Travaux dirigés, série 5.

Exercice 1. Etudier la dérivabilité des fonctions numériques définies par :

$$f(x) = |x| \sin^3 x; \ g(x) = |x| \cos^3 x; \ h(x) = \sqrt{\frac{1 - \sin x}{1 + \sin x}}; \ \ell(x) = \begin{cases} x^2 \sin \frac{1}{x} & (x \neq 0) \\ 0 & (x = 0) \end{cases}.$$

La fonction ℓ est-elle continûment dérivable sur \mathbb{R} ?

Exercice 2. Préciser, pour les expressions suivantes, le domaine où elles sont définies, le domaine de dérivabilité de l'application qu'elles définissent, et la dérivée

$$\frac{|x+1|}{x+1}$$
, $\sqrt{1-2\cos x}$, $\cos \sqrt{x}$, $\ln(\tan^2 x)$, $\ln(\ln(\frac{1}{x}))$, $(\sin x)^x$, $\sqrt{\frac{1-\ln x}{1+\ln x}}$.

Exercice 3. Soit f une fonction dérivable sur \mathbb{R} . Calculer la dérivée des fonctions suivantes :

$$\exp\left(f(x)^2\right)$$
; $\cos\left(f(x)\right)$ et $f\left(\ln\left(f(x)\right)^2\right)$.

Exercice 4. Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par

$$f(x) = x + 2\exp x.$$

Montrer que f est une bijection. On note g la bijection réciproque de f. Montrer que g est deux fois dérivable et calculer g(2), g'(2) et g''(2).

Exercice 5. Soient a et b dans l'intervalle ouvert [0,1[tels que a+b=1. Prouver que

$$a\ln a + b\ln b + \ln 2 \ge 0.$$

Exercice 6. Soit f une fonction négative et dérivable au point a de \mathbb{R} . On suppose que

$$f(a) \neq 0$$
. Déterminer $\lim_{x \to 0} \left(\frac{f(x+a)}{f(a)} \right)^{\frac{1}{2x}}$.

Exercice 7. Etudier les hypothèses et la conclusion du théorème de Rolle pour la fonction :

$$f(x) = \sqrt{(x^2 - 4)^2}$$
, sur $[-2, 2]$.

Exercice 8. Soit $(a,b) \in \mathbb{R}^2$, tel que a < b, $f,g : [a,b] \to \mathbb{R}$ continues sur [a,b], dérivables sur [a,b]. Montrer qu'il existe $c \in [a,b]$ tel que

$$(f(b) - f(a)) g'(c) = (g(b) - g(a)) f'(c).$$

Exercice 9. (a) Enoncer le théorème des accroissements finis.

- (b) Rappeler le domaine de définition de la fonction arcsin ainsi que l'expression de sa fonction dérivée.
- (c) Montrer que pour tout $x \in \left]0, \frac{1}{2}\right[, \frac{x}{\sqrt{1-x^2}} < \arcsin 2x \arcsin x < \frac{x}{\sqrt{1-4x^2}}$.

Exercice 10. Montrer que $\forall x \in \mathbb{R}^+$, $\frac{1}{x+2} \le \ln(x+2) - \ln(x+1) \le \frac{1}{x+1}$.

Exercice 11. Etablir: $0 < x < \frac{\pi}{2} \Rightarrow \frac{2x}{\pi} < \sin x < x$.

Exercice 12. Calculer, en utilisant la dérivation : $\arctan x + \arctan \frac{1}{x}$ pour $x \in \mathbb{R}^*$ et : $\arcsin x + \arccos x$; $\cos(\arcsin x) - \sin(\arccos x)$ pour $x \in [-1, 1]$.

Exercice 13. Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{1 + e^x}{e^x}$

- (a) Calculer la dérivée de la fonction f.
- (b) On pose $J = f(\mathbb{R})$, montrer que f est bijective de \mathbb{R} sur J.
- (c) Déterminer $f(\mathbb{R})$ et $f^{-1}([1,2])$.
- (d) On note g la bijection réciproque de f. Montrer que g est dérivable et préciser son domaine de dérivabilité. Calculer g(2), g'(2) et g''(2) sans utiliser une expression explicite de la fonction g.

Exercice 14. Calculer la dérivée d'ordre n des fonctions suivantes :

$$f: x \mapsto \exp\left(x\sqrt{3}\right)\sin x \;,\;\; g: x \mapsto x^{n-1}\exp\left(\frac{1}{x}\right)$$

Exercice 15. Soit $f(x) = \frac{\ln x}{x}$. Etablir, pour tout $n \in \mathbb{N}^*$:

$$f^{(n)}(x) = \frac{(-1)^n n!}{x^{n+1}} \left(\ln x - 1 - \frac{1}{2} - \dots - \frac{1}{n} \right).$$

Exercice 16. Calculer $\arcsin(\sin x)$ pour $\frac{15\pi}{2} \le x \le \frac{17\pi}{2}$ et pour $\frac{17\pi}{2} \le x \le \frac{19\pi}{2}$.

Exercice 17. On considère $f: \mathbb{R}^* \to \mathbb{R}$; $x \mapsto x^2 E(\frac{1}{x})$.

- (a) Montrer que f est prolongeable par continuité en 0 en une fonction \tilde{f} que l'on précisera.
- (b) Etudier la dérivabilité de \tilde{f} en $x_0 = 0$, puis sur \mathbb{R} .

Exercice 18. Montrer que la fonction g définie sur $]0, +\infty[$ par $g(x) = -\ln x$ est convexe. En déduire que, pour tous $a, b, c \in]0, +\infty[$, on a

$$(abc)^{\frac{1}{3}} \le \frac{1}{3}(a+b+c).$$

Exercice 19. Etudier et comparer $\arcsin \frac{2\sqrt{x}}{1+x}$ et $2 \arctan \sqrt{x}$.

Exercice 20. Etudier la continuité des fonctions suivantes

$$f(x) = E(x)$$
 et $g(x) = E(x) + \sqrt{x - E(x)}$.

E(x) étant la fonction partie entière de x.

Exercice 21. (a) Enoncer les hypothèses et la conclusion du théorème des valeurs intermédiaires.

(b) Soit f une fonction continue sur \mathbb{R} . On suppose qu'il existe $a \in \mathbb{R}$ tel que $f \circ f(a) = a$. Montrer qu'il existe $c \in \mathbb{R}$ tel que f(c) = c. (Indication : On pourra utiliser la fonction définie par g(x) = f(x) - x).