Université des Antilles et de la Guyane

FACULTÉ DES SCIENCES EXACTES ET NATURELLES

Département Scientifique Interfacultaire (Campus de Schoelcher, Martinique)

DEUG MIAS 1E ANNÉE * MATHÉMATIQUES 1 * ANNÉE 2005-2006

Travaux Dirigés * Série 2

Exercice 1. Démontrer, par récurrence, que pour tout $n \in \mathbb{N}$:

(a)
$$\sum_{k=1}^{n} k(k+1) = \frac{n(n+1)(n+2)}{3}$$
, (b) $\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$

(a)
$$\sum_{k=1}^{n} k(k+1) = \frac{n(n+1)(n+2)}{3}$$
, (b) $\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{n}{n+1}$,
(c) $\sum_{k=1}^{n} \frac{1}{(2k-1)(2k+1)} = \frac{n}{2n+1}$, (d) $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$.

Exercice 2. Soit $n \in \mathbb{N}^*$. En utilisant un raisonnement par disjonction des cas, démontrer que $n^3 + 2n$ est divisible par 3.

Exercice 3. Soit f une fonction de \mathbb{R} dans \mathbb{R} . Ecrire l'énoncé « f est décroissante » en n'utilisant que des signes logiques et le signe \leq .

De même écrire l'énoncé « f n'est pas décroissante ».

Exercice 4. Soit E un ensemble, et I un sous-ensemble de E.

Soit f une application de E dans \mathbb{R} . Traduire les propositions suivantes en langage mathématique quantifié:

 $P: \ll \text{La fonction } f \text{ est constante sur } I \gg ;$

Q: « La fonction f est croissante sur I ».

Application: Soit $E = \{-3, -2, -1, 0, 1, 2, 3\}$ et f l'application de E dans \mathbb{R} , définie pour tout x dans E par $f(x) = x^2$.

- (a) Trouver un sous-ensemble I de E tel que P soit vraie.
- (b) Trouver un sous-ensemble I de E tel que Q soit vraie.

Exercice 5. Soit f une fonction de \mathbb{R} dans \mathbb{R} . Que veulent dire les énoncés

(a)
$$\forall y \in \mathbb{R}, \forall x \in \mathbb{R}, f(x) = y \gg$$
 (b) $\forall y \in \mathbb{R}, \exists x \in \mathbb{R}, f(x) = y \gg$?

(b)
$$\forall y \in \mathbb{R}, \exists x \in \mathbb{R}, f(x) = y \gg 1$$

Exercice 6. On définit la fonction f de \mathbb{Z} dans \mathbb{N} de la manière suivante :

$$f(n) = \begin{cases} 2n - 1 & \text{si } n \ge 1; \\ -2n & \text{si } n \le 0. \end{cases}$$

Montrer que f est injective et surjective. En déduire que \mathbb{Z} est dénombrable.