
IBM XL C/C++ Advanced Edition V8.0 for Linux

Getting Started with XL C/C++

SC09-8015-00

���

IBM XL C/C++ Advanced Edition V8.0 for Linux

Getting Started with XL C/C++

SC09-8015-00

���

Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page

35.

First Edition (September 2005)

This edition applies to IBM® XL C/C++ Advanced Edition V8.0 for Linux™ (Program 5724-M16) and to all

subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using the

correct edition for the level of the product.

IBM welcomes your comments. You can send your comments electronically to the network ID listed below. Be sure

to include your entire network address if you wish a reply.

v Internet: compinfo@ca.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1990, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this document v

Who should read this document v

How to use this document v

How this document is organized v

Conventions and terminology used in this document vi

Typographical conventions vi

How to read syntax diagrams vi

Examples viii

Related information viii

IBM XL C/C++ publications viii

Additional documentation ix

Technical support ix

How to send your comments x

Chapter 1. Overview of XL C/C++

features 1

Commonality with other XL compilers 1

Documentation, online help, and technical support . 1

Hardware and operating system support 1

Highly configurable compiler 2

Language standards compliance 3

Compatibility with GNU 3

Source-code migration and conformance checking 3

Libraries 4

Mathematics Acceleration Subsystem libraries . . 4

Basic Linear Algebra Subprograms 4

Tools and utilities 4

Program optimization 5

64-bit object capability 6

Shared memory parallelization 6

OpenMP directives 6

Diagnostic listings 7

Symbolic debugger support 7

Chapter 2. What’s new for V8.0 9

Performance and optimization 9

Architecture and processor-specific code tuning . . 9

High performance libraries 9

Other performance-related compiler options and

directives 10

Built-in functions new for this release 10

Support for language enhancements and APIs . . . 13

OpenMP API V2.5 support for C, C++, and

Fortran 13

Ease of use 13

New installation and configuration utilities . . . 13

Support for IBM Tivoli License Manager 13

New compiler options 14

New command line options 14

New pragma directives 15

Chapter 3. Setting up and customizing

XL C/C++ 17

Environment variables and XL C/C++ 17

Setting the compiler working environment . . . 17

Setting the default runtime options 17

Customizing the configuration file 18

Determining what level of XL C/C++ is installed . . 18

Chapter 4. Editing, compiling, and

linking programs with XL C/C++ 19

The compiler phases 19

Editing C and C++ source files 19

Compiling with XL C/C++ 20

Compiling parallelized XL C/C++ applications 21

XL C/C++ input files 21

XL C/C++ output files 22

Specifying compiler options 23

Linking XL C/C++ programs 24

Compiling and linking in separate steps 24

Dynamic and static linking 24

Chapter 5. Running XL C/C++ programs 27

Canceling execution 27

Setting runtime options 27

Running compiled applications on other systems . . 27

Chapter 6. XL C/C++ compiler

diagnostic aids 29

Compilation return codes 29

XL C/C++ compiler listings 29

Header section 30

Options section 30

Source section 30

Transformation report section 32

Attribute and cross-reference section 32

Object section 33

File table section 33

Compilation unit epilogue section 33

Compilation epilogue section 33

Debugging compiled applications 33

Notices 35

Programming interface information 36

Trademarks and service marks 37

Index 39

© Copyright IBM Corp. 1990, 2005 iii

iv Getting Started

About this document

Getting Started with XL C/C++ provides a general overview of the XL C/C++

compiler, its more significant features, and how those features can help you

improve your software development productivity.

For the benefit of current XL C/C++ users upgrading to this release, Getting Started

with XL C/C++ also includes a summary of features that are new or improved for

V8.0.

Getting Started with XL C/C++ is intended only to help familiarize you with the

compiler. For detailed information on using the XL C/C++ compiler, you will want

to refer to other books in the XL C/C++ Advanced Edition V8.0 for Linux library,

described in “IBM XL C/C++ publications” on page viii.

Who should read this document

Getting Started with XL C/C++ is intended for anyone who plans to work with

IBM® XL C/C++ Advanced Edition V8.0 for Linux, who is familiar with the

Linux® operating system, and who has some previous C and C++ programming

experience.

How to use this document

If you are new to XL C/C++ , you should view Chapter 1, “Overview of XL

C/C++ features,” on page 1 to familiarize yourself with the key features of XL

C/C++ and how to begin using it to develop your applications.

If you are already an experienced XL C/C++ user and are now upgrading to the

latest release of XL C/C++ , you may want to go directly to Chapter 2, “What’s

new for V8.0,” on page 9 to review that latest changes and feature enhancements

to the compiler.

The remaining sections of this guide provide a brief overview of basic program

development tasks with XL C/C++.

How this document is organized

This guide includes these topics:

v Chapter 1, “Overview of XL C/C++ features,” on page 1 outlines the the key

features of the XL C/C++ compiler

v Chapter 2, “What’s new for V8.0,” on page 9 describes new and updated

features offered by the latest version of XL C/C++.

v Chapter 3, “Setting up and customizing XL C/C++,” on page 17 provides brief

overview information on the steps involved in setting up and customizing XL

C/C++, together with pointers on where you can find more detailed

information.

v Chapter 4, “Editing, compiling, and linking programs with XL C/C++,” on page

19 discusses the basic steps involved in creating and compiling your applications

with XL C/C++.

© Copyright IBM Corp. 1990, 2005 v

v Chapter 5, “Running XL C/C++ programs,” on page 27 describes how to run

your compiled applications, including setting of run time options.

v Chapter 6, “XL C/C++ compiler diagnostic aids,” on page 29 offers guidance on

how to use XL C/C++ compiler diagnostic aids to identify and correct

compilation problems with your applications.

Conventions and terminology used in this document

Typographical conventions

The following table explains the typographical conventions used in this document.

 Table 1. Typographical conventions

Typeface Indicates Example

bold Commands, executable

names, pragma directives,

and compiler options.

Use the -qmkshrobj compiler option to

create a shared object from the generated

object files.

italics Parameters or variables

whose actual names or

values are to be supplied by

the user. Italics are also used

to introduce new terms.

Make sure that you update the size

parameter if you return more than the size

requested.

monospace Programming keywords and

library functions, compiler

built-in functions, file and

directory names, examples

of program code, command

strings, or user-defined

names.

If you call omp_destroy_lock with an

uninitialized lock variable, the result of the

call is undefined.

How to read syntax diagrams

Throughout this document, diagrams illustrate XL C/C++ syntax. This section will

help you to interpret and use those diagrams.

You must enter punctuation marks, parentheses, arithmetic operators, and other

special characters as part of the syntax.

v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.

The ��─── symbol indicates the beginning of a command, directive, or statement.

The ───� symbol indicates that the command, directive, or statement syntax is

continued on the next line.

The �─── symbol indicates that a command, directive, or statement is continued

from the previous line.

The ───�� symbol indicates the end of a command, directive, or statement.

Diagrams of syntactical units other than complete commands, directives, or

statements start with the �─── symbol and end with the ───� symbol.

v Required items appear on the horizontal line (the main path).

�� keyword required_item ��

v Optional items are shown below the main path.

vi Getting Started

�� keyword

optional_item
 ��

v If you can choose from two or more items, they are shown vertically, in a stack.

If you must choose one of the items, one item of the stack is shown on the main

path.

�� keyword required_choice1

required_choice2
 ��

If choosing one of the items is optional, the entire stack is shown below the

main path.

�� keyword

optional_choice1

optional_choice2

 ��

The item that is the default is shown above the main path.

��

keyword
 default_item

alternate_item

��

v An arrow returning to the left above the main line indicates an item that can be

repeated.

��

keyword

�

repeatable_item

��

A repeat arrow above a stack indicates that you can make more than one choice

from the stacked items, or repeat a single choice.

v Keywords are shown in nonitalic letters and should be entered exactly as shown

(for example, extern).

Variables are shown in italicized lowercase letters (for example, identifier). They

represent user-supplied names or values.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols

are shown, you must enter them as part of the syntax.

The following syntax diagram example shows the syntax for the #pragma

comment directive.

�1� �2� �3� �4� �5� �6� �9��10�

 ��─#──pragma──comment──(───────compiler───────────────────────────)─��

 │ │

 +─────date────────────────────────────+

 │ │

 +─────timestamp───────────────────────+

 │ │

 +──+──copyright──+──+─────────────────+

 │ │ │ │

 +──user───────+ +──,─"characters"─+

 �7��8�

 �1� This is the start of the syntax diagram.

 �2� The symbol # must appear first.

About this document vii

�3� The keyword pragma must appear following the # symbol.

 �4� The name of the pragma comment must appear following the keyword

pragma.

 �5� An opening parenthesis must be present.

 �6� The comment type must be entered only as one of the types indicated:

compiler, date, timestamp, copyright, or user.

 �7� A comma must appear between the comment type copyright or user, and

an optional character string.

 �8� A character string must follow the comma. The character string must be

enclosed in double quotation marks.

 �9� A closing parenthesis is required.

 �10� This is the end of the syntax diagram.

The following examples of the #pragma comment directive are syntactically correct

according to the diagram shown above:

 #pragma

 comment(date)

 #pragma comment(user)

 #pragma comment(copyright,"This text will appear in the module")

Examples

The examples in this document, except where otherwise noted, are coded in a

simple style that does not try to conserve storage, check for errors, achieve fast

performance, or demonstrate all possible methods to achieve a specific result.

Related information

IBM XL C/C++ publications

XL C/C++ provides product documentation in the following formats:

v Readme files

Readme files contain late-breaking information, including changes and

corrections to the product documentation. Readme files are located by default in

the /opt/ibmcmp/vacpp/8.0/ directory and in the root directory of the

installation CD.

v Installable man pages

Man pages are provided for the compiler invocations and all command-line

utilities provided with the product. Instructions for installing and accessing the

man pages are provided in the IBM XL C/C++ Advanced Edition V8.0 for Linux

Installation Guide.

v Information center

The information center of searchable HTML files can be launched on a network

and accessed remotely or locally. Instructions for installing and accessing the

information center are provided in the IBM XL C/C++ Advanced Edition V8.0 for

Linux Installation Guide. The information center is also viewable on the Web at:

publib.boulder.ibm.com/infocenter/lnxpcomp/index.jsp
v PDF documents

PDF documents are located by default in the

/opt/ibmcmp/vacpp/8.0/doc/language/PDF/ directory, and are also available

on the Web at:

viii Getting Started

http://publib.boulder.ibm.com/infocenter/comphelp/index.jsp

www.ibm.com/software/awdtools/xlcpp/library
In addition to this document, the following files comprise the full set of XL

C/C++ product manuals:

 Table 2. XL C/C++ PDF files

Document title

PDF file

name Description

IBM XL C/C++ Advanced

Edition V8.0 for Linux

Installation Guide,

GC09-8017-00

install.pdf Contains information for installing XL C/C++

and configuring your environment for basic

compilation and program execution.

IBM XL C/C++ Advanced

Edition V8.0 for Linux

Compiler Reference,

SC09-8013-00

compiler.pdf Contains information about the various

compiler options, pragmas, macros,

environment variables, and built-in functions,

including those used for parallel processing.

IBM XL C/C++ Advanced

Edition V8.0 for Linux

Language Reference,

SC09-8016-00

language.pdf Contains information about the C and C++

programming languages, as supported by IBM,

including language extensions for portability

and conformance to non-proprietary standards.

IBM XL C/C++ Advanced

Edition V8.0 for Linux

Programming Guide,

SC09-8014-00

proguide.pdf Contains information on advanced

programming topics, such as application

porting, interlanguage calls with Fortran code,

library development, application optimization

and parallelization, and the XL C/C++

high-performance libraries.

These PDF files are viewable and printable from Adobe Reader. If you do not

have the Adobe Reader installed, you can download it from:

www.adobe.com

Additional documentation

More documentation related to XL C/C++, including redbooks, whitepapers,

tutorials, and other articles, is available on the Web at:

www.ibm.com/software/awdtools/xlcpp/library

Technical support

Additional technical support is available from the XL C/C++ Support page. This

page provides a portal with search capabilities to a large selection of technical

support FAQs and other support documents. You can find the XL C/C++ Support

page on the Web at:

www.ibm.com/software/awdtools/xlcpp/support

If you cannot find what you need, you can e-mail:

compinfo@ca.ibm.com

 For the latest information about XL C/C++, visit the product information site at:

www.ibm.com/software/awdtools/xlcpp

About this document ix

http://www.ibm.com/software/awdtools/xlcpp/library
http://www.adobe.com
http://www.ibm.com/software/awdtools/xlcpp/library
http://www.ibm.com/software/awdtools/xlcpp/support
http://www.ibm.com/software/awdtools/xlcpp

How to send your comments

Your feedback is important in helping to provide accurate and high-quality

information. If you have any comments about this document or any other XL

C/C++ documentation, send your comments by e-mail to:

compinfo@ca.ibm.com

 Be sure to include the name of the document, the part number of the document,

the version of XL C/C++, and, if applicable, the specific location of the text you

are commenting on (for example, a page number or table number).

x Getting Started

Chapter 1. Overview of XL C/C++ features

XL C/C++ Advanced Edition V8.0 for Linux can be used for large, complex,

computationally intensive programs, including interlanguage calls with Fortran

programs. This section discusses the features of the XL C/C++ compiler at a high

level. It is intended for people who are evaluating XL C/C++ and for new users

who want to find out more about the product.

Commonality with other XL compilers

XL C/C++, together with XL C and XL Fortran, comprise the family of XL

compilers.

The XL compilers are part of a larger family of IBM C, C++, and Fortran compilers

that are derived from a common code base that shares compiler function and

optimization technologies among a variety of platforms and programming

languages, such as AIX, Linux distributions, OS/390, OS/400, z/OS, and z/VM

operating systems. The common code base, along with compliance to international

programming language standards, helps ensure consistent compiler performance

and ease of program portability across multiple operating systems and hardware

platforms.

The XL compilers are available for use on AIX and selected Linux distributions.

Documentation, online help, and technical support

This guide provides an overview of XL C/C++ and its features. You can also find

more extensive product documentation in the following formats:
v Readme files.

v Installable man pages.

v An HTML-based information system.

v Portable Document Format (PDF) documents.

v Online technical support over the Web.

For more information about product documentation and technical support

provided with XL C/C++, see:
v “IBM XL C/C++ publications” on page viii

v “Additional documentation” on page ix

v “Technical support” on page ix

Hardware and operating system support

XL C/C++ Advanced Edition V8.0 for Linux supports several Linux distributions.

See the README file and System prerequisites in the XL C/C++ Advanced Edition

V8.0 for Linux Installation Guide for a complete list of supported distributions and

requirements.

The compiler, its libraries, and its generated object programs will run on all

POWER3™, POWER4™, POWER5™, POWER5+™, PowerPC®, and PowerPC 970

systems with the required software and disk space.

© Copyright IBM Corp. 1990, 2005 1

To take maximum advantage of different hardware configurations, the compiler

provides a number of options for performance tuning based on the configuration

of the machine used for executing an application.

Highly configurable compiler

XL C/C++ offers you a wealth of features to let you tailor the compiler to your

own unique compilation requirements.

Compiler invocation commands

XL C/C++ provides several different commands that you can use to invoke

the compiler, for example, xlC, xlc++, and xlc. Each invocation command is

unique in that it instructs the compiler to tailor compilation output to meet

a specific language level specification. Compiler invocation commands are

provided to support all standardized C and C++ language levels, and

many popular language extensions as well.

 The compiler also provides corresponding ″_r″ versions of most invocation

commands, for example, xlC_r. These ″_r″ invocations instruct the compiler

to link and bind object files to thread-safe components and libraries, and

produce threadsafe object code for compiler-created data and procedures.

 For more information about XL C/C++ compiler invocation commands, see

“Compiling with XL C/C++” on page 20 in this book or Invoking the

compiler or a compiler component in the XL C/C++ Advanced Edition V8.0

for Linux Compiler Reference.

Compiler options

You can control the actions of the compiler through a large set of provided

compiler options. Different categories of options help you to debug your

applications, optimize and tune application performance, select language

levels and extensions for compatibility with programs from other

platforms, and do many other common tasks that would otherwise require

changing the source code.

 XL C/C++ lets you specify compiler options through a combination of

environment variables, compiler configuration files, command line options,

and compiler directive statements embedded in your C or C++ program

source.

 For more information about XL C/C++ compiler options, see Compiler

options reference in the XL C/C++ Advanced Edition V8.0 for Linux Compiler

Reference.

Custom compiler configuration files

The installation process creates a default compiler configuration file at

/etc/opt/ibmcmp/vac/8.0/vac.cfg. This configuration file contains several

stanzas that define compiler option default settings.

 Your compilation needs may frequently call for specifying compiler option

settings other than the defaults settings provided by XL C/C++. If so, XL

C/C++ provides the vac_configure utility that you can use to create

additional configuration files. You can then modify these files with any text

editor to contain your own frequently-used compiler option settings.

 See Customizing the configuration file in the XL C/C++ Advanced Edition

V8.0 for Linux Compiler Reference for more information on creating and

using custom configuration files.

2 Getting Started

Language standards compliance

The compiler supports the following programming language specifications for C

and C++:

v ISO/IEC 9899:1999 (C99)

v ISO/IEC 9899:1990 (referred to as C89)
v ISO/IEC 14882:2003 (referred to as Standard C++)

v ISO/IEC 14882:1998, the first official specification of the language (referred

to as C++98)

In addition to the standardized language levels, XL C/C++ also supports language

extensions, including:
v OpenMP extensions to support parallelized programming.

v Language extensions to support VMX vector programming.

v A subset of GNU C and C++ language extensions.

See Supported language standards in the XL C/C++ Advanced Edition V8.0 for Linux

Language Reference for more information about C and C++ language specifications

and extensions.

Compatibility with GNU

XL C/C++ supports a subset of the GNU compiler command options to facilitate

porting applications developed with gcc and g++.

This support is available when the gxlc or gxlc++ invocation command is used

together with select GNU compiler options. The compiler maps these options to

their XL C/C++ compiler option counterparts before invoking the compiler.

The gxlc and gxlc++ invocation commands use the

/etc/opt/ibmcmp/vac/8.0/gxlc.cfg plain text configuration file to control

GNU-to-XL C/C++ option mappings and defaults. You can customize the

/etc/opt/ibmcmp/vac/8.0/gxlc.cfg file to better meet the needs of any unique

compilation requirements you may have. See Reusing GNU C/C++ compiler

options with gxlc and gxlc++ in the XL C/C++ Advanced Edition V8.0 for Linux

Compiler Reference for more information.

XL C/C++ uses GNU C and GNU C++ header files together with the GNU C and

C++ runtime libraries to produce code that is binary-compatible with that

produced with the GNU compiler, GCC Version 3.3. Portions of an application can

be built with XL C/C++ and combined with portions built with GCC to produce

an application that behaves as if it had been built solely with GCC.

Source-code migration and conformance checking

XL C/C++ helps protect your investment in your existing C and C++ source code

by providing compiler invocation commands that instruct the compiler to compile

your application to a specific language level. You can also use the -qlanglvl

compiler option to specify a given language level, and the compiler will issue

warnings, errors and severe error messages if language or language extension

elements in your program source do not conform to that language level.

See -qlanglvl in the XL C/C++ Advanced Edition V8.0 for Linux Compiler Reference for

more information.

Chapter 1. Overview of XL C/C++ features 3

Libraries

XL C/C++ Advanced Edition V8.0 for Linux ships with the following libraries:

v SMP Runtime Library supports both explicit and automated parallel processing.

v Mathematics Acceleration Subsystem (MASS) library of tuned mathematical

intrinsic functions, for 32-bit and 64-bit modes.

v Basic Linear Algebra Subsystem (BLAS) library of tuned algebraic functions.

v

C++ Runtime Library contains support routines needed by the compiler.

Mathematics Acceleration Subsystem libraries

The IBM Mathematics Acceleration Subsystem (MASS) libraries consist of highly

tuned scalar and vector mathematical intrinsic functions tuned specifically for

optimum performance on PowerPC processor architectures. You can choose MASS

libraries to support high-performance computing on a broad range of processors,

or you can select libraries tuned to specific processor families.

The MASS libraries support both 32-bit and 64-bit compilation modes, are

thread-safe, and offer improved performance over their corresponding libm

routines. They are called automatically when you request specific levels of

optimization for your application. You can also make explicit calls to MASS

functions regardless of whether optimization options are in effect or not.

See Using the Mathematical Acceleration Subsystem in the XL C/C++ Advanced

Edition V8.0 for Linux Programming Guide for more information.

Basic Linear Algebra Subprograms

The BLAS set of high-performance algebraic functions are shipped in the libxlopt

library. These functions let you:

v Compute the matrix-vector product for a general matrix or its transpose.

v Perform combined matrix multiplication and addition for general matrices or

their transposes.

For more information about using the BLAS functions, see Using the Basic Linear

Algebra Subprograms in the XL C/C++ Advanced Edition V8.0 for Linux Programming

Guide.

Tools and utilities

xlc_install

This interactive utility helps you install XL C/C++ on your system.

new_install

After you install XL C/C++, running this utility will configure the

compiler for use on your system.

vac_configure

Use this utility to create additional compiler configuration files that you

can then modify to contain your own custom sets of compiler option

default settings.

cleanpdf Command

A command related to profile-directed feedback, used for managing the

PDFDIR directory. Removes all profiling information from the specified

directory, the PDFDIR directory, or the current directory.

4 Getting Started

mergepdf Command

A command related to profile-directed feedback (PDF) that provides the

ability to weight the importance of two or more PDF records when

combining them into a single record. The PDF records must be derived

from the same executable.

resetpdf Command

The current behavior of the resetpdf command is the same as the cleanpdf

command and is retained for compatibility with earlier releases on other

platforms.

showpdf Command

A command to display the call and block counts for all procedures

executed in a profile-directed feedback training run (compilation under the

options -qpdf1 and -qshowpdf).

gxlc and gxlc++ Utilities

Invocation methods that translate a GNU C or GNU C++ invocation

command into a corresponding xlc or xlC command and invokes the XL

C/C++ compiler. The purpose of these utilities is to minimize the number

of changes to makefiles used for existing applications built with the GNU

compilers and to facilitate the transition to XL C/C++.

Program optimization

XL C/C++ provides several compiler options that can help you control the

optimization of your programs. With these options, you can:

v Select different levels of compiler optimizations.

v Control optimizations for loops, floating point, and other types of operations.

v Optimize a program for a particular class of machines or for a very specific

machine configuration, depending on where the program will run.

Optimizing transformations can give your application better overall performance at

run time. C and C++ provides a portfolio of optimizing transformations tailored to

various supported hardware. These transformations can:

v Reduce the number of instructions executed for critical operations.

v Restructure generated object code to make optimal use of the PowerPC

architecture.

v Improve the usage of the memory subsystem.

v Exploit the ability of the architecture to handle large amounts of shared memory

parallelization.

Significant performance improvements are possible with relatively little

development effort because the compiler is capable of sophisticated program

analysis and transformation. Moreover, XL C/C++ enables programming models,

such as OpenMP, which allow you to write high-performance code.

If possible, you should test and debug your code without optimization before

attempting to optimize it.

For more information about optimization techniques, see Optimizing your

applications in the XL C/C++ Advanced Edition V8.0 for Linux Programming Guide.

For a summary of optimization-related compiler options, see Options for

performance optimization in the XL C/C++ Advanced Edition V8.0 for Linux Compiler

Reference.

Chapter 1. Overview of XL C/C++ features 5

64-bit object capability

The XL C/C++ compiler’s 64-bit object capability addresses increasing demand for

larger storage requirements and greater processing power. The Linux operating

system provides an environment that allows you to develop and execute programs

that exploit 64-bit processors through the use of 64-bit address spaces.

To support larger executables that can be fit within a 64-bit address space, a

separate, 64-bit object form is used to meet the requirements of 64-bit executables.

The linker binds 64-bit objects to create 64-bit executables. Note that objects that

are bound together must all be of the same object format. The following scenarios

are not permitted and will fail to load, or execute, or both:

v A 64-bit object or executable that has references to symbols from a 32-bit library

or shared library

v A 32-bit object or executable that has references to symbols from a 64-bit library

or shared library

v A 64-bit executable that explicitly attempts to load a 32-bit module

v A 32-bit executable that explicitly attempts to load a 64-bit module

v Attempts to run 64-bit applications on 32-bit platforms

On both 64-bit and 32-bit platforms, 32-bit executables will continue to run as they

currently do on a 32-bit platform.

XL C/C++ supports 64-bit mode mainly through the use of the -q64 and -qarch

compiler options. This combination determines the bit mode and instruction set for

the target architecture.

For more information, see Using 32-bit and 64-bit modes in the XL C/C++ Advanced

Edition V8.0 for Linux Programming Guide.

Shared memory parallelization

XL C/C++ Advanced Edition V8.0 for Linux supports application development for

multiprocessor system architectures. You can use any of the following methods to

develop your parallelized applications with XL C/C++:
v Directive-based shared memory parallelization (OpenMP)

v Instructing the compiler to automatically generate shared memory

parallelization

v Message-passing-based shared or distributed memory parallelization (MPI)

v POSIX threads (Pthreads) parallelization

v Low-level UNIX parallelization using fork() and exec()

For more information, see Parallelizing your programs in the XL C/C++ Advanced

Edition V8.0 for Linux Programming Guide.

OpenMP directives

 OpenMP directives are a set of API-based commands supported by XL C/C++ and

many other IBM and non-IBM C, C++, and Fortran compilers.

You can use OpenMP directives to instruct the compiler how to parallelize a

particular loop. The existence of the directives in the source removes the need for

6 Getting Started

the compiler to perform any parallel analysis on the parallel code. OpenMP

directives require the presence of Pthread libraries to provide the necessary

infrastructure for parallelization.

OpenMP directives address three important issues of parallelizing an application:
1. Clauses and directives are available for scoping variables. Frequently,

variables should not be shared; that is, each processor should have its

own copy of the variable.

2. Work sharing directives specify how the work contained in a parallel

region of code should be distributed across the SMP processors.

3. Directives are available to control synchronization between the processors.

XL C/C++ supports the OpenMP API Version 2.5 specification. For more

information, see www.openmp.org.

Diagnostic listings

The compiler output listing has optional sections that you can include or omit. For

more information about the applicable compiler options and the listing itself, refer

to “XL C/C++ compiler listings” on page 29.

Symbolic debugger support

You can use gdb or any other symbolic debugger when debugging your programs.

Chapter 1. Overview of XL C/C++ features 7

http://www.openmp.org

8 Getting Started

Chapter 2. What’s new for V8.0

The new features and enhancements in XL C/C++ Advanced Edition V8.0 for

Linux fall into four categories:

v “Performance and optimization”

v “Support for language enhancements and APIs” on page 13

v “Ease of use” on page 13

v “New compiler options” on page 14

Performance and optimization

Many new features and enhancements fall into the category of optimization and

performance tuning.

Architecture and processor-specific code tuning

The -qarch compiler option controls the particular instructions that are generated

for the specified machine architecture. The -qtune compiler option adjusts the

instructions, scheduling, and other optimizations to enhance performance on the

specified hardware. These options work together to generate application code that

gives the best performance for the specified architecture.

XL C/C++ V8.0 augments the list of suboptions available to the -qarch compiler

option to support processors that support the VMX instruction set and the

newly-available POWER5+ processors. The following new -qarch options are

available:
v -qarch=ppc64v

v -qarch=pwr5x

High performance libraries

XL C/C++ includes highly-tuned mathematical functions that can greatly improve

the performance of mathematically-intensive applications. These functions are

provided through the following high-performance libraries:

Mathematical Acceleration Subsystem (MASS)

MASS libraries provide high-performance scalar and vector functions to

perform common mathematical computations. The MASS libraries included

with XL C/C++ Advanced Edition V8.0 for Linux introduce new scalar

and vector functions, and new support for the POWER5 processor

architecture.

 For more information about using the MASS libraries, see Using the

Mathematical Acceleration Subsystem in the XL C/C++ Advanced Edition

V8.0 for Linux Programming Guide.

Basic Linear Algebra Subprograms (BLAS)

XL C/C++ Advanced Edition V8.0 for Linux introduces the BLAS set of

high-performance algebraic functions. You can use these functions to:

v Compute the matrix-vector product for a general matrix or its transpose.

v Perform combined matrix multiplication and addition for general

matrices or their transposes.

© Copyright IBM Corp. 1990, 2005 9

For more information about using the BLAS functions, see Using the Basic

Linear Algebra Subprograms in the XL C/C++ Advanced Edition V8.0 for

Linux Programming Guide.

Other performance-related compiler options and directives

The entries in the following table describes new or changed compiler options and

directives not already mentioned in the sections above.

Information presented here is just a brief overview. For more information about

these compiler options, refer to Options for performance optimization in the XL

C/C++ Advanced Edition V8.0 for Linux Compiler Reference.

 Table 3. Other Performance-Related Compiler Options and Directives

Option/directive Description

-qfloat -qfloat adds the following new suboptions:

-qfloat=relax

This suboption relaxes strict-IEEE conformance in exchange

for greater speed, typically by removing trivial

floating-point arithmetic operations such as adds and

subtracts involving a zero on the right.

-qfloat=norelax

This is the default. Strict IEEE conformance is maintained.

-qipa -qipa adds the following new suboptions:

-qipa=clonearch=arch{,arch}

Specifies one or more processor architectures for

which multiple versions of the same instruction set are

produced.

 XL C/C++ lets you specify multiple specific processor

architectures for which instruction sets will be

generated. At run time, the application will detect the

specific architecture of the operating environment and

select the instruction set specialized for that

architecture.

-qipa=cloneproc=name{,name}

Specifies the names of one or more functions to clone

for the processor architectures specified by the

clonearch suboption.

-O Specifying the -O3 compiler option now instructs the compiler to

also assume the -qhot=level=0 compiler option setting.

Specifying the -O4 or -O5 compiler option now instructs the

compiler to also assume the -qhot=level=1 compiler option setting.

Built-in functions new for this release

The following table lists built-in functions that are new for this release. For more

information on built-in functions provided by XL C/C++, see Built-in functions for

POWER and PowerPC architectures in the XL C/C++ Advanced Edition V8.0 for

Linux Compiler Reference.

10 Getting Started

Table 4. Built-in functions for XL C/C++

Function Description

void __builtin_return_address (unsigned int

level);

Returns the return address of the

current function, or of one of its callers

where level is a constant literal

indicating the number of frames to scan

up the call stack.

void __builtin_frame_address (unsigned int

level);

Returns the address of the function

frame of the current function, or of one

of its callers where level is a constant

literal indicating the number of frames

to scan up the call stack

int __compare_and_swap(volatile int* addr,

int* old_val_addr, int new_val);

Performs an atomic operation which

compares the contents of a single word

variable with a stored old value.

int __compare_and_swaplp(volatile long* addr,

long* old_val_addr, long new_val);

Performs an atomic operation which

compares the contents of a double

word variable with a stored old value.

 int __fetch_and_add(volatile int* addr, int

val);

Increments the single word specified by

addr by the amount specified by val in a

single atomic operation.

long __fetch_and_addlp(volatile long* addr,

long val);

Increments the double word specified

by addr by the amount specified by val

in a single atomic operation.

unsigned int __fetch_and_and(volatile

unsigned int* addr, unsigned int val);

Clears bits in the single word specified

by addr by AND-ing that value with the

input val parameter, in a single atomic

operation.

unsigned long __fetch_and_andlp(volatile

unsigned long* addr, unsigned long val);

Clears bits in the double word specified

by addr by AND-ing that value with the

input val parameter, in a single atomic

operation.

unsigned int __fetch_and_or(volatile unsigned

int* addr, unsigned int val);

Sets bits in the single word specified by

addr by OR-ing that value with the

input val parameter, in a single atomic

operation.

unsigned long __fetch_and_orlp(volatile

unsigned long* addr, unsigned long val);

Sets bits in the double word specified

by addr by OR-ing that value with the

input val parameter, in a single atomic

operation.

unsigned int __fetch_and_swap(volatile

unsigned int* addr, unsigned int val);

Sets the single word specified by addr

to the value or the input val parameter

and returns the original contents of the

memory location, in a single atomic

operation.

double __frim(double val); Takes an input val in double format,

rounds val down to the next lower

integral value, and returns the result in

double format. Valid only for

POWER5+ processors.

Chapter 2. What’s new for V8.0 11

Table 4. Built-in functions for XL C/C++ (continued)

Function Description

float __frims(float val); Takes an input val in float format,

rounds val down to the next lower

integral value, and returns the result in

float format. Valid only for POWER5+

processors.

double __frin(double val); Takes an input val in double format,

rounds val to the nearest integral value,

and returns the result in double format.

Valid only for POWER5+ processors.

float __frins(float val); Takes an input val in float format,

rounds val to the nearest integral value,

and returns the result in float format.

Valid only for POWER5+ processors.

double __frip(double val); Takes an input val in double format,

rounds val up to the next higher

integral value, and returns the result in

double format. Valid only for

POWER5+ processors.

float __frips(float val); Takes an input val in float format,

rounds val up to the next higher

integral value, and returns the result in

float format. Valid only for POWER5+

processors.

double __friz(double val); Takes an input val in double format,

rounds val to the next integral value

closest to zero, and returns the result in

double format. Valid only for

POWER5+ processors.

float __frizs(float val); Takes an input val in float format,

rounds val to the next integral value

closest to zero, and returns the result in

float format. Valid only for POWER5+

processors.

long __ldarx(volatile long* addr); Generates a Load Double Word And

Reserve Indexed (ldarx) instruction.

This instruction can be used in

conjunction with a subsequent stwcx.

instruction to implement a

read-modify-write on a specified

memory location.

int __lwarx(volatile int* addr); Generates a Load Word And Reserve

Indexed (lwarx) instruction. This

instruction can be used in conjunction

with a subsequent stwcx. instruction to

implement a read-modify-write on a

specified memory location.

int __stdcx(volatile long* addr, long val); Generates a Store Double Word

Conditional Indexed (stdcx.)

instruction. This instruction can be used

in conjunction with a preceding ldarx

instruction to implement a

read-modify-write on a specified

memory location.

12 Getting Started

Table 4. Built-in functions for XL C/C++ (continued)

Function Description

int __stwcx(volatile int* addr, int val); Generates a Store Word Conditional

Indexed (stwcx.) instruction. This

instruction can be used in conjunction

with a preceding lwarx instruction to

implement a read-modify-write on a

specified memory location.

unsigned long __mftb(); Generates a Move From Time Base

(mftb) hardware instruction.

unsigned int __mftbu(); Generates a Move From Time Base

Upper (mftbu) hardware instruction.

Support for language enhancements and APIs

API and language enhancements can offer you additional ease of use and

flexibility when developing your applications, as well as making it easier for you

to develop code that more fully exploits the capabilities of your hardware

platform.

OpenMP API V2.5 support for C, C++, and Fortran

XL C/C++ now supports the OpenMP API V2.5 standard. This latest level of the

OpenMP specification combines the previous C/C++ and Fortran OpenMP

specifications into one single specification for both C/C++ and Fortran, and

resolves previous inconsistencies between them.

The OpenMP Application Program Interface (API) is a portable, scalable

programming model that provides a standard interface for developing

user-directed shared-memory parallelization in C, C++, and Fortran applications.

The specification is defined by the OpenMP organization, a group of computer

hardware and software vendors, including IBM.

You can find more information about OpenMP specifications at:

www.openmp.org

Ease of use

XL C/C++ includes the following new features to help you more easily use the

compiler for your application development.

New installation and configuration utilities

This release of XL C/C++ introduces the xlc_install and new_install utilities to

help you easily install and configure the compiler for initial use on your system.

Support for IBM Tivoli License Manager

IBM Tivoli License Manager (ITLM) is a Web-based solution that can help you

manage software usage metering and license allocation services on supported

systems. In general, ITLM recognizes and monitors the products that are installed

and in use on your system.

Chapter 2. What’s new for V8.0 13

http://www.openmp.org

IBM XL C/C++ Advanced Edition V8.0 for Linux is ITLM-enabled for inventory

and usage signature support, which means that ITLM is able to detect both

product installation of XL C/C++ and its usage.

Note: ITLM is not a part of the XL C/C++ compiler offering, and must be

purchased and installed separately.

Once installed and activated, ITLM scans your system for product inventory

signatures that indicate whether a given product is installed on your system. ITLM

also identifies that product’s version, release, and modification levels. Signature

files for XL C/C++ are installed to the following directory:

Default installations

/opt/ibmcmp/vac/8.0

Non-default installations

compiler/vac/8.0 where compiler is the target directory for

installation specified by the --prefix installation option.

For more information about IBM Tivoli License Manager Web, see:

www.ibm.com/software/tivoli/products/license-mgr

New compiler options

Compiler options can be specified on the command line or through directives

embedded in your application source files.

New command line options

The following table summarizes command line options new to XL C/C++. You can

find detailed syntax and usage information for all compiler options in Compiler

options reference in the XL C/C++ Advanced Edition V8.0 for Linux Compiler

Reference.

 Option Description and remarks

-qasm The -qasm compiler option now adds new functionality. You can

now not only use this compiler option to control how inline

assembler statements in your program are interpreted, but you

can also control whether or not code is emitted for the asm

statement.

-qasm_as The syntax of the -qasm_as compiler option has changed

slightly.

-qdump_class_hierarchy When this option is in effect, the compiler dumps a

representation of the hierarchy and virtual function table layout

for each class object to a file.

-qlist The -qlist compiler option adds new offset and nooffset

suboptions. Specifying -qlist=offset instructs the compiler to

show object listing offsets from the start of a procedure rather

than from the start of code generation.

-qmakedep The -qmakedep compiler option adds a new gcc suboption.

Specifying -qmakedep=gcc instructs the compiler to generate

make dependency information in a format similar to that used

by the GNU C/C++ compiler.

-MF This new compiler option specifies a filename for the make

dependency file generated by the -qmakedep or -M option.

14 Getting Started

http://www.ibm.com/software/tivoli/products/license-mgr

Option Description and remarks

-qppline This new compiler option enables generation of #line directives

in preprocessed output. The -qnoppline compiler option

disables generation of #line directives.

-qreserved_reg This new compiler option lets you reserve one or more register

names. A reserved register cannot be used during compilation

except as a stack pointer, frame pointer or in some other fixed

role.

-qsourcetype This release adds assembler-with-cpp as a new suboption to the

-qsourcetype compiler option.

Ordinarily, the compiler recognizes assembler source files that

require preprocessing by the file’s .S filename suffix. The

compiler preprocesses .S source files and then sends the

preprocessor output to the assembler.

Specifying -qsourcetype=assembler-with-cpp filename on the

command line instructs the compiler to treat all filenames

appearing after the assembler-with-cpp, regardless of filename

suffix, as being assembler source files requiring preprocessing.

-qtmplinst This new compiler option manages how the compiler performs

implicit instantiations of templates.

-qversion Specifying the -qversion compiler option returns the official

compiler product name and version.

New pragma directives

The following table summarizes pragma directive options new to XL C/C++. You

can find detailed syntax and usage information in XL C/C++ Pragmas in the XL

C/C++ Advanced Edition V8.0 for Linux Compiler Reference.

 #pragma Directive Description and remarks

altivec_vrsave When the altivec_vrsave directive is in effect, function prologs

and epilogs include code to maintain the VRSAVE register. This

pragma has effect only when -qaltivec is in effect, must be used

only within a function, and affects only the function in which it

appears.

STDC CX_LIMITED_RANGE The STDC CX_LIMITED_RANGE directive instructs the compiler that

within the scope it controls, complex division and absolute value

are only invoked with values such that intermediate calculation

will not overflow or lose significance.

Chapter 2. What’s new for V8.0 15

16 Getting Started

Chapter 3. Setting up and customizing XL C/C++

This section provides brief overview information about setting up and customizing

XL C/C++, together with pointers to other documentation that describes specific

set-up and customization topics in greater detail.

Environment variables and XL C/C++

XL C/C++ uses a number of environment variables to control various aspects of

compiler operation. Environment variables fall into two basic categories:

v Environment variables defining the basic working environment for the compiler.

v Environment variables defining run time compiler option defaults.

Setting the compiler working environment

These environment variables define the basic working environment for the

compiler, including specifying your choice of national language or defining the

location of libraries or temporary files. For complete information, refer to Setting

up the compilation environment in the XL C/C++ Advanced Edition V8.0 for Linux

Compiler Reference.

LANG

Specifies the default national language locale used to display diagnostic

messages and compiler listings. This environment variable also affects

runtime behavior.

MANPATH

Specifies the search path for system, compiler, and third-party man pages.

NLSPATH

Specifies one or more directory locations where message catalogs can be

found. This environment variable also affects runtime behavior.

PDFDIR

Specifies the directory location where profile-directed feedback information

is stored when you compile with the -qpdf option.

TMPDIR

Specifies the directory location where the compiler will store temporary

files created during program compilation. This environment variable also

affects runtime behavior.

Setting the default runtime options

These environment variables define runtime compiler option defaults to be used by

the compiler, unless explicitly overridden by compiler option settings specified on

the command line or in directives located in your program source. For complete

information, refer to Setting up the compilation environment in the XL C/C++

Advanced Edition V8.0 for Linux Compiler Reference.

XL_NOCLONEARCH

Instructs the program to execute only generic code, where generic code is

compiled object code that is not versioned for a specific processor

architecture. You can set the XL_NOCLONEARCH environment variable to

help you debug your application.

© Copyright IBM Corp. 1990, 2005 17

XLSMPOPTS

The XLSMPOPTS environment variable allows you to specify run time

options that affect SMP execution.

OMP_DYNAMIC, OMP_NESTED, OMP_NUM_THREADS, OMP_SCHEDULE

 These environment variables, are part of the OpenMP standard. They let

you specify how the application will execute sections of parallel code.

Customizing the configuration file

The configuration file is a plain text file that specifies default settings for compiler

options and invocations. XL C/C++ provides a default configuration at file

/etc/opt/ibmcmp/vac/8.0/vac.cfg during compiler installation.

If you are running on a single-user system, or if you already have a compilation

environment with compilation scripts or makefiles, you may want to leave the

default configuration file as it is.

As an alternative, you can create additional custom configuration files to meet

special compilation requirements demanded by specific applications or groups of

applications.

See Customizing the configuration file in the XL C/C++ Advanced Edition V8.0 for

Linux Compiler Reference for more information on creating and using custom

configuration files.

Determining what level of XL C/C++ is installed

You may not be sure which level of XL C/C++ is installed on a particular machine.

You will need to know this information if contacting software support.

To display the version and PTF release level of the compiler you have installed on

your system, invoke the compiler with the -qversion compiler option. For example:
xlC -qversion

18 Getting Started

Chapter 4. Editing, compiling, and linking programs with XL

C/C++

Basic C and C++ program development consists of repeating cycles of editing,

compiling and linking (by default a single step combined with compiling), and

running.

Prerequisite Information:

1. Before you can use the compiler, you must first ensure that all Linux settings

(for example, certain environment variables and storage limits) are correctly

configured. For more information see “Environment variables and XL C/C++”

on page 17.

2. To learn more about writing C and C++ programs, refer to the XL C/C++

Advanced Edition V8.0 for Linux Language Reference.

The compiler phases

The typical compiler invocation command executes some or all of the following

programs in sequence. For link time optimizations, some of the phases will be

executed more than once during a compilation. As each program runs, the results

are sent to the next step in the sequence.

1. A preprocessor

2. The compiler, which consists of the following phases:

a. Front-end parsing and semantic analysis

b. Loop transformations

c. Interprocedural analysis

d. Optimization

e. Register allocation

f. Final assembly
3. The assembler (for .s files and for .S files after they are preprocessed)

4. The linker ld

To see the compiler step through these phases, specify the -qphsinfo and -v

compiler options when you compile your application.

Editing C and C++ source files

To create C and C++ source programs, you can use any of the available text

editors, such as vi or emacs. Source programs must use a recognized filename

suffix unless the configuration file or the -qsourcetype compiler option define

additional non-standard filename suffixes. See “XL C/C++ input files” on page 21

for a list of filename suffixes recognized by XL C/C++.

For a C or C++ source program to be a valid program, it must conform to the

language definitions specified in the XL C/C++ Advanced Edition V8.0 for Linux

Language Reference.

© Copyright IBM Corp. 1990, 2005 19

Compiling with XL C/C++

To compile a source program, use one of the compiler invocation commands with

the syntax shown below:

��

compiler_invocation

�

�

input_file

cmd_line_option

��

The compiler invocation command performs all necessary steps to compile C or

C++ source files, assemble any .s and .S files, and link the object files and libraries

into an executable program.

For new C or C++ application work, you should consider compiling with xlC or

xlc++, or its threadsafe counterparts.

Both xlC and xlc++ will compile program source as either C or C++, but compiling

C++ files with xlc may result in link or runtime errors because libraries required

for C++ code are not specified when the linker is called by the C compiler. The

other base compiler invocation commands exist primarily to provide explicit

compilation support for different levels and extensions of the C or C++ language.

In addition to the base compiler invocation commands, XL C/C++ also provides

specialized variants of many base compiler invocations. A variation on a base

compiler invocation is named by attaching a suffix to the name of that invocation

command. Suffix meanings for invocation variants are:

_r Threadsafe invocation variant that supports POSIX Pthread APIs for

multithreaded applications, including applications compiled with -qsmp or

with source code containing OpenMP program parallelization directives.

 Table 5. XL C/C++ compiler invocation commands

Base

Invocation

Variants on Base Invocation Description

xlC
xlc++

xlC_r
xlc++_r

Invokes the compiler so that source files are

compiled as C++ language source code.

xlc xlc_r Invokes the compiler so that source files are

compiled as C source code.

c99 c99_r Invokes the compiler so that source files are

compiled with strict conformance to the ISO

C99 standard (ISO/IEC 14882:1999).

Note: The ISO C99 standard also specifies

features in the runtime library. These features

may not be supported in the runtime library

currently installed on your system.

c89 c89_r Invokes the compiler so that source files are

compiled with strict conformance to the ISO

C89 standard (ISO/IEC 9899:1990).

cc cc_r Invokes the compiler for use with legacy C

code that does not require compliance with

C89 or C99.

20 Getting Started

Table 5. XL C/C++ compiler invocation commands (continued)

Base

Invocation

Variants on Base Invocation Description

gxlc Invokes the compiler after translating GNU C

command-line options to XL C/C++ options.

Note: Not every GNU C option has an exact

XL C/C++ equivalent.

gxlC
gxlc++

 Invokes the compiler after translating GNU

C++ command-line options to XL C/C++

options.

Note: Not every GNU C++ option has an

exact XL C/C++ equivalent.

Compiling parallelized XL C/C++ applications

XL C/C++ provides threadsafe compilation invocations that you can use when

compiling parallelized applications for use in multiprocessor environments.

v xlC_r

v xlc++_r

v xlc_r

v c99_r

v c89_r

v cc_r

These invocations are similar to their corresponding base compiler invocations,

except that they link and bind compiled objects to threadsafe components and

libraries.

Note: Using any of these commands alone does not imply parallelization. For the

compiler to recognize OpenMP directives and activate parallelization, you

must also specify -qsmp compiler option. In turn, you can only specify the

-qsmp option in conjunction with one of these six invocation commands.

When you specify -qsmp, the driver links in the libraries specified on the

smp libraries line in the active stanza of the configuration file.

XL C/C++ input files

The input files to the compiler are:

Source files (.c suffix for C language, .C .cc .cp .cpp .cxx .c++ suffixes for C++

language)

The compiler considers files with these suffixes as being C or C++ source

files for compilation.

 The compiler compiles source files in the order you specify on the

command line. If it cannot find a specified source file, the compiler

produces an error message and proceeds to the next file, if one exists.

 If you have C or C++ source files that do not conform to standard C or

C++ file naming conventions, you can use the -+ compiler option to

instruct the compiler to treat such files as C or C++ source files. Such files,

other than those with .a, .o, .so, .s, or .S filename suffixes, are compiled as

C++ source files when the -+ compiler option is in effect.

 Include files also contain source and often have suffixes different from

those ordinarily used for C or C++ source files.

Chapter 4. Editing, compiling, and linking programs with XL C/C++ 21

Preprocessed source files (.i suffix)

The compiler sends the preprocessed source file, filename.i, to the

compiler where it is preprocessed again in the same way as a .c or .C file.

Preprocessed files are useful for checking macros and preprocessor

directives.

Object files (.o suffix)

After the compiler compiles the source files, it uses the ld command to link

the resulting .o files, any .o files that you specify as input files, and some

of the .o and .a files in the product and system library directories. The

compiler can then produce a single .o object file or a single executable

output file from these object files.

Assembler source files (.s and .S suffixes)

The compiler sends assembler source files to the assembler (as). The

assembler sends object files to the linker at link time.

Note: Assembler source files with a .S filename suffix are first

preprocessed by the compiler, then sent to the assembler.

Shared object or library files (.so suffix)

These are object files that can be loaded and shared by multiple processes

at run time. When a shared object is specified during linking, information

about the object is recorded in the output file, but no code from the shared

object is actually included in the output file.

Configuration files (.cfg suffix)

The contents of the configuration file determine many aspects of the

compilation process, most commonly the default options for the compiler.

You can use it to centralize different sets of default compiler options or to

keep multiple levels of the XL C/C++ compiler present on a system.

 The default configuration files are /etc/opt/ibmcmp/vac/8.0/vac.cfg and

/etc/opt/ibmcmp/vac/8.0/gxlc.cfg.

Profile data files

 The -qpdf1 option produces runtime profile information for use in

subsequent compilations. This information is stored in one or more hidden

files with names that match the pattern .*pdf*.

XL C/C++ output files

The output files that C and C++ produces are:

Executable files: a.out

By default, XL C/C++ produces an executable file that is named a.out in

the current directory.

Object files: filename.o

If you specify the -c compiler option, instead of producing an executable

file, the compiler produces an object file for each specified program source

input file, and the assembler produces an object file for each specified

assembler input file. By default, the output object files are saved to the

current directory using the same file name prefixes as their corresponding

source input files.

Assembler source files: filename.s

If you specify the -S compiler option, instead of producing an executable

file, the XL C/C++ compiler produces an equivalent assembler source file

for each specified input source file. By default, the output assembler source

22 Getting Started

files are saved to the current directory using the same file name prefixes as

their corresponding source input files.

Compiler listing files: filename.lst

By default, no listing is produced unless you specify one or more

listing-related compiler options. The listing file is placed in the current

directory, with the same file name prefix as the source file.

cpp-Preprocessed source files: filename.i

To create a preprocessed source file, specify the -P option at compilation

time. The source files are preprocessed but not compiled. You can also

redirect the output from the -E option to generate a preprocessed file that

contains #line directives. A preprocessed source file, filename.i, is

produced for each source file. By default, output preprocessor source files

are saved to the current directory using the same file name prefixes as

their corresponding source input files.

Make dependency files: filename.u

When the -M or -qmakedep compiler option is in effect, the compiler

creates a .u file for each C or C++ source file compiled. You can use the

dependency information provided by .u files to help you create make files.

 Each .u file contains a line for the input file and an entry for each include

file in the general form of:
file_name.o :file_name.c

file_name.o :include_file_name

Include files are listed according to the compiler’s search order rules for

the #include preprocessor directive. If the include file is not found, it is not

added to the .u file. Files with no include statements produce output files

containing one line that lists only the input file name.

Profile data files (.*pdf*)

These are the profile-directed feedback files that the -qpdf1 compiler

option produces. They are used in subsequent compilations to tune

optimizations according to actual execution results.

Specifying compiler options

Compiler options perform a variety of functions, such as setting compiler

characteristics, describing the object code to be produced, controlling the diagnostic

messages emitted, and performing some preprocessor functions.

You can specify compiler options:
v On the command line with command line compiler options.

v In the stanzas found in a compiler configuration file

v In your source code using directive statements

v Or by using any combination of these techniques.

When multiple compiler options have been specified, it is possible for option

conflicts and incompatibilities to occur. To resolve these conflicts in a consistent

fashion, the compiler usually applies the following general priority sequence:
1. Directive statements in your source file override command line settings

2. Command line compiler option settings override configuration file settings

3. Configuration file settings override default settings

Chapter 4. Editing, compiling, and linking programs with XL C/C++ 23

Generally, if the same compiler option is specified more than once on a command

line when invoking the compiler, the last option specified prevails.

Note: The -I compiler option is a special case. The compiler searches any

directories specified with -I in the vac.cfg file before it searches the

directories specified with -I on the command line. The option is cumulative

rather than preemptive.

Other options with cumulative behavior are -R and -l (lowercase L).

You can also pass compiler options to the linker, assembler, and preprocessor. See

Compiler options reference in the XL C/C++ Advanced Edition V8.0 for Linux

Compiler Reference for more information about compiler options and how to specify

them.

Linking XL C/C++ programs

By default, you do not need to do anything special to link an XL C/C++ program.

The compiler invocation commands automatically call the linker to produce an

executable output file. For example, running the following command:

xlC file1.C file2.o file3.C

compiles and produces the object files file1.o and file3.o, then all object files

(including file2.o) are submitted to the linker to produce one executable.

After linking, follow the instructions in Chapter 5, “Running XL C/C++

programs,” on page 27 to execute the program.

Compiling and linking in separate steps

To produce object files that can be linked later, use the -c option.

xlc++ -c file1.C # Produce one object file (file1.o)

xlc++ -c file2.C file3.C # Or multiple object files (file1.o, file3.o)

xlc++ file1.o file2.o file3.o # Link object files with appropriate libraries

It is often best to execute the linker through the compiler invocation command,

because it passes some extra ld options and library names to the linker

automatically.

Dynamic and static linking

XL C/C++ allows your programs to take advantage of the operating system

facilities for both dynamic and static linking:

v Dynamic linking means that the code for some external routines is located and

loaded when the program is first run. When you compile a program that uses

shared libraries, the shared libraries are dynamically linked to your program by

default.

Dynamically linked programs take up less disk space and less virtual memory if

more than one program uses the routines in the shared libraries. During linking,

they do not require any special precautions to avoid naming conflicts with

library routines. They may perform better than statically linked programs if

several programs use the same shared routines at the same time. They also allow

you to upgrade the routines in the shared libraries without relinking.

Because this form of linking is the default, you need no additional options to

turn it on.

24 Getting Started

v Static linking means that the code for all routines called by your program

becomes part of the executable file.

Statically linked programs can be moved to and run on systems without the XL

C/C++ libraries. They may perform better than dynamically linked programs if

they make many calls to library routines or call many small routines. They do

require some precautions in choosing names for data objects and routines in the

program if you want to avoid naming conflicts with library routines. They also

may not work if you compile them on one level of the operating system and run

them on a different level of the operating system.

See Invoking the linkage editor in the XL C/C++ Advanced Edition V8.0 for Linux

Compiler Reference for more information about linking your programs.

Also, see Constructing a library in the XL C/C++ Advanced Edition V8.0 for Linux

Programming Guide for more information about compiling and linking a library.

Chapter 4. Editing, compiling, and linking programs with XL C/C++ 25

26 Getting Started

Chapter 5. Running XL C/C++ programs

The default file name for the program executable file produced by the XL C/C++

compiler is a.out. You can select a different name with the -o compiler option.

You can run a program by entering the name of a program executable file together

with any runtime arguments on the command line.

You should avoid giving your program executable file the same name as system or

shell commands, such as test or cp, as you could accidentally execute the wrong

command. If you do decide to name your program executable file with the same

name as a system or shell command, you should execute your program by

specifying the path name to the directory in which your program executable file

resides, such as ./test.

Canceling execution

To suspend a running program, press the Ctrl+Z key while the program is in the

foreground. Use the fg command to resume running.

To cancel a running program, press the Ctrl+C key while the program is in the

foreground.

Setting runtime options

You can use environment variable settings to control certain runtime options and

behaviors of applications created with the XL C/C++ compiler. Other environment

variables do not control actual runtime behavior, but can have an impact on how

your applications run.

For more information on environment variables and how they can affect your

applications at runtime, see “Environment variables and XL C/C++” on page 17.

Running compiled applications on other systems

If you want to run an application developed with the XL C/C++ compiler on

another system that does not have the compiler installed, you will need to install a

runtime environment on that system.

You can obtain the latest XL C/C++ Runtime Environment install images, together

with licensing and usage information, from the Download section on the XL

C/C++ Support page at:

www.ibm.com/software/awdtools/xlcpp/support

© Copyright IBM Corp. 1990, 2005 27

http://www.ibm.com/software/awdtools/xlcpp/support

28 Getting Started

Chapter 6. XL C/C++ compiler diagnostic aids

XL C/C++ issues diagnostic messages when it encounters problems compiling

your application. You can use these messages to help identify and correct such

problems.

This section provides a brief overview of the main diagnostics messages offered by

XL C/C++. For more information about related compiler options that can help you

resolve problems with your application, see Options for error checking and

debugging and Options that control listings and messages in the XL C/C++

Advanced Edition V8.0 for Linux Compiler Reference.

Compilation return codes

At the end of compilation, the compiler sets the return code to zero under any of

the following conditions:

v No messages are issued.

v The highest severity level of all errors diagnosed is less than the setting of the

-qhalt compiler option, and the number of errors did not reach the limit set by

the -qmaxerr compiler option.

v No message specified by the -qhaltonmsg compiler option is issued.

Otherwise, the compiler sets the return code to one of the following values:

 Return Code Error Type

1

An error with a severity level higher than the setting of the -qhalt

compiler option has occurred.

40 An option error or unrecoverable error has occurred.

41 A configuration file error has occurred.

250

An out-of-memory has occurred. The compiler invocation command

cannot allocate any more memory for its use.

251

A signal-received error has occurred. That is, an unrecoverable error or

interrupt signal has occurred.

252 A file-not-found error has occurred.

253 An input/output error has occurred - files cannot be read or written to.

254 A fork error has occurred. A new process cannot be created.

255 An error has been detected while the process was running.

Note: Return codes may also be displayed for runtime errors.

XL C/C++ compiler listings

Diagnostic information is produced in the output listing according to the settings

of the -qlist, -qsource, -qxref, -qattr, -qreport, and -qlistopt compiler options. The

-S option generates an assembler listing in a separate file.

If the compiler encounters a programming error when compiling an application,

the compiler issues a diagnostic message to the standard error device and, if the

appropriate compiler options have been selected, to a listing file.

© Copyright IBM Corp. 1990, 2005 29

To locate the cause of a problem with the help of a listing, you can refer to:

v The source section (to see any compilation errors in the context of the

source program)

v The attribute and cross-reference section (to find data objects that are

misnamed or used without being declared or to find mismatched

parameters)

v The transformation and object sections (to see if the generated code is

similar to what you expect)

A heading identifies each major section of the listing. A string of ″greater than″ (>)

symbols precede the section heading so that you can easily locate its beginning:

>>>>> section name

You can select which sections appear in the listing by specifying the appropriate

compiler options. For more information about these options see Options for error

checking and debugging and Options that control listings and messages in the XL

C/C++ Advanced Edition V8.0 for Linux Compiler Reference.

Header section

The listing file has a header section that contains the following items:

v A compiler identifier that consists of the following:

– Compiler name

– Version number

– Release number

– Modification number

– Fix number
v Source file name

v Date of compilation

v Time of compilation

The header section is always present in a listing; it is the first line and appears

only once. The following sections are repeated for each compilation unit when

more than one compilation unit is present.

Options section

The options section is always present in a listing. There is a separate section for

each compilation unit. It indicates the specified options that are in effect for the

compilation unit. This information is useful when you have conflicting options. If

you specify the -qlistopt compiler option, this section lists the settings for all

options.

Source section

The source section contains the input source lines with a line number and,

optionally, a file number. The file number indicates the source file (or include file)

from which the source line originated. All main file source lines (those that are not

from an include file) do not have the file number printed. Each include file has a

file number associated with it, and source lines from include files have that file

number printed. The file number appears on the left, the line number appears to

its right, and the text of the source line is to the right of the line number. The

compiler numbers lines relative to each file. The source lines and the numbers that

are associated with them appear only if the -qsource compiler option is in effect.

30 Getting Started

If the -qsource option is in effect, the error messages are interspersed with the

source listing. The error messages that are generated during the compilation

process contain the following:

v The source line

v A line of indicators that point to the columns that are in error

v The error message.

For example:

 7 | for (i=0; i<100; i++) {

 8 | for (j=0; j<100; j++) {

 9 | a[i:j] = j;

"loop.c", line 9.16: 1506-277 (S) Syntax error: possible missing ’,’ or ’]’?

 10 | }

 11 | }

If the -qnosource option is in effect, the error messages are all that appear in the

source section, and an error message contains:

v The file name in quotation marks

v The line number and column position of the error

v The error message.

For example:

"loop.c", line 9.16: 1506-277 (S) Syntax error: possible missing ’,’ or ’]’?

Error message format

The format of a C and C++ diagnostic message is:

�� 15 cc - nnn message_text

(

severity_letter

)

 ��

where:

15cc nnn Indicates an XL C/C++ message and component number.

severity_letter Indicates how serious the problem is, as described in the preceding

section.

 Compilation errors can have the following severity levels, which

are displayed as part of some error messages:

U An unrecoverable error. Compilation failed because of an

internal compiler error.

S A severe error. Compilation failed due to one of the

following:

v Conditions exist that the compiler could not correct.

v An internal compiler table has overflowed. Processing of

the program stops, and XL C/C++ does not produce an

object file.

v An include file does not exist. Processing of the program

stops, and XL C/C++ does not produce an object file.

v An unrecoverable program error has been detected.

Processing of the source file stops, and XL C/C++ does

not produce an object file. You can usually correct this

error by fixing any program errors that were reported

during compilation.

Chapter 6. XL C/C++ compiler diagnostic aids 31

E C compilations only. The compiler detected an error in

your source code and attempted to correct it. The compiler

will continue to compile your application, but might not

generate the results you expect.

W Warning message. The compiler detected a potential

problem in your source code, but did not attempt to

correct it. The compiler will continue to compile your

application, but might not generate the results you expect.

I Informational message. It does not indicate any error, just

something that you should be aware of to avoid

unexpected behavior.

’message text’ Is the text describing the error

By default, the compiler stops without producing output files if it encounters a

severe error (severity S). You can make the compiler stop for less severe errors by

specifying a different severity with the -qhalt option. For example, with -qhalt=w,

the compiler stops if it encounters any errors of severity W or higher severity. This

technique can reduce the amount of compilation time that is needed to check the

syntactic and semantic validity of a program. You can limit low-severity messages

without stopping the compiler by using the -qflag option.

Transformation report section

If the -qreport option is in effect, the compiler generates a transformation report

showing how XL C/C++ optimized the program. This section displays

pseudo-code that corresponds to the original source code, so that you can see

parallelization and loop transformations generated by the -qhot or -qsmp options.

Attribute and cross-reference section

This section provides information about the entities that are used in the

compilation unit. It is present if the -qxref or -qattr compiler option is in effect.

Depending on the options in effect, this section contains all or part of the following

information about the entities that are used in the compilation unit:

v Names of the entities

v Attributes of the entities (if -qattr is in effect). Attribute information may

include any or all of the following details:

– The data type

– The class of the name

– The relative address of the name

– Alignment

– Dimensions

– For an array, whether it is allocatable

– Whether it is a pointer, target, or integer pointer

– Whether it is a parameter

– Whether it is volatile

– For a dummy argument, its intent, whether it is value, and whether it is

optional

– Private, public, protected, module
v Coordinates to indicate where you have defined, referenced, or modified

the entities. If you declared the entity, the coordinates are marked with a $.

If you initialized the entity, the coordinates are marked with a *. If you

both declared and initialized the entity at the same place, the coordinates

are marked with a &. If the entity is set, the coordinates are marked with a

@. If the entity is referenced, the coordinates are not marked.

32 Getting Started

If you specify the full suboption with -qxref or -qattr, C and C++ reports all

entities in the compilation unit. If you do not specify this suboption, only the

entities you actually use appear.

Object section

XL C/C++ produces this section only when the -qlist compiler option is in effect.

It contains a pseudo-assembler object code listing showing the source line number,

the instruction offset in hexadecimal notation, the assembler mnemonic of the

instruction, and the hexadecimal value of the instruction. On the right side, it also

shows the cycle time of the instruction and the intermediate language of the

compiler. Finally, the total cycle time (straight-line execution time) and the total

number of machine instructions that are produced are displayed. There is a

separate section for each compilation unit.

Note: To obtain a true assembler listing, specify the -S compiler option when

compiling your application. The assembler listing will be named filename.s.

File table section

This section contains a table that shows the file number and file name for each

main source file and include file used. It also lists the line number of the main

source file at which the include file is referenced. This section is always present.

Compilation unit epilogue section

This is the last section of the listing for each compilation unit. It contains the

diagnostics summary and indicates whether the unit was compiled successfully.

This section is not present in the listing if the file contains only one compilation

unit.

Compilation epilogue section

The compilation epilogue section occurs only once at the end of the listing. At

completion of the compilation, XL C/C++ presents a summary of the compilation:

number of source records that were read, compilation start time, compilation end

time, total compilation time, total CPU time, and virtual CPU time. This section is

always present in a listing.

Debugging compiled applications

Specifying the -g or -qlinedebug compiler options at compile time instructs the XL

C/C++ compiler to include debugging information in compiled output. You can

then use gdb or any other symbolic debugger to step through and inspect the

behavior of your compiled application.

Chapter 6. XL C/C++ compiler diagnostic aids 33

34 Getting Started

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504–1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2–31 Roppongi 3–chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1990, 2005 35

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Lab Director

IBM Canada Limited

8200 Warden Avenue

Markham, Ontario, Canada

L6G 1C7

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information may contain sample application programs in source language,

which illustrates programming techniques on various operating platforms. You

may copy, modify, and distribute these sample programs in any form without

payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the

operating platform for which the sample programs are written. These examples

have not been thoroughly tested under all conditions. IBM, therefore, cannot

guarantee or imply reliability, serviceability, or function of these programs. You

may copy, modify, and distribute these sample programs in any form without

payment to IBM for the purposes of developing, using, marketing, or distributing

application programs conforming to IBM’s application programming interfaces.

Programming interface information

Programming interface information is intended to help you create application

software using this program.

General-use programming interfaces allow the customer to write application

software that obtain the services of this program’s tools.

36 Getting Started

However, this information may also contain diagnosis, modification, and tuning

information. Diagnosis, modification, and tuning information is provided to help

you debug your application software.

Note: Do not use this diagnosis, modification, and tuning information as a

programming interface because it is subject to change.

Trademarks and service marks

The following terms, used in this publication, are trademarks or service marks of

the International Business Machines Corporation in the United States or other

countries or both:

 AIX IBM OS/390

OS/400 POWER3 POWER4

POWER5 POWER5+ PowerPC

z/OS z/VM

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

OpenMP is a trademark of the OpenMP Architecture Review Board.

UNIX is a registered trademark of the Open Group in the United States and other

countries.

Windows is a trademark of Microsoft Corporation in the United States, other

countries, or both.

Other company, product, and service names may be trademarks or service marks

of others.

Notices 37

38 Getting Started

Index

Special characters
-qattr compiler option 32

-qlist compiler option 33

-qlistopt compiler option 30

-qreport compiler option 32

-qsource compiler option 30

-qxref compiler option 32

/etc/opt/ibmcmp/vacpp/8.0/vac.cfg

configuration file 18

.a files 21

.c and .C files 21

.cfg files 21

.lst files 22

.mod files 21, 22

.o files 21, 22

.s files 21, 22

.S files 21

.so files 21

Numerics
15xx identifiers for XL C/C++

messages 31

64-bit environment 6

A
a.out file 22

ANSI
checking conformance to theC/C++

standard 3

archive files 21

assembler
source (.s) files 21, 22

source (.S) files 21

attribute section in compiler listing 32

C
code optimization 5

command-line options
See compiler options

compilation unit epilogue section in

compiler listing 33

compiler listings 29

compiler options
See also the individual options listed

under Special Characters at the start

of the index

section in compiler listing 30

compiling
description of how to compile a

program 20

SMP programs 21

configuration file 18, 21

cross-reference section in compiler

listing 32

customizing configuration file (including

default compiler options) 18

D
debugger support 7, 33

debugging 29, 33

defaults
customizing compiler defaults 18

documentation, online formats 1

dynamic linking 24

E
E error severity 31

editing source files 19

environment variables
compile time 17

runtime 17

epilogue sections in compiler listing 33

error messages
explanation of format 31

in compiler listing 30

example programs
See sample programs

executable files 22

executing a program 27

executing the compiler 20

F
file table section in compiler listing 33

files
editing source 19

input 21

output 22

H
header section in compiler listing 30

help system 1

HTML documentation 1

I
I error severity 31

I/O
See input/output

informational message 31

input files 21

invoking a program 27

invoking the compiler 20

ISO
checking conformance to the C/C++

standard 3

L
language support 3

level of XL C/C++, determining 18

libraries 21

linking 24

linking (continued)
dynamic 24

static 24

listing files 22

M
makefiles

configuration file as alternative for

default options 18

mod files 21, 22

multiprocessor systems 6

O
object files 21, 22

online compiler help 1

online documentation 1

OpenMP 6

optimization 5

options section in compiler listing 30

output files 22

P
parallelization 6

parameters
See arguments

PDF documentation 1

problem determination 29

profiling data files 22

R
running a program 27

running the compiler 20

runtime
libraries 21

runtime environment 27

runtime options 27

S
S error severity 31

severe error 31

shared memory parallelization 6

shared object files 21

SMP
programs, compiling 21

SMP programs 6

source files 21

source section in compiler listing 30

source-code conformance checking 3

source-level debugging support 7

static linking 24

symbolic debugger support 7

© Copyright IBM Corp. 1990, 2005 39

T
text editors 19

Tools 4

cleanpdf 4

configuration file utility 4

gxlc and gxlc++ 5

installation utility 4

mergepdf 4

new install configuration utility 4

new_install 4

resetpdf 5

showpdf 5

vac_configure 4

xlc_install 4

transformation report section in compiler

listing 32

U
U error severity 31

unrecoverable error 31

W
W error severity 31

warning error 31

40 Getting Started

����

Program Number: 5724-M16

SC09-8015-00

	Contents
	About this document
	Who should read this document
	How to use this document
	How this document is organized
	Conventions and terminology used in this document
	Typographical conventions
	How to read syntax diagrams
	Examples

	Related information
	IBM XL C/C++ publications
	Additional documentation

	Technical support
	How to send your comments

	Chapter 1. Overview of XL C/C++ features
	Commonality with other XL compilers
	Documentation, online help, and technical support
	Hardware and operating system support
	Highly configurable compiler
	Language standards compliance
	Compatibility with GNU
	Source-code migration and conformance checking

	Libraries
	Mathematics Acceleration Subsystem libraries
	Basic Linear Algebra Subprograms

	Tools and utilities
	Program optimization
	64-bit object capability
	Shared memory parallelization
	OpenMP directives

	Diagnostic listings
	Symbolic debugger support

	Chapter 2. What's new for V8.0
	Performance and optimization
	Architecture and processor-specific code tuning
	High performance libraries
	Other performance-related compiler options and directives
	Built-in functions new for this release

	Support for language enhancements and APIs
	OpenMP API V2.5 support for C, C++, and Fortran

	Ease of use
	New installation and configuration utilities
	Support for IBM Tivoli License Manager

	New compiler options
	New command line options
	New pragma directives

	Chapter 3. Setting up and customizing XL C/C++
	Environment variables and XL C/C++
	Setting the compiler working environment
	Setting the default runtime options

	Customizing the configuration file
	Determining what level of XL C/C++ is installed

	Chapter 4. Editing, compiling, and linking programs with XL C/C++
	The compiler phases
	Editing C and C++ source files
	Compiling with XL C/C++
	Compiling parallelized XL C/C++ applications

	XL C/C++ input files
	XL C/C++ output files
	Specifying compiler options
	Linking XL C/C++ programs
	Compiling and linking in separate steps
	Dynamic and static linking

	Chapter 5. Running XL C/C++ programs
	Canceling execution
	Setting runtime options
	Running compiled applications on other systems

	Chapter 6. XL C/C++ compiler diagnostic aids
	Compilation return codes
	XL C/C++ compiler listings
	Header section
	Options section
	Source section
	Error message format

	Transformation report section
	Attribute and cross-reference section
	Object section
	File table section
	Compilation unit epilogue section
	Compilation epilogue section

	Debugging compiled applications

	Notices
	Programming interface information
	Trademarks and service marks

	Index

