Université des Antilles-Guyane — UFR Sciences Exactes et Naturelles

Département Scientifique Interfacultaire * $DEUG\ MIAS$ * $ann\'ee\ 2005-2006$

Mathématiques 1 — Travaux dirigés — Série 4 : suites.

Exercice 1. Etudier la monotonie des suites $u \in \mathbb{R}^{\mathbb{N}^*}$ définies par :

(a)
$$\forall n \in \mathbb{N}^*, \ u_n = n^n - n!$$

(a)
$$\forall n \in \mathbb{N}^*, \ u_n = n^n - n!$$
 (b) $\forall n \in \mathbb{N}^*, \ u_n = n^2 + e^n$.

(c)
$$\forall n \in \mathbb{N}^*, \ u_n = (n+1)(n+2)\cdots(n+n) = \prod_{k=1}^n (n+k)$$

Exercice 2. Montrer que les suites définies ci-dessous sont bornées :

(a)
$$\forall n \in \mathbb{N}^*, \ u_n = \frac{n + \sin n}{2n + 5};$$

(a)
$$\forall n \in \mathbb{N}^*, \ u_n = \frac{n + \sin n}{2n + 5};$$
 (b) $\forall n \in \mathbb{N}^*, \ u_n = \frac{3n + \sin n}{5n + \cos(2n)}$.

Exercice 3. Montrer que toute suite convergente est bornée.

Exercice 4. Soit (u_n) une suite réelle, $\alpha \in \mathbb{R}$ et $m \in \mathbb{N}$ tels que :

$$\forall n \in \mathbb{N}, \ (n \ge m) \Rightarrow (u_n > \alpha) \ .$$

Montrer que si (u_n) est convergente de limite ℓ , alors $\ell \geq \alpha$.

Exercice 5. Etudier la nature (convergence, divergence) des suites de terme général

$$u_n = \frac{n^2 - 1}{n + 2}$$
, $v_n = \frac{-n^2}{n + 1}$, $w_n = u_n + v_n$, $x_n = (-1)^n \frac{\cos n}{n}$.

Exercice 6. Pour une suite donnée (u_n) , on définit la suite (v_n) par $v_n = \frac{u_1 + u_2 + \cdots + u_n}{n}$

- (a) Montrer que si (u_n) est croissante, alors la suite (v_n) est croissante.
- (b) Montrer que si (u_n) est convergente de limite ℓ , alors la suite (v_n) est convergente de limite ℓ .

Exercice 7. Pour tout entier $n \ge 1$, on pose $u_n = \sum_{n=1}^{\infty} \frac{1}{k^3}$.

- (a) Montrer (u_n) est croissante.
- (b) Montrer, par récurrence, que $\forall n \in \mathbb{N}^*, u_n \leq \frac{3}{2} \frac{1}{2n^2}$.
- (c) En déduire, de ce qui précède, que (u_n) est convergente.

Exercice 8. Montrer que la suite de terme général $u_n = \sum_{k=1}^{n} \frac{1}{k(k+1)}$ est convergente et déterminer sa limite.

(Indication : écrire le terme général comme différence de deux fractions.)

Exercice 9. Etudier la convergence de la suite (u_n) définie par $u_n = \sum_{n=1}^{\infty} \frac{k!}{n+1}$.

Exercice 10. Pour tout $n \in \mathbb{N}^*$, on pose $u_n = \sum_{k=0}^n \frac{1}{n + \sqrt{k}}$.

Encadrer le terme général de la suite (u_n) et calculer sa limite.

Exercice 11. Etudier la suite définie par $u_0 \in \mathbb{R}_+$ et $\forall n \in \mathbb{N} : u_{n+1} = 2 + \sqrt{u_n}$.

Exercice 12. Soient a et b deux nombres réels positifs non tous deux nuls.

Quelle est la limite de la suite (u_n) définie par $u_n = \frac{a^n - b^n}{a^n + b^n}$?