Examen de Mathématiques 2 — mai 2004

Durée: 3 heures — Documents, calculatrices et téléphones interdits.

Première partie : Analyse

Exercice 1. [6 pts] On étudie la fonction numérique f définie par

$$f(x) = \frac{\pi \ln x}{\sin \pi x} \ . \tag{1}$$

(a) [1.5 pts] Rappeler une formule donnant le $DL_2(1)$ (développement limité à l'ordre 2 en $x_0 = 1$) d'une fonction en termes de ses dérivées en x_0 , et une condition sous laquelle cette formule est valable.

Peut-on l'appliquer à la fonction f définie dans l'équation (1) ci-dessus?

- (b) [2.5 pts] Donner le $DL_3(1)$ de $x \mapsto \sin(\pi x)$ et de $x \mapsto \ln x$. En utilisant ces résultats, calculer le $DL_2(1)$ de f.
- (c) [1 pt] En déduire que f admet un prolongement par continuité, \tilde{f} , en x=1, dérivable en x=1.
- (d) [1 pt] Donner l'équation de la tangente à la courbe $\mathcal{C}_{\tilde{f}}$ de \tilde{f} en $(1, \tilde{f}(1))$, et déduire du (b) sa position par rapport à $\mathcal{C}_{\tilde{f}}$.

Exercice 2. [3.5 pts] Résoudre l'équation différentielle

$$y'' - 2y' + y = x e^x.$$

Donner la solution y vérifiant y(0) = y'(0) = 1.

Deuxième partie : Algèbre linéaire

Exercice 3. [7 + 1 pts] On considère l'endomorphisme $f \in L(\mathbb{R}^3)$ défini par

$$f(x, y, z) = (x - y, y - z, z - x)$$
 pour tout $(x, y, z) \in \mathbb{R}^3$,

et la famille $\mathcal{B} = ((1,0,0), (1,1,0), (1,1,1)).$

- (a) [0.5 pts] Ecrire les matrices $F = \operatorname{Mat}_{\mathcal{E}}(f)$ et $P = \operatorname{Mat}_{\mathcal{E}}(\mathcal{B})$, par rapport à la base canonique $\mathcal{E} = (e_1, e_2, e_3)$ de \mathbb{R}^3 .
- (b) [3.5 pts] Calculer le produit matriciel $F \cdot P$. En déduire l'image de la famille \mathcal{B} , rang f, dim ker f et des bases de im f et ker f.
- (c) [1.5 pt] Calculer la matrice F' de f par rapport à la base \mathcal{B} .
- (d) [1.5 + 1 pt bonus] Reprendre la question (b) avec P remplacée par la matrice Q de la famille $\mathcal{B}' = ((2,1,0),(1,1,1),(0,1,2))$.

Exercice 4. [3.5 pts] Résoudre le système

$$\begin{cases} x + 2y - 2z & = 1 \\ -2x - 3y + 6z - t & = 2 \\ x + y - 4z & = m \\ -y - 2z - 4t & = 1 \end{cases}$$

en fonction de la valeur de $m \in \mathbb{R}$.