Université Antilles-Guyane — UFR Sciences Exactes et Naturelles Département Scientifique Interfacultaire (campus de Schœlcher)

MIAS-1 / Maths 2 : Memento pratique en algèbre linéaire (suite): CALCUL MATRICIEL ET APPLICATIONS

Généralités concernant le calcul matriciel

On note

- $-\mathcal{M}_{n,p}(\mathbb{K})$ les matrices à n lignes et p colonnes, à éléments $A_{ij} \in \mathbb{K}$,
- $-\mathcal{M}_n(\mathbb{K}) = \mathcal{M}_{n,n}(\mathbb{K})$ les matrices carrées d'ordre n, $(i=1,\dots,n;\ j=1,\dots,p)$
- diag $(\lambda_1,...,\lambda_n)$ la matrice diagonale telle que $A_{ii}=\lambda_i$ et $A_{ij}=0$ $(i\neq j)$,
- $-I_n = \operatorname{diag}(1,...,1)$ la matrice identité (ou « unité ») d'ordre n.

Une matrice A à p colonnes peut multiplier (à gauche) une matrice B ssi cette dernière a p lignes; le résultat est la matrice $C = A \cdot B$ constituée des

produits scalaires des lignes de A et des colonnes de B: $C_{ij} = \sum_{k=1}^{p} A_{ik} B_{kj}$.

Une matrice est **inversible** ssi, il existe une matrice, notée A^{-1} , telle que $A \cdot A^{-1} = A^{-1} \cdot A = I$; c'est le cas ssi $A \in \mathcal{M}_n(\mathbb{K})$ et $A^{-1} \cdot A = I_n$ ou $A \cdot A^{-1} = I_n$. (Exercice : donner deux matrices A, B telles que $A \cdot B = I$ et $B \cdot A \neq I$.)

Opérations élémentaires, réduite de Gauss-Jordan, calcul d'inverse

Une **opération élémentaire** sur les lignes [resp. colonnes] d'une matrice A correspond à la multiplication à gauche [resp. droite] par une matrice inversible P.

La **méthode du pivot** (opérations élémentaires sur les lignes de A) permet d'obtenir une matrice échelonnée, appelée réduite de Gauss de A, et en particulier la **réduite de Gauss-Jordan**² de A (unique), telle que le premier élément non nul de chaque ligne est égal à 1 et le seul élément non nul de sa colonne.

Si la réduite de Gauss-Jordan d'une matrice augmentée $(A \, \dot{!} \, B)$ (à n lignes et n+p colonnes) est de la forme $(I_n \, \dot{!} \, X)$, alors $X = A^{-1} \cdot B$; en particulier pour $B = I_n$ on obtient $X = A^{-1}$: c'est la **méthode pratique pour le calcul de l'inverse d'une matrice** (voir T.D. série 5, exo 9).

¹avec $P = P_{ij}(\lambda) = I + \lambda E_{ij}$ pour l'ajout de λ fois la j^e à la i^e ligne, où $(E_{ij})_{i,j}$ est la base canonique de $\mathcal{M}_{n,p}(\mathbb{K})$ (ici n=p), et alors $P^{-1} = P_{ij}(-\lambda)$, sauf si i=j, auquel cas P est diagonale, multipliant la i^e ligne par $1+\lambda$ (donc $\lambda \neq -1$), et $P^{-1} = P_{ii}(\frac{1}{\lambda+1}-1)$.
²Carl Friedrich Gauß (1777–1855), M. E. Camille Jordan (1838–1922).

Rang d'une matrice

Le rang d'une matrice $A \in \mathcal{M}_{n,p}(\mathbb{K})$, noté rg A, est égal :

- au rang de l'application $f \in L(\mathcal{M}_{p,1}(\mathbb{K}), \mathcal{M}_{n,1}(\mathbb{K})) : X \mapsto f(X) = A \cdot X$,
- au rang du système des vecteurs colonnes de A,
- au rang de toute famille $\mathcal{F} = (v_1, ..., v_p)$ dont A est la matrice dans une certaine base (voir ci-dessous) : $\operatorname{rg}(\operatorname{Mat}_{\mathcal{B}} \mathcal{F}) = \operatorname{rg} \mathcal{F} = \dim \operatorname{vect} \mathcal{F}$,
- au rang de toute matrice obtenue de \hat{A} par opérations sur les **colonnes** (calcul pratique d'une base de vect $\{v_1, ..., v_n\}$ et im f),
- au rang du système des vecteurs **lignes** de A,
- au rang de la matrice transposée de A, notée ${}^{t}A$: $\operatorname{rg}(A) = \operatorname{rg}({}^{t}A)$,
- au rang de toute matrice obtenue par opérations sur les **lignes** de A (calcul pratique du noyau),
- au rang de toute matrice $A' = Q \cdot A \cdot P$ avec P, Q inversibles,
- au rang de toute application linéaire ayant A comme matrice par rapport à certaines bases (voir plus loin) : $\operatorname{rg}(\operatorname{Mat}_{\mathcal{BC}} f) = \operatorname{rg} f = \dim \operatorname{im} f$.

Résolution d'un systèmes d'équations linéaires

Un système de n équations linéaires à p inconnues et coefficients dans \mathbb{K} peut s'écrire sous la forme $A \cdot X = B$, avec $A \in \mathcal{M}_{n,p}(\mathbb{K})$. Pour le résoudre, il suffit d'obtenir la réduite de Gauss-Jordan de la matrice étendue $(A \, \dot{\,} \, B) \in \mathcal{M}_{n,p+1}$, soit $(A' \, \dot{\,} \, B')$. Si la dernière ligne non nulle est de la forme $(0 \cdots 0 \, \dot{\,} \, 1)$, le système est **incompatible**, c-à-d. il n'admet aucune solution.

Sinon, l'équation $A' \cdot X = B'$ donne immédiatement les $r = \operatorname{rg} A = \operatorname{rg} A'$ inconnues principales $\{x_j; j \in J\}$ correspondant aux éléments de pivot, premiers éléments non nuls des lignes de A', en fonction du membre de droite B' et des (p-r) inconnues non principales $\{x_k; k \in K\}$, que l'on fait passer dans le membre de droite, et qui joueront le rôle de paramètres libres, non déterminés par le système.

En complétant le système par des équations $x_k = x_k$ pour chaque $k \in K$, on a les solutions sous la forme

$$X = X_0 + \sum_{k \in K} x_k V_k$$
, avec les $x_k \in \mathbb{K}$ arbitraires,

où X_0 et les V_k sont obtenus de B' et des $k^{\text{ièmes}}$ colonnes de -A', en insérant des lignes nulles pour chaque $k \in K$, sauf un 1 en k^e position de V_k (correspondant à l'équation $x_k = x_k$).

Matrice d'une famille de vecteurs

La matrice d'une famille $\mathcal{F} = (v_1, ..., v_p)$ de p vecteurs d'un \mathbb{K} -e.v. par rapport à une base $\mathcal{B} = (b_1, ..., b_n)$ est par définition la matrice

$$A = \operatorname{Mat}_{\mathcal{B}}(\mathcal{F}) = (a_{ij}) \in \mathcal{M}_{n,p}(\mathbb{K}) \text{ telle que } \forall j \in \{1, ..., p\} : v_j = \sum_{i=1}^n a_{ij}b_i.$$

Autrement dit, la j^e colonne de A contient les coordonnées de v_j dans la base \mathcal{B} . On peut donc la déterminer en exprimant chaque vecteur de \mathcal{F} comme combinaison linéaire des vecteurs de \mathcal{B} .

Si \mathcal{B} est échelonnée, c'est facile (pour v_j , on a d'abord $a_{1j} = (v_j)_1/(b_1)_1$ (rapport des 1^{es} composantes), puis on trouve a_{2j} en divisant la 2^e composante de $v_j - a_{1j}b_1$, par celle de b_2 , et ainsi de suite, en soustrayant après chaque étape le vecteur $a_{ij}b_i$ du « reste » à décomposer.)

Sinon, il faut en principe résoudre le système linéaire qui donne les coefficients a_{ij} , pour chaque v_j . Si on note $P = \operatorname{Mat}_{\mathcal{E}} \mathcal{B}$ la **matrice de passage** de \mathcal{E} (base canonique ou celle dans laquelle on connaît les b_i et les v_j) à la base \mathcal{B} , ce système s'écrit $P \cdot A_j = F_j$, l'indice indiquant la j^e colonne des matrices $F = \operatorname{Mat}_{\mathcal{E}} \mathcal{F}$ (soit : $F_j = \operatorname{Mat}_{\mathcal{E}}(v_j)$) et A (en effet, $A_j = \operatorname{Mat}_{\mathcal{B}}(v_j)$).

En juxtaposant ces p matrices colonnes (membres de gauche d'une part, et membre de gauche d'autre part), ces p équations sont équivalentes à l'équation matricielle $P \cdot A = F$, le calcul du membre de gauche pouvant se faire colonne par colonne.

La matrice P est forcément inversible (pourquoi?), c'est donc un système de Cramer pour chaque colonne, dont la solution est $A_i = P^{-1} \cdot F_i$, soit :

$$A = P^{-1} \cdot F$$
, ou encore : $\operatorname{Mat}_{\mathcal{B}}(\mathcal{F}) = (\operatorname{Mat}_{\mathcal{E}}(\mathcal{B}))^{-1} \cdot \operatorname{Mat}_{\mathcal{E}}(\mathcal{F})$
= $\operatorname{Mat}_{\mathcal{B}}(\mathcal{E}) \cdot \operatorname{Mat}_{\mathcal{E}}(\mathcal{F})$.

C'est sous cette dernière forme que la formule est le plus facilement mémorisable; on retrouve cet « effet téléscopique » (base en indice égale à la base « en haut » immédiatement précédente) dans nombreuses formules similaires, voir les « applications » de la page suivante.

N.B. : au lieu de calculer l'inverse de P et de multiplier ensuite par F, on peut calculer la réduite de Gauss-Jordan de $(P \,\dot{\cdot}\, F)$, qui est en effet égale à $(I \,\dot{\cdot}\, A)$ avec $A = P^{-1} \,\cdot\, F$: c'est en effet la résolution simultanée des p systèmes linéaires $P \cdot X = F_j$ pour $X = A_j$, j = 1, ..., p.

Matrice d'une application linéaire

La matrice d'une application $f \in L(E, F)$ par rapport aux bases $\mathcal{B} = (b_1, ..., b_p)$ et $\mathcal{C} = (c_1, ..., c_n)$ de E et F, n'est autre que la matrice de $f(\mathcal{B})$, famille image de la base « de départ », dans la base \mathcal{C} de l'espace d'arrivée,

$$\operatorname{Mat}_{\mathcal{B},\mathcal{C}} f = \operatorname{Mat}_{\mathcal{C}} f(\mathcal{B}) \ \ (=: \operatorname{Mat}_{\mathcal{B}} f \ \ \operatorname{pour} \ \ \mathcal{C} = \mathcal{B}, \ F = E, \ f \in L(E)) \ ,$$

ce qui est équivalent, avec
$$(a_{ij}) = \operatorname{Mat}_{\mathcal{B},\mathcal{C}}(f)$$
, à $f(b_j) = \sum_{i=1}^n a_{ij} c_i$.

On calcule donc $f(\mathcal{B})$ (généralement $f(b_i)$ pour chaque i), qu'il faut exprimer dans la base \mathcal{C} comme détaillé précédemment.

Si \mathcal{B} , \mathcal{C} sont les bases canoniques, il est généralement immédiat d'écrire la matrice de f à partir de la définition de f: en particulier, pour $f \in L(\mathbb{K}^p, \mathbb{K}^n)$ définie par $f(x, y, z, ...) = (a_{11}x + a_{12}y + \cdots, a_{21}x + a_{22}y + \cdots, ...)$, on range les coefficients de x dans la 1^e colonne, ceux de y dans la 2^e colonne, etc. (On peut aussi écrire les coefficients de x, y, ... de la 1^e composante dans la 1^e ligne, puis ceux de la 2^e composante dans la 2^e ligne, etc.)

[Exercice : sous quelle condition a-t-on $\operatorname{Mat}_{\mathcal{B},\mathcal{C}} \Psi_{\mathcal{F}} = \operatorname{Mat}_{\mathbb{C}} \mathcal{F}$, où $\Psi_{\mathcal{F}}$ est l'application linéaire attachée à \mathcal{F} ?],

Les **applications** de la notion de matrice d'une application sont le calcul de...

- rg $f = \dim \operatorname{im} f = \operatorname{rg}(\operatorname{Mat}_{\mathcal{B},\mathcal{C}} f)$ (opérations sur lignes **et** colonnes possibles!)
- $-\operatorname{im} f$: échelonner les **colonnes** de Mat f pour obtenir une base ;
- -ker f : calculer la réduite de Gauß-Jordan de Mat f, complétée par des lignes avec -1 sur la diagonale, dont les colonnes donnent le noyau ;
- l'image d'un vecteur : $\operatorname{Mat}_{\mathcal{C}} f(x) = \operatorname{Mat}_{\mathcal{B},\mathcal{C}} f \cdot \operatorname{Mat}_{\mathcal{B}}(x) = \dots$ (écrire la version « téléscopique » de cette formule en utilisant $f(\mathcal{B})$)
- l'image d'une famille de vecteurs, $\operatorname{Mat}_{\mathcal{C}} f(\mathcal{F}) = \operatorname{Mat}_{\mathcal{B},\mathcal{C}} f \cdot \operatorname{Mat}_{\mathcal{B}} \mathcal{F} = \dots$
- la matrice d'une application composée, $\mathrm{Mat}_{\mathcal{B},\mathcal{D}}\,g\circ f=\mathrm{Mat}_{\mathcal{C},\mathcal{D}}\,g\cdot\mathrm{Mat}_{\mathcal{B},\mathcal{C}}\,f=\dots$

Si \mathcal{B} , \mathcal{C} ne sont pas les bases canoniques, on fait généralement un **changement de base** pour obtenir $\operatorname{Mat}_{\mathcal{B},\mathcal{C}}(f)$ à partir de $\operatorname{Mat}_{\mathcal{E},\mathcal{F}}(f)$, \mathcal{E} , \mathcal{F} étant les bases (par exemple canoniques) dans lesquelles on connaît $\operatorname{Mat}(f)$. En utilisant la définition de $\operatorname{Mat}(f)$ et les formules pour l'image d'une famille et la matrice d'une famille dans une nouvelle base, on a immédiatement :

$$\begin{split} \operatorname{Mat}_{\mathcal{B},\mathcal{C}}(f) &= \operatorname{Mat}_{\mathcal{C}}(f(\mathcal{B})) = \operatorname{Mat}_{\mathcal{C}}(\mathcal{F}) \cdot \operatorname{Mat}_{\mathcal{F}}(f(\mathcal{E})) \cdot \operatorname{Mat}_{\mathcal{E}} \mathcal{B} \\ &= (\operatorname{Mat}_{\mathcal{F}} \mathcal{C})^{-1} \cdot \operatorname{Mat}_{\mathcal{E},\mathcal{F}}(f) \cdot \operatorname{Mat}_{\mathcal{E}} \mathcal{B} \end{split}$$

et pour
$$f \in L(E)$$
 : $\operatorname{Mat}_{\mathcal{B}}(f) = P^{-1} \cdot \operatorname{Mat}_{\mathcal{E}}(f) \cdot P$, avec $P = \operatorname{Mat}_{\mathcal{E}} \mathcal{B}$.