT

(
(x, y∗

x)
)
� θ

] × u∗
x, (15)

since I [−θ � νT ((x, y∗
x)) � θ ] � I [νT ((xi , yi)) � θ ]. It is easy to show that inequality (15) also holds when θ < 0,

even when the inequality becomes much looser in this case. We obtain with (15):
m∑

i=1

uiI
[
νT

(
(xi , yi)

)
� θ

]

=
m∑

i=1

∑
(x,y∗

x )∈S∗
uiI [xi = x]I [

νT

(
(xi , yi)

)
� θ

]

=
∑

(x,y∗
x )∈S∗

m∑
i=1

uiI [xi = x]I [
νT

(
(xi , yi)

)
� θ

]

� εu,H ∗ +
∑

(x,y∗
x )∈S∗

(u∗
x + u◦

x)ρxI
[
νT

(
(x, y∗

x)
)
� θ

]
, (16)

with ρx = u∗
x/(u∗

x + u◦
x). Consider some example (x, y∗

x) ∈ S∗. Then, we show:

I
[
νT

(
(x, y∗

x)
)
� θ

]
� max

{
1,

(
1 + θ

1 − θ

)} m∑
i=1

uiI [xi = x]exp(−yiHT (xi ))

u∗
x + u◦

x

. (17)

If I [νT ((x, y∗
x)) � θ ] = 0, (17) is true since the right-hand side cannot be negative. So, suppose I [νT ((x, y∗

x)) � θ ] =
1, i.e. exp(−y∗

xHT (x)) � (1 − θ)/(1 + θ). Fix for short z = −y∗
xHT (x). We have:

m∑
i=1

uiI [xi = x] exp
(−yiHT (xi )

) = u∗
x exp(z) + u◦

x exp(−z)

= (u∗
x − u◦

x) exp(z) + u◦
x

(
exp(z) + exp(−z)

)
.
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Fig. 2. Graphical representation of Theorem 1 (with εu,H∗ = 0): the bold curve upperbounds the empirical margin distribution graph (located inside
the dotted area). As t increases, provided each |μt | is not too small, this bold curve converges (bold arrows) towards the step function I [θ = 1]
(bold dashed curve), which means that all examples receive the right class with infinite confidence (see text for details).

If θ � 0, exp(z) + exp(−z) � 2 � 2(1 − θ)/(1 + θ), and we immediately obtain (u∗
x − u◦

x) exp(z) + u◦
x(exp(z) +

exp(−z)) � (u∗
x + u◦

x) × (1 − θ)/(1 + θ), from which the right-hand side of (17) is � 1. Now, if θ < 0, exp(z) > 1,
and we obtain (u∗

x − u◦
x) exp(z) + u◦

x(exp(z) + exp(−z)) � u∗
x + u◦

x , and again the right-hand side of (17) is � 1.
There remains to plug (17) in (16), and then use (14), to obtain:

m∑
i=1

uiI
[
νT

(
(xi , yi)

)
� θ

]

� εu,H ∗ + max

{
1,

(
1 + θ

1 − θ

)} ∑
(x,y∗

x )∈S∗
ρx

m∑
i=1

uiI [xi = x] exp
(−yiHT (xi )

)

� εu,H ∗ + max

{
1,

(
1 + θ

1 − θ

)} T∏
t=1

√
1 − μ2

t

∑
(x,y∗

x )∈S∗
ρx

m∑
i=1

wT +1,iI [xi = x].

The two last sums are an expectation of ρ(.) computed using distribution wT +1; since ρ(.) � 1, this expectation is � 1.
The statement of the theorem follows after remarking that

√
1 − a2 � exp(−a2/2),∀a ∈ [−1,1]. �

Fig. 2 gives a visual interpretation of Theorem 1, when εu,H ∗ = 0: provided each normalized margin is not too
small in absolute value, there is a fast convergence of the empirical margin distribution graph towards right classi-
fication with infinite confidence for all examples. When the empirical Bayes rule has εu,H ∗ > 0 this convergence is
established towards the step function εu,H ∗ + I [θ = 1](1 − εu,H ∗): all examples still receive infinite confidence in
their classification, even those receiving the wrong label.

3.2. AdaBoostR boosts labels and confidences

Theorem 1 generalizes a well-known convergence theorem for AdaBoost’s empirical risk [29] (θ = 0). This gener-
alization is important, as it says that virtually any margin error is subject to the same convergence rate towards zero,
and not simply the empirical risk. Thus, more than a single point, it gives also a complete curve f (θ) upperbounding
the (empirical) margin distribution graph, which plots the margin error (10) as a function of θ ∈ [−1,1] [28]. To prove
that AdaBoostR is a boosting algorithm, we need a WLA that a real-valued WL should satisfy. Its formulation for
real-valued hypotheses follows that for the discrete case [14,15,29]: basically, it amounts to say that we want ht to
perform significantly different from random, a case which can be represented by μt = 0. A natural choice is thus
fixing the WLA to be (∀t � 1):

(real)WLA|μt | � γ, for the same γ > 0 as in the discrete WLA.
Please cite this article as: R. Nock, F. Nielsen, A Real generalization of discrete AdaBoost, Artificial Intelligence (2006),
doi:10.1016/j.artint.2006.10.014



ARTICLE IN PRESS
JID:ARTINT AID:2230 /FLA [m3SC+; v 1.66; Prn:9/11/2006; 11:44] P.8 (1-17)

8 R. Nock, F. Nielsen / Artificial Intelligence ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52
U
N

C
O

R
R

E
C

TE
D

P
R

O
O

F

This, in addition, provides us with a generalization of the discrete WLA [14,27], since we have in this case μt =
1 − 2εwt ,ht . This brings that either εwt ,ht � (1/2) − γ /2, or εwt ,ht � (1/2) + γ /2. It has been previously remarked
that this second condition, although surprising at first glance since the empirical risk is worse than random, is in fact
equivalent to the first from the boosting standpoint, as it “reverses” the polarity of learning: when ht satisfies the
second constraint, −ht satisfies the first [8].

Now proving that AdaBoostR is a boosting algorithm amounts first to using Theorem 1 in the conventional
weak/strong learning frameworks, i.e. fix θ = 0 and εu,H ∗ = 0, to obtain under the WLA that after T iterations of
AdaBoostR, we have εu,HT

� exp(−T γ 2/2). Thus, if we run AdaBoostR for T = �((1/γ 2) lnm) iterations, we get
an HT consistent with S . Since T is polynomial in all relevant parameters, classical VC-type bounds on the deviation
of the true risk for linear separators [16,31] immediately bring the following theorem.

Theorem 2. ∀S ⊆ R, provided WLA holds, AdaBoostR is a boosting algorithm.

This theorem relies on the use of Theorem 1 with θ = 0, that is, it does not take into account the influence of the
margins’ magnitude. We can integrate it in a somewhat stronger boosting-type result, that says that AdaBoostR does
more than fitting well the classes under the WLA: it also brings large confidences into right classification. This
amounts to integrate one more parameter (θ ) in the strong learning model as described in (1). Suppose that some
−1 < θ ′ < 1 is also given by the user along with ε, δ, and replace the strong learning condition in (1) by this one:

Pr[νD,H,θ ′ � ε] � 1 − δ, (18)

and the time complexity of the algorithm has to be polynomial also in 1/(1 − θ ′). This means that, with high proba-
bility, we want to limit the probability that some example drawn according to D has a “small” local margin. From the
standpoint of the true margin distribution graph, when the event νD,H,θ ′ � ε is satisfied, the curve is located below the
step function ε + I [θ � θ ′](1 − ε). From Theorem 1, we just have to make T = �((1/γ 2) ln(m/(1 − θ ′))) steps to
have νu,HT ,θ ′ = 0. We also remark that the condition νT ((xi , yi)) > θ ′ is equivalent to stating yi(HT (xi ) − yi ln((1 +
θ ′)/(1−θ ′))) > 0, i.e. the (T +1)-dimensional linear separator HT (xi )−yi ln((1+θ ′)/(1−θ ′)) is consistent with S .
There finally remains to use the same arguments as for Theorem 1 to prove that the WLA is also enough to strong
learn in the model described by (18), thus proving a boosting-type result integrating both labels and confidences.

3.3. Discussion

Perhaps one of the most important difference with discrete AdaBoost and offsprings [5,7,8,29] lies in the fact that
they have been early motivated or built around the appealing intuition that reweighting favors the hard examples on
discrete AdaBoost, and more precisely that examples receiving the right class are reweighted lower. This property
is appealing, and has certainly participated to their spread and use. However, when scaling the binary classification
problem (S = {−1,+1}) to R, for this property to fully integrate the extended framework, it should rely entirely on
margins (classes + confidences) instead of just classes. This becomes true with AdaBoostR: lower reweighting occurs
only for examples on which the current weak classifier’s “performance” exceeds its average margin (when μt > 0):

yiht (xi )/h�
t � μt . (19)

Thus, there can be examples that receive the right class by ht , and yet that have their weights increased. When μt < 0,
the polarity of boosting (and reweighting) is reversed in the same way as when εwt ,ht > 1/2 for discrete AdaBoost.
Finally, these properties are true generalization of discrete AdaBoost’s, as all coincide again on the discrete case.

3.3.1. Margins
The normalized margin of weak hypothesis ht in (8) can also be written as μt = E(x,y)∼wt (νt ((x, y))), with

νt

(
(x, y)

) = y × ht (x)
�

∈ [−1,1] (20)
Please cite this article as: R. Nock, F. Nielsen, A Real generalization of discrete AdaBoost, Artificial Intelligence (2006),
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being the margin of ht on example (x, y). Except from its output domain, this “local” margin might not seem to bear
any other similarity with our corresponding definition for the “strong” hypothesis HT , (9). Moreover, (20) is evidently
much closer to a previous definition coined for real AdaBoosts in [8,28,29]: here, (9) is replaced by:

νT

(
(x, y)

) = y × HT (x)∑T
t=1 αt

∈ [−1,+1], (21)

with the assumption that αt � 0,∀1 � t � T . In fact, (20) and (21) exactly match when (i) all weak hypotheses have
output in {−1,1}, (ii) all weak hypotheses have empirical risk � 1/2 on wt , and (iii) there exists (xi , yi) ∈ S with
HT (x) = ∑T

t=1 αt , i.e. the maximal possible value of HT is realized over S . Thus, the best lifting of (20) to HT might
seem (21) at first glance.

However, the outside appearances are misleading. The reason why (9) turns out to be more convenient comes from
the models approximated by the AdaBoost family. It is indeed known since [8] that various offsprings of AdaBoost
(including discrete and real versions) can be viewed as carrying out a direct or approximate additive fitting of the
symmetric logistic transform:

HT (x) = ln
Pr(x,y)∼D[y = +1|x]
Pr(x,y)∼D[y = −1|x] , (22)

with the probabilities Pr(x,y)∼D[.|x] to be estimated while learning (this connection is made crisp in [18]).
AdaBoostR can also be viewed as an approximation algorithm of this family. Plugging (22) in (9) yields:

νT

(
(x, y)

) = y × δ∗
x ∈ [−1,+1],

δ∗
x = 2Pr(x,y)∼D[y = +1|x] − 1. (23)

This time, we obtain a local margin similar to (20). This margin has a fundamental property that (21) approximates
poorly with (22): it turns out to be the theoretical local margin of the true Bayes rule (as opposed to the empirical Bayes
rule, see Section 3), with real prediction (∈ [−1,1]) computed as δ∗

x = Pr(x,y)∼D[y = +1|x]− Pr(x,y)∼D[y = −1|x].
This real prediction, which leverages Bayes rule to real values, has the remarkable property to be the best possible

in the sense of Bregman divergences. More precisely, Theorem 1 in [1] yields that regardless of the (properly defined)
Bregman divergence B(. ‖ .) measuring the proximity between a true label y and a real prediction p, we shall always
have:

∀x ∈ X , δ∗
x = arg min

p∈R

E
(x,y)∼D̃x

(
B(y ‖ p)

)
.

Here, D̃x is distribution D with support restricted to examples (x, .), normalized with the total weight of these ex-
amples. By means of words, δ∗

x = Pr(x,y)∼D[y = +1|x] − Pr(x,y)∼D[y = −1|x] is the value that best summarizes on
average the different classes of observation x [1]. This quantity is also called gentle logistic approximation in [8], and
it is reported to be more stable than the full logistic model itself.

There are more reasons to prefer (9) over (21). The first reason is more technical. Theorem 1 shows that νu,HT ,θ

vanishes under the WLA regardless of the value of θ ∈ (−1,1) with margin definition (9). Upperbounds for νu,HT ,θ

with Eq. (21) are not as easy to read, as all would require to vanish that θ be smaller than fluctuating upperbounds
that can be � 1 [28,29]. It does not seem that it is the boosting algorithm which is responsible, as in our case, using
(21) would not yield a vanishing νu,HT ,θ when θ � maxt |μt |/2, a situation identical to previous analyses [7,28,29].
The second reason is an experimental consequence of the first. Definition (9) makes cumulative margin distributions
easier to read, since there is no fluctuating theoretical upperbound <1 for “boostable” margins.

Following (9), we can fully characterize the margin distribution graph of the true Bayes rule. Indeed, this is just the
sum of “local” margin distribution graphs, built for each possible observation x ∈ X . For some observation x, denote
its true Bayes class:

y∗
x = arg max

b∈{−1,+1}
Pr(x,y)∼D[y = b|x].

Fig. 3 presents an example of a local margin distribution graph. To better catch the picture, consider a domain with zero
Bayes error, which is noisified with η ∈ [0,1/2] class noise rate: each example gets its class flipped with probability η.
In this case, we would have |δ∗

x | = 1 − 2η, and the intermediate stair (for which z = Pr(x,y)∼D[(x,−y∗
x)] in Fig. 3),

would be located at z = η (see the experiments for examples).
Please cite this article as: R. Nock, F. Nielsen, A Real generalization of discrete AdaBoost, Artificial Intelligence (2006),
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Fig. 3. Local margin distribution graph for the true Bayes rule and for a single observation x ∈ X (bold curve). The dotted line with equation
z = Pr(x,y)∼D[x](θ + 1)/2, depicts the location inside which the negative stair of Bayes rule’s prediction is located as a function of δ∗

x (the circle).
The dotted line with equation z = Pr(x,y)∼D[x] does the same for the positive stair (the square; see text for details).

The reasons why margin distribution graphs, better than just errors, are good tools to evaluate the goodness-of-fit
of HT , come again from the models built. In Valiant’s seminal PAC model [30], we only have to use the sign of HT ,
eventually leaving its absolute value, if needed, to represent some sort of confidence in the prediction [29]. Thus, using
labels and counting errors is enough. The logistic framework [8] makes it possible to do more, by integrating sign and
confidence into an estimator of the class conditional probabilities:

P̂r[y = +1|x] = exp(HT (x))

1 + exp(HT (x))
, (24)

P̂r[y = −1|x] = 1

1 + exp(HT (x))
. (25)

Thus, when plotting both the margin distribution graph of HT on testing, and that of the true Bayes rule, the goodness-
of-fit should be as better as both curves come closer to each other, meaning not only that the labels tend to be the
same, but also that the local class conditional probabilities tend to match. Lifting the usual properties of classifiers in
the classical labels/errors framework, to the logistic framework, is not immediate. Consider for example overfitting.
Such a situation typically occurs when a classifier becomes “so” complicated that it starts to model better S at the
expense of the whole domain itself, meaning that its true risk increases while its empirical risk may still decrease. This
situation has an impact on class conditional probabilities as well, but it remains “punctual”, as for example it only
means a greater intersection between the (test) margin distribution graph and axis θ = 0. In fact, overfitting as defined
here only means differences with respect to the threshold 1/2 for the class conditional probabilities, but it scarcely
means anything for their estimation. For example, a variation of 0.01 of P̂r[y = +1|x] may be enough to flip the label
predicted for observation x (e.g. passing from 0.495 to 0.505), while a variation of 0.49 of P̂r[y = +1|x] may not be
enough to flip it (e.g. passing from 0.005 to 0.495). In the logistic framework, overfitting rather comes from differences
between the estimations and the true values of class conditional probabilities, or similarly from the differences between
the corresponding margin distribution graphs. Consider for example a situation in which, for many x ∈ X , we have
P̂rH [y = +1|x] = 0 for a first classifier H (in the PAC framework vocabulary, we predict class −1 with infinite
confidence), P̂rH ′ [y = +1|x] ∈ [0.40,0.45] for another classifier H ′, while Pr(x,y)∼D[y = +1|x] ∈ [0.49,0.50) for
the true Bayes rule. Clearly, H and H ′ achieve the same true risk over all corresponding examples. However, H

predicts the wrong label for nearly half of the examples with observation x, still with infinite confidence, while H ′
is more cautious as its wrong predictions have confidence approaching that of the true Bayes rule (approximately
zero). When it comes that such a situation (of H ) occurs and/or as it becomes more visible, we can say that there
starts to be overfitting. Visually, the corresponding margin distribution graph becomes “sticked” to axis θ = −1. It
is worthwhile remarking that the margin distribution graph of the true Bayes rule can never be sticked to this axis,
regardless of the domain, see Fig. 3. Thus, overfitting also means margin distribution graphs that cannot match Bayes
rule. The experimental section presents examples of such curves. More generally, when comparing two algorithms
(different from Bayes rule), the “best” of both is the one which misclassifies the examples with the smallest possible
Please cite this article as: R. Nock, F. Nielsen, A Real generalization of discrete AdaBoost, Artificial Intelligence (2006),
doi:10.1016/j.artint.2006.10.014
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confidences, i.e. the one with the margin distribution graph below the other for values of θ � 0. From this standpoint,
the classical true risk comparison in Valiant’s PAC framework is thus a particular case of the logistic framework.

To finish up with margins, let us comment on (8). When HT is a linear separator, it is particularly relevant to
perform boosting with domain-partitioning weak hypotheses [8,23], i.e. classifiers that fit to a local, bucket-wise
computation of the conditional probabilities in (22). The most popular examples are decision trees, but other possible
examples include decision lists and symmetric functions [23]. In such cases, the margin of a classifier as depicted in
(8) admits nice expressions related to Bregman divergences [17]. Suppose for short that domain X is partitioned by ht

into a finite number of subsets, whose general term is X�. Let w̃t,� be the two-dimensional distribution vector whose
entries, written w̃−

t,� and w̃+
t,�, respectively denote the normalized proportion of examples (with respect to wt ) from the

negative and positive classes in S ∩X�, thus satisfying w̃−
t,� + w̃+

t,� = 1. Let w̃t denote the distribution induced by the
whole partition, with w̃t,� = ∑

i:si∈X�
wt,i . There are essentially two ways to define real values for ht,�, the output of

ht on some x ∈ X�. The first is to use the logistic prediction, and define ht,� = (1/2) ln(w̃+
t,�/w̃

−
t,�) [8,29]. The second

is to use its gentler alternative, and define ht,� = w̃+
t,� − w̃−

t,� [8]. In both cases, it is straightforward to show that the
classifier’s margin simplifies to:

μt = 1

2h�
t

E�∼w̃t

(
B(w̃t,� ‖ 1 − w̃t,�)

)
,

where B(. ‖ .) is a Bregman divergence [17]: the Kullbach–Leibler divergence for the logistic prediction, and the
L2

2 divergence for its gentler alternative. Since a Bregman divergence quantifies a distortion that is non negative,
and zero iff its two arguments are equal, this helps to see the classifier’s margin, and the WLA, as the expectation
of local discrepancies between the positive and the negative class: the larger they are, the better is the classifier.
Obviously, if we had picked discrete values ht,� ∈ {−1,+1}, such as the local majority class, we would have obtained
μt = 1 − 2εwt ,ht .

3.3.2. Computations and numerical stability
A first difference with previous generalizations of discrete AdaBoosts that do not fix ad hoc values for αt [8,17,29]

is computational. Eq. (5) has no closed form solution in the general case, so they all need to approximate αt . The
problem is convex and single variable, so its approximation is simple, but it needs to be performed at each iteration,
which buys a significant additional computation time with respect to AdaBoostR, for which αt is exact. Approximating
has another drawback: if not good enough, the current iteration may lie outside the boosting regime [8,17,29].

The extensions of discrete AdaBoost [8,17,29] face technical and numerical difficulties to compute αt when ht or
−ht reaches consistency, that is, when εwt ,ht approaches its extremal values, 0 or 1. On the extreme values, there is
no finite solution to Eq. (5), and thus theoretically no weight update. In our case, the problem does not hold anymore,
as the multiplicative update of Eq. (6) is never zero nor infinite if we adopt the convention that 0/0 = 1. Indeed,
a numerator equals zero iff all numerators equal zero iff all denominators equal zero. Thus, zeroing any numerator
or denominator, which amounts to making either perfect or completely wrong classification for ht on S , brings no
weight change in wt+1.

A second, well known technical difficulty for some extensions of discrete AdaBoost [8,17,29], occurs when the
empirical risk approaches 0 or 1, regions where |αt | has extremely large regimes. In this case, the numerical approxi-
mations to exponentials in Eq. (5), with the approximations of αt , make the computation of the weights very instable.
Clearly, large multiplicative coefficients for the weight update are possible for AdaBoostR. However, instability is less
pronounced, since we have also split the computation of the leveraging coefficients and that of the weight update,
allowing the computation of all αt to be delayed till the end of boosting.

4. Experiments

Experiments were carried out on 25 domains, most of which come from the UCI repository [3]. Domains with
more than two classes (indicated 2C) were transformed in a two class problem by grouping all classes but the first into
one: sometimes, this brought domains with highly unbalanced classes, thereby complicating even further the learning
task. On each domain, we have run discrete AdaBoost [7], AdaBoostR and the real AdaBoost of [17,29]. WL is set
to a rule (monomial) learner, with fixed maximal rule size r (attribute number) [22,25]. When the output is restricted
to {−1,+1}, we pick for the output of ht (when triggered) the majority class according to wt . When the output is R
Please cite this article as: R. Nock, F. Nielsen, A Real generalization of discrete AdaBoost, Artificial Intelligence (2006),
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(unrestricted), we use the same method as for decision trees with real values at their leaves [29]. Let w̃b
t be the total

weight in wt of the examples that fire rule ht , and that belong to class b1, with b ∈ {+,−}. Then, for all the examples
that trigger the rule, the output of ht is a local approximation of the logistic transform (22), [29]:

ht = 1

2
log

w̃+
t

w̃−
t

.

The same computations are done for the set of examples that do not trigger the rule (majority class or logistic approx-
imation). ht is grown following a procedure similar to decision trees, the repetitive minimization of an index function,
which is Matsushita’s error in our case [4,20], see [22,29] for details. True risks are estimated using a 10-fold strati-
fied cross validation procedure on the whole data. Since each rule ht has two possible outputs, yht has four possible
values, and so the analytic solution for αt of discrete AdaBoost does not apply for real AdaBoost [17,29]. The true αt

is approximated from (5) using a simple dichotomous search until the relative error does exceed 10−6, using results
of [24] to make it faster. With this, we have empirically found that the execution time for real AdaBoost [8,17,29] is
still on average more than 100 times that of discrete AdaBoost and AdaBoostR.

4.1. General results

We first give some general comments on results that were obtained at early and reasonable stages of boosting,
namely after T = 10 and T = 50 steps of boosting, for a rule learner configured with r = 2. Fig. 4 summarizes the
results obtained. While AdaBoostR tends to perform the best, interesting patterns emerge from the simulated domains
from which we know everything about the concept to approximate. Easy domains such as Monks(1+2) [3] are those

Domain T = 10 T = 50

D U T D U T

Balance (2C) 8.73 8.73 9.05 4.44 3.81 4.92
Breast-Wisc 4.51 4.65 4.79 4.22 3.38 4.51
Bupa 34.57 34.57 32.85 30.81 27.71 28.57
Echocardio 31.43 26.43 30.71 30.00 25.71 27.86
Glass2 22.94 18.24 19.41 17.65 17.65 15.88
Hayes Roth (2C) 16.47 24.11 14.71 19.41 14.71 15.88
Heart 18.51 16.67 18.89 19.63 16.67 19.63
Heart-Cleve 23.87 21.29 19.68 17.42 19.35 20.97
Heart-Hungary 19.33 19.33 16.33 21.33 16.33 18.33
Hepatitis 16.47 15.29 17.05 14.71 15.29 18.23
Horse 17.10 16.31 18.16 20.00 16.31 33.68
Labor (2C) 18.33 6.67 11.67 8.33 5.00 8.33
Lung cancer (2C) 27.50 27.50 30.00 25.00 25.00 30.00
LEDeven 9.76 17.07 11.22 10.24 9.51 10.98
LEDeven+17 22.68 21.46 25.60 26.34 25.36 26.10
Monks1 25.18 25.18 16.00 13.39 17.50 1.50
Monks2 34.75 33.93 32.28 34.26 37.70 10.17
Monks3 2.85 3.57 2.14 1.43 1.79 1.79
Parity 45.93 45.19 47.78 46.30 47.78 46.30
Pima (2C) 24.42 24.55 25.32 24.94 24.03 25.71
Vehicle (2C) 26.00 27.17 26.35 25.41 25.29 25.88
Votes 4.78 5.00 5.45 3.86 5.00 5.68
Votes w/o 9.78 8.86 9.78 10.23 10.23 10.45
XD6 20.32 21.64 19.51 15.74 14.92 13.77
Yeast (2C) 28.93 28.73 26.80 26.93 27.33 26.67

#best 7 11 9 7 15 6
#second 9 6 5 9 4 5
#worst 9 8 11 9 6 14

Fig. 4. Estimated true risks on 25 domains, comparing discrete AdaBoost [7] (D), AdaBoostR (U) and the real AdaBoost of [8,17,29] (T). For
each domain, we put in emphasis the best algorithm(s) and the worst algorithm(s) out of the three. The last 3 rows count the number of times each
algorithm counts respectively among the best, second, and worst.
Please cite this article as: R. Nock, F. Nielsen, A Real generalization of discrete AdaBoost, Artificial Intelligence (2006),
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on which real AdaBoost performs the best and converges the fastest. Increasing further T makes that real AdaBoost
outstrips even more the two other algorithms. However, as the domain gets complicated, AdaBoostRbecomes the
algorithm that beats the other two when T increases. Consider the following domain ordering, from the easiest to the
hardest: Monks(1+2) (no noise, no irrelevant attributes), XD6 (10% class noise, one irrelevant attribute), LEDeven
(10% attribute noise), LEDeven+17 (LEDeven+17 irrelevant attributes) [3,22]. Real AdaBoost beats the other two
algorithms on XD6, but another experiment on larger classifiers (r = 3; T = 100) reveals that AdaBoostRbecomes
the winner and approaches Bayes risk with 11.15% error, while discrete and real AdaBoost respectively achieve
11.47% and 12.46% error (statistically worse in that latter case). Winning occurs even sooner on LEDeven (T = 50)
and LEDeven+17 (T = 10). One reason for this phenomenon might be the fact that the reweighting scheme of
AdaBoostRis actually gentler than the others, especially on noisy examples: discrete and real AdaBoost are subject
to very large weight update, due to the exponential update rule and the fact that higher reweighting can occur on the
sole basis of the binary classification result (good/bad class), even when the classifier has minute confidence on the
label it predicts. This cannot happen in our case if the classifier’s margin is negative; whenever it is positive, examples
that receive the right class can still be reweighted higher, thus counterbalancing higher reweighting for eventual noisy
examples. Gentler updating, such as by thresholding, has soon been proposed as a line of research to improve noise
handling [5]. In fact, it may well be also useful to tackle overfitting.

4.2. Noise handling and overfitting

In order to shed some more light on noise handling, we have drilled down into the results of domains LEDeven
and XD6 [3], by plugging in variable noise rates to see the way the margin errors degrade when the problems get
noisier, and harder. LEDeven is a seven bits problem that describe the ten digits of old pocket calculators. Examples
are picked uniformly at random and the ten possible classes and grouped in two: even/odd. Each description variable
gets flipped with η% chances (in the original domain, η = 10%). XD6 is an n = 10 problem that describes a noisy
disjunctive normal form formula. Name v1, v2, . . . , v10 ten Boolean variables. Observations are picked at random, and
then labeled positive iff (v1 ∧ v2 ∧ v3) ∨ (v4 ∧ v5 ∧ v6) ∨ (v7 ∧ v8 ∧ v9) is true. Thus, v10 is irrelevant in the strongest
sense [13]. Afterwards, with η% chances, the class gets flipped (in the original domain, η = 10%). LEDeven and XD6
cover a broad range of difficulties to study noise handling and overfitting: while LEDeven has variable attribute noise,
XD6 has variable class noise, an irrelevant attribute and more unbalanced classes.

We have computed margin distribution graphs on training and testing for both domains, and for small and large
values of parameters r and T (respectively 2..6 for r , and 20..1000 for T ). Each time, S is simulated with m = 300
examples. On test margin distribution graphs, we have computed the exact curve for Bayes rule in order to make
comparisons following Section 3.3.1. Among the numerous curves obtained, we have chosen to summarize the whole
results obtained, and report here only the most important curves, obtained for the largest rules (r = 6) and various
noise rates η ∈ {10%,20%,30%,40%}: see Figs. 5 and 6. Remark that the shape of Bayes curves are more complex
for LEDeven, as noise affects attributes instead of classes. In both domains, the training margins clearly display that
the real AdaBoost of [8,17,29] is the fastest to converge to perfect classification, followed by discrete AdaBoost [7],
and then by AdaBoostR(“us”). The phenomenon is naturally more prominent for XD6, as the domain is easier to
handle than LEDeven, and more prominent as r increases, as it allows a faster fitting of data. The empirical margin
distribution graphs for real AdaBoost exhibit two-steps plateaus when the rules become complex (r = 6, domain
XD6), one plateau near 0% for θ smaller than 0.1 (approximately), and one plateau which increases with η for larger
values of θ . This plateau shape is in good accordance with Theorem 1, which proves that after a sufficiently large
number of boosting rounds under the WLA, the empirical margin distribution graph is bounded above by a plateau
located at the empirical Bayes risk.

The test margin distribution graphs display a completely different pattern. On both domains and a majority of
curves (r, η,T , θ � 0), AdaBoostR beats both other algorithms. The phenomenon becomes even more visible as r ,
η or T increase. A glimpse at the curves for r = 6, η = 40% for both domains (Figs. 5 and 6) is enough to see this
phenomenon, as well as the fact that the test curves of real AdaBoost also tend to exhibit a multi plateaus shape that
becomes more visible as η increases. This shape observed on testing for real AdaBoost on these cases (which is also
observable—though less visible—for discrete AdaBoost, and almost not observed for AdaBoostR) indicates that the
confidence in classification becomes virtually “infinite” for almost all examples, i.e. for those that receive the right
class, and also for many receiving the wrong class. As discussed in Section 3.3.1, this, we think, indicates a tendency
Please cite this article as: R. Nock, F. Nielsen, A Real generalization of discrete AdaBoost, Artificial Intelligence (2006),
doi:10.1016/j.artint.2006.10.014



ARTICLE IN PRESS
JID:ARTINT AID:2230 /FLA [m3SC+; v 1.66; Prn:9/11/2006; 11:44] P.14 (1-17)

14 R. Nock, F. Nielsen / Artificial Intelligence ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52
U
N

C
O

R
R

E
C

TE
D

P
R

O
O

F

Fig. 5. Test margin distribution graphs on domain LEDeven, with different attribute noise rates (r = 6, see text for details).

to overfit while trying to model these noisy data. This tendency is clearly less pronounced for AdaBoostR, and if we
look at the margin distribution graphs for θ � 0, the fact that AdaBoostR’s curve are almost systematically below both
others tends to indicate that AdaBoostR performs indeed sensibly better than both discrete and real AdaBoosts (see
Section 3.3.1). It is worthwhile remarking that Theorem 1 provides a rough primer for the appearance of these plateau
Please cite this article as: R. Nock, F. Nielsen, A Real generalization of discrete AdaBoost, Artificial Intelligence (2006),
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Fig. 6. Test margin distribution graphs on domain XD6, with different class noise rates (r = 6, see text for details).

shapes even on testing, as when m increases, εu,H ∗ converges towards εD,H ∗ , so that Theorem 1, combined with the
results of [28], brings that up to statistical penalties, there should still be a Bayes plateau that upperbounds the test
margin errors. However, the results of Theorem 1 apply to all algorithms: discrete, real AdaBoosts, and AdaBoostR.
The fact that the exponential rates of convergence known for the empirical risk are the same for all algorithms indicates
Please cite this article as: R. Nock, F. Nielsen, A Real generalization of discrete AdaBoost, Artificial Intelligence (2006),
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that real AdaBoost might converge much faster in practice. However, this might not be systematic: worst-case results
for the top-down induction of decision trees [23] indicate that this exponential rate of convergence might well be the
best possible. Tests with AdaBoostR for very large values of T (typically, tens or hundreds of thousands) tend to make
appear the plateau shapes, but this is obtained for an iteration regime outside most that would be used on common
datasets, even noisy or hard. It seems thus reasonable to think that the gentler updates of AdaBoostR are indeed the
keys to beating the other AdaBoosts on such domains.

5. Conclusion

In this paper, we have proposed a new generalization of discrete AdaBoost to handle weak hypotheses with real
values. Our algorithm, AdaBoostR, departs from usual generalizations as it does not rely explicitly on the exact
minimization of the exponential loss, a loss that upperbounds the empirical risk. While we formally prove that our
generalization is a boosting algorithm in the original sense, it provides interesting computational and numerical fea-
tures with respect to former real extensions of discrete AdaBoost, as well as a generalization of well-known facts
about discrete boosting. Theoretical and experimental results give insights into the way all algorithms compare with
respect to each others, and give some clues that might be helpful to obtain boosting algorithms with a better handling
of hard or noisy domains.
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