Université Antilles-Guyane UFR Sciences Exactes et Naturelles Dépt Scientifique Interfacultaire DEUG MIAS 2^e année Algèbre 3 1^{er} semestre 2005-2006

T.D. série 4: ensembles, relations, lois de composition

Ensembles

Exercice 1. (a) En fonction de $x, y \in \mathbb{R}$, donner le cardinal de l'ensemble $\{x, y\}$.

(b) L'ensemble vide \emptyset est défini par : $\forall x:x\notin\emptyset$. En déduire :

(i) $\emptyset \subset E$ pour tout E; (ii) $A \subset \emptyset \Rightarrow A = \emptyset$; (iii) $\mathcal{P}(\emptyset) = \{\emptyset\}$.

(c) Pour les parties A = [-1, 2] et B = [1, 3] de \mathbb{R} , déterminer :

(i) $B \setminus A$ et (ii) $B - A = \{b - a; a \in A, b \in B\}.$

Exercice 2. Faire un schéma avec deux ensembles non disjoints pour illustrer les lois de de Morgan, et la différence symétrique $A\Delta B = (A \cup B) \setminus (A \cap B)$.

RELATIONS

Exercice 3. Pour deux relations $\mathcal{R}: E \to F$, $\mathcal{S}: F \to G$, on définit la relation composée $\mathcal{S} \circ \mathcal{R}: E \to G$ par $x (\mathcal{S} \circ \mathcal{R}) z \iff \exists y \in F: x \mathcal{R} y \land y \mathcal{S} z$.

- (a) Montrer que la composition est associative, c-à-d. : $(\mathcal{T} \circ \mathcal{S}) \circ \mathcal{R} = \mathcal{T} \circ (\mathcal{S} \circ \mathcal{R}), \text{ pour toute relation } \mathcal{T} \subset G \times H.$
- (b) Une relation \mathcal{R} est une fonction ssi $\forall x, y, y' : x \mathcal{R} y \land x \mathcal{R} y' \Rightarrow y = y'$. Montrer que la composée de deux fonctions est une fonction.
- (c) Montrer que $S \circ R$ est injective si R et S le sont. L'injectivité de R est-elle nécessaire? et celle de S?
- (d) Montrer que $S \circ R$ est surjective si R et S le sont. La surjectivité de S est-elle suffisante? nécessaire? et celle de R?
- (e) Sous quelle condition est-ce que la réciproque \mathcal{R}^{-1} d'une relation \mathcal{R} est-elle une fonction? Sous quelle condition est-elle surjective?

Relations d'ordre

Exercice 4. Soient (E, \mathcal{R}) et (F, \mathcal{S}) deux ensembles ordonnés. On appelle ordre lexicographique sur $E \times F$ la relation binaire définie sur $E \times F$ par

$$(x,y) \mathcal{T}(x',y') \iff ((x \mathcal{R} x' \land x \neq x') \lor (x = x' \land y \mathcal{S} y'))$$
.

Montrer que c'est une relation d'ordre. Généraliser à un ordre sur E^n , $n \in \mathbb{N}^*$.

RELATIONS D'ÉQUIVALENCE

- **Exercice 5.** (a) Montrer que la relation : $x \mathcal{R} y \iff x y$ est divisible par 5, est une relation d'équivalence sur \mathbb{Z} . Décrire l'ensemble quotient \mathbb{Z}/\mathcal{R} .
 - (b) Montrer que si $x \mathcal{R} x'$ et $y \mathcal{R} y'$, alors $(x+y) \mathcal{R}(x'+y')$ et $(xy) \mathcal{R}(x'y')$.

Exercice 6. Soient \mathcal{R} et \mathcal{S} des relations d'équivalence sur des ensembles E et F. Sur $E \times F$, on définit une relation binaire \mathcal{T} par :

$$(x,y) \mathcal{T}(x',y') \iff x \mathcal{R} x' \wedge y \mathcal{S} y'$$
.

- (a) Montrer que \mathcal{T} est une relation d'équivalence.
- (b) Exhiber une bijection entre $(E \times F)/\mathcal{T}$ et $(E/\mathcal{R}) \times (F/\mathcal{S})$.

Exercice 7. Soient E, F deux ensembles, $f: E \to F$ une application, et S une relation binaire sur F. Montrer que la relation binaire R définie sur E par

$$\forall x, y \in E: \ x \mathcal{R} y \iff f(x) \mathcal{S} f(y) \tag{*}$$

hérite des propriétés (réflexivité, transitivité, symétrie,...) de la relation S.

- **Exercice 8.** Soient \mathcal{R} , \mathcal{S} des relations d'équivalence sur des ensembles E et F respectivement. Une application $f: E \to F$ est dite **compatible** avec les relations \mathcal{R} et \mathcal{S} si, et seulement si, elle vérifie $\forall x, y \in E: x \mathcal{R} y \Rightarrow f(x) \mathcal{S} f(y)$.
 - (a) Soit f compatible avec \mathcal{R} et \mathcal{S} . Montrer qu'il existe une unique application $g: E/\mathcal{R} \to F/\mathcal{S}$ telle que le diagramme suivant soit commutatif :

$$\begin{array}{ccc}
E & \xrightarrow{f} & F \\
\pi \downarrow & & \downarrow & \pi', \\
E/\mathcal{R} & \xrightarrow{g} & F/\mathcal{S}
\end{array}$$

c'est-à-dire telle que $\pi' \circ f = g \circ \pi$ (avec $\pi : x \mapsto c\ell(x)$).

(b) Réciproquement, supposons qu'il existe $g: E/\mathcal{R} \to F/\mathcal{S}$, telle que $\pi' \circ f = g \circ \pi$. Montrer que f est compatible avec \mathcal{R} et \mathcal{S} .

Lois de composition

- **Exercice 9.** Etudier les suivantes lois de composition internes sur \mathbb{R} (associativité, commutativité, existence d'un élément neutre, éléments inversibles) :
 - (a) $a \Box b = \sqrt{a^2 + b^2}$,
 - (b) a * b = a + b ab; calculer $a^n = a * \cdots * a$ pour tout $n \in \mathbb{N}^*$.
 - (c) $a\nabla b = \frac{a+b+|a-b|}{2}$.
- **Exercice 10.** Sur les parties $\mathcal{P}(E)$ d'un ensemble E, l'union, l'intersection et la différence symétrique sont des l.c.i. Étudier les propriétés de ces lois.
- **Exercice 11.** Etudier la loi définie sur $E = \mathbb{Q}^2$ par : $(a,b)_{\mathsf{T}}(a',b') = (aa',ba'+b')$.
- **Exercice 12.** On considère l'ensemble $G = \mathbb{R}^* \times \mathbb{R}$, muni de la loi (x, y) & (x', y') = (x x', y x' + f(x) y'), Quelles conditions doit vérifier l'application $f : \mathbb{R}^* \to \mathbb{R}$ pour que & soit commutative? associative? admette un élément neutre? Quels sont dans ce dernier cas les éléments inversibles?
- **Exercice 13.** Trouver une condition nécessaire et suffisante sur $(a, b, c) \in \mathbb{R}^3$ pour que \mathbb{R} muni de la loi x * y = a(x + y) + b x y + c soit un groupe.

Morphismes

- **Exercice 14.** Soit f un morphisme d'un magma (G, \cdot) dans un magma (H, *). Montrer que si (G, \cdot) est un groupe abélien, alors (f(G), *) l'est aussi. (On parle de « transport de structure » par un morphisme surjectif.)

 Attention: A-t-on toujours $f(e_G) = e_H$? (Considérer $o : \mathbb{R}^* \to \mathbb{R}, x \mapsto 0$.)
- Exercice 15. Montrer que l'application réciproque d'un isomorphisme (c'est-àdire d'un morphisme bijectif) en est un aussi.