Université des Antilles et de la Guyane

FACULTÉ DES SCIENCES EXACTES ET NATURELLES

Département Scientifique Interfacultaire (Campus de Schoelcher, Martinique)

DEUG MIAS 1E ANNÉE * MATHÉMATIQUES 1 * ANNÉE 2004-2005

Travaux Dirigés * Série 0

N.B.: Les exercices dont les numéros sont suivis d'une * sont non prioritaires.

Exercice 1.* Soient P, Q, R trois propositions.

- (i) A l'aide de tables de vérité, démontrer les équivalences suivantes :
- (a) $P \wedge (Q \vee R) \iff (P \wedge Q) \vee (P \wedge R)$ (c) $\neg (P \vee Q) \iff \neg P \wedge \neg Q$
- (b) $P \lor (Q \land R) \Longleftrightarrow (P \lor Q) \land (P \lor R)$ (d) $\neg (P \land Q) \iff \neg P \lor \neg Q$

 - (e) $(P \Rightarrow Q) \iff \neg P \lor Q$
- (ii) En déduire des expressions plus simples des propositions suivantes :
- (a) $\neg (P \lor \neg Q)$

(c) $P \vee (\neg P \wedge Q)$

(b) $P \wedge (\neg P \vee Q)$

(d) $P \wedge ((P \wedge Q) \vee (\neg P \wedge Q))$

Exercice 2. Soit E un ensemble de nombres. Traduire la proposition P suivante en langage mathématique quantifié:

> P: "Il existe un entier naturel n tel que pour tout élément mappartenant à E, n soit multiple de m."

Application: Montrer que P est vraie pour $E = \{0, 2, 7, 22\}$

- Exercice 3.* Soient a et b deux entiers naturels. Ecrire l'énoncé « a divise b » avec des signes logiques, sans utiliser les fractions.
- **Exercice 4.** Soit f une fonction de \mathbb{R} dans \mathbb{R} . Ecrire l'énoncé « f est croissante » en n'utilisant que des signes logiques et le signe \geq . De même écrire l'énoncé « f n'est pas croissante ».
- **Exercice 5.*** Soit E un ensemble, et I un sous-ensemble de E.

Soit f une application de E dans \mathbb{R} . Traduire les propositions suivantes en langage mathématique quantifié:

 $P: \ll \text{La fonction } f \text{ est constante sur } I \gg ;$

Q: « La fonction f est croissante sur I ».

Application : Soit $E = \{-3, -2, -1, 0, 1, 2, 3\}$ et f l'application de E dans \mathbb{R} , définie pour tout x dans E par f(x) = |x|.

- (a) Trouver un sous-ensemble I de E tel que P soit vraie.
- (b) Trouver un sous-ensemble I de E tel que Q soit vraie.

Exercice 6. Soit f une fonction de \mathbb{R} dans \mathbb{R} . Que veulent dire les énoncés

- (a) $\forall y \in \mathbb{R}, \forall x \in \mathbb{R}, f(x) = y \gg$ (b) $\forall y \in \mathbb{R}, \exists x \in \mathbb{R}, f(x) = y \gg$?

- **Exercice 7.** Démontrer, en utilisant un raisonnement par disjonction des cas, que si n et p sont des entiers relatifs, alors np est pair ou $n^2 p^2$ est multiple de 8.
- **Exercice 8.*** Soient x et y deux réels positifs. Démontrer, en utilisant un raisonnement par contraposition, que si x et y sont différents, alors les nombres $(x^2 + 1)(y^2 1)$ et $(x^2 1)(y^2 + 1)$ sont différents.
- **Exercice 9.** Démontrer, en utilisant un raisonnement par disjonction des cas, que pour tout nombre réel x,

(a)
$$|x-1| < x^2 + 2x + 4$$
 (b) * $|x+1| - |2x-1| \le 3/2$

Exercice 10. Soient x et y des rationnels positifs tels que $\sqrt{x} \notin \mathbb{Q}$. Montrer, en utilisant un raisonnement par l'absurde, que $\sqrt{x} + \sqrt{y} \notin \mathbb{Q}$. (Indication : raisonner par l'absurde et utiliser l'expression $\sqrt{x} - \sqrt{y}$.)

Exercice 11. Démontrer, par récurrence :

(a) Pour tout $n \in \mathbb{N}$ et tout réel $a \ge 0$, on a $(1+a)^n + 1 \ge 1 + na$.

(b)*
$$\forall n \in \mathbb{N}^*, \sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$$
,

(c)*
$$\forall n \in \mathbb{N}^*, \sum_{k=1}^n k^3 = \left(\frac{n(n+1)}{2}\right)^2.$$

- **Exercice 12.** Pour tout $n \in \mathbb{N}^*$, on pose $P_n = \prod_{k=1}^n \left(1 + \frac{1}{k}\right)^2$. Calculer P_1, P_2, P_3 , puis proposer une formule simple pour P_n et prouver sa validité par récurrence.
- **Exercice 13.** Soient A et B deux parties d'un ensemble de référence E. On note A^c (resp. B^c) le complémentaire de A (resp. B) par rapport à E, et $A\triangle B$ la réunion de $(A \setminus B)$ et de $(B \setminus A)$. Montrer que :

(a)
$$A \subset B \iff B^c \subset A^c$$
, (b) $(A \cup B)^c = A^c \cap B^c$, (c) $(A \cap B)^c = A^c \cup B^c$,

(d)
$$A \triangle A = \emptyset$$
, (e) $A \triangle B = (A \cup B) \setminus (A \cap B)$.

Exercice 14. Soit $E = \{-1, 0, \pi\}$. Déterminer $\mathcal{P}(E)$, ensemble des parties de E.

Exercice 15.* Soient A et B deux ensembles. Comparer les ensembles $\mathcal{P}(A \cup B)$ et $\mathcal{P}(A) \cup \mathcal{P}(B)$.

Exercice 16. Soient A, B et C trois ensembles. Montrer que

$$((A \cup B = A \cup C) \land (A \cap B = A \cap C)) \implies (B = C).$$

Exercice 17. Soient E, F deux ensembles et A et B deux ensembles non vides. Montrer l'équivalence

$$(A \times B) \subset (E \times F) \iff (A \subset E) \text{ et } (B \subset F)$$
.