
IBM XL C/C++ Advanced Edition V8.0 for Linux

Compiler Reference

SC09-8013-00

���

IBM XL C/C++ Advanced Edition V8.0 for Linux

Compiler Reference

SC09-8013-00

���

Note!

Before using this information and the product it supports, be sure to read the information in “Notices” on page 307.

First Edition (November 2005)

This edition applies to XL C/C++ Advanced Edition V8.0 for Linux (Program number 5724-M16) and to all

subsequent releases and modifications until otherwise indicated in new editions.

IBM welcomes your comments. You can send them by Internet: compinfo@ca.ibm.com

Include the title and order number of this book, and the page number or topic related to your comment. Please

remember to include your e-mail address if you want a reply.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1995, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this document vii

Who should read this document vii

How to use this document vii

How this document is organized vii

Conventions used in this document viii

Typographical conventions viii

Icons ix

How to read syntax diagrams ix

Related information xi

Additional documentation xii

Technical support xii

How to send your comments xiii

Chapter 1. Configuring the compiler . . 1

Setting environment variables 1

General environment variables 1

Environment variables for parallel processing . . 2

Customizing the configuration file 8

Configuration file attributes 9

Chapter 2. Compiling and linking

applications 11

Invoking the compiler 11

Selecting an invocation command 12

Invocation syntax 13

Types of input files 13

Types of output files 15

Specifying compiler options 16

Specifying compiler options on the command line 16

Specifying compiler options in a configuration

file 18

Specifying compiler options in program source

files 18

Resolving conflicting compiler options 19

Specifying compiler options for

architecture-specific, 32-bit or 64-bit compilation . 20

Preprocessing 21

Specifying path names for include files 22

Linking 23

Order of linking 24

Compiler messages and listings 25

Compiler messages 25

Compiler listings 27

Compiler return codes 28

Message catalog errors 28

Paging space errors during compilation 29

Chapter 3. Compiler options reference 31

Summary of compiler options by functional

category 31

Options that control input 31

Options that control output 33

Options for performance optimization 35

Options for error checking and debugging . . . 37

Options that control listings and messages . . . 38

Options for compatibility 40

Options that control integer and floating-point

processing 40

Options that control linking 40

Options for customizing the compiler 41

Individual option descriptions 42

-+ (plus sign) 42

-# (pound sign) 43

-q32, -q64 44

-qabi_version 44

-qaggrcopy 45

-qalias 46

-qalign 47

-qalloca 48

-qaltivec 49

-qarch 49

-qasm 52

-qasm_as 53

-qattr 54

-B 55

-qbigdata 56

-qbitfields 56

-C 56

-c 57

-qc_stdinc 58

-qcache 58

-qchars 60

-qcheck 61

-qcinc 62

-qcompact 63

-qcomplexgccincl 64

-qcpluscmt 64

-qcpp_stdinc 68

-qcrt 68

-D 69

-qdataimported 70

-qdatalocal 71

-qdbxextra 72

-qdigraph 72

-qdirectstorage 73

-qdollar 74

-qdump_class_hierarchy 74

-E 75

-e 76

-qeh 77

-qenablevmx 77

-qenum 78

-F 82

-qflag 82

-qfloat 83

-qflttrap 86

-qformat 88

-qfullpath 89

-qfuncsect 89

-g 90

-qgcc_c_stdinc 90

© Copyright IBM Corp. 1995, 2005 iii

-qgcc_cpp_stdinc 91

-qgenproto 92

-qhalt 93

-qhaltonmsg 94

-qhot 94

-I 97

-qidirfirst 97

-qignerrno 98

-qignprag 99

-qinfo 100

-qinitauto 103

-qinlglue 103

-qinline 104

-qipa 106

-qisolated_call 115

-qkeepinlines 115

-qkeepparm 116

-qkeyword 117

-L 117

-l 118

-qlanglvl 119

-qlib 135

-qlibansi 135

-qlinedebug 136

-qlist 136

-qlistopt 137

-qlonglit 138

-qlonglong 139

-M 140

-ma 141

-MF 141

-qmakedep 142

-qmaxerr 144

-qmaxmem 145

-qmbcs, -qdbcs 146

-qminimaltoc 146

-qmkshrobj 147

-O, -qoptimize 148

-o 151

-P 152

-p 153

-qpath 153

-qpdf1, -qpdf2 154

-pg 157

-qphsinfo 158

-qpic 159

-qppline 159

-qprefetch 160

-qprint 160

-qpriority 161

-qproclocal, -qprocimported, -qprocunknown 161

-qproto 163

-Q 164

-R 166

-r 167

-qreport 167

-qreserved_reg 168

-qro 169

-qroconst 169

-qrtti 170

-S 171

-s 172

-qsaveopt 172

-qshowinc 173

-qshowpdf 174

-qsmallstack 175

-qsmp 175

-qsource 177

-qsourcetype 178

-qspill 179

-qsrcmsg 180

-qstaticinline 180

-qstaticlink 181

-qstatsym 182

-qstdinc 182

-qstrict 183

-qstrict_induction 184

-qsuppress 185

-qsymtab 185

-qsyntaxonly 186

-t 187

-qtabsize 188

-qtbtable 188

-qtempinc 189

-qtemplaterecompile 190

-qtemplateregistry 190

-qtempmax 191

-qthreaded 192

-qtls 192

-qtmplinst 193

-qtmplparse 194

-qtocdata 195

-qtrigraph 196

-qtune 197

-U 198

-qunroll 198

-qunwind 200

-qupconv 200

-qutf 201

-V 201

-v 202

-qversion 202

-qvftable 203

-qvrsave 203

-W 204

-w 205

-qwarn64 205

-qxcall 206

-qxref 206

-y 207

Chapter 4. Reusing GNU C/C++

compiler options with glxc and glxc++ 211

glxc and glxc++ syntax 211

Configuring the option mapping 212

Chapter 5. Compiler pragmas

reference 215

Summary of XL C/C++ pragmas 215

Summary of OpenMP pragma directives 216

Individual pragma descriptions 217

iv XL C/C++ Compiler Reference

#pragma align 217

#pragma alloca 218

#pragma altivec_vrsave 219

#pragma block_loop 219

#pragma chars 222

#pragma comment 223

#pragma complexgcc 224

#pragma define 225

#pragma disjoint 225

#pragma do_not_instantiate 226

#pragma enum 227

#pragma execution_frequency 230

#pragma hashome 232

#pragma ibm snapshot 233

#pragma implementation 234

#pragma info 234

#pragma instantiate 236

#pragma ishome 237

#pragma isolated_call 238

#pragma langlvl 239

#pragma leaves 240

#pragma loop_id 241

#pragma map 241

#pragma mc_func 245

#pragma nosimd 247

#pragma novector 247

#pragma options 248

#pragma option_override 252

#pragma pack 253

#pragma priority 255

#pragma reachable 256

#pragma reg_killed_by 256

#pragma report 258

#pragma STDC cx_limited_range 259

#pragma stream_unroll 259

#pragma strings 261

#pragma unroll 261

#pragma unrollandfuse 262

#pragma weak 264

Pragma directives for parallel processing 266

#pragma omp atomic 266

#pragma omp parallel 267

#pragma omp for 268

#pragma omp ordered 272

#pragma omp parallel for 272

#pragma omp section, #pragma omp sections 272

#pragma omp parallel sections 273

#pragma omp single 274

#pragma omp master 275

#pragma omp critical 275

#pragma omp barrier 276

#pragma omp flush 276

#pragma omp threadprivate 277

Chapter 6. Predefined macros 279

Macros related to language features 279

Macros indicating the XL C/C++ compiler . . . 281

Macros related to the Linux platform 281

Chapter 7. Built-in functions for

POWER and PowerPC architectures . 283

Fixed-point built-in functions 283

Floating-point built-in functions 285

Synchronization and atomic built-in functions . . 289

Cache-related built-in functions 295

Block-related built-in functions 296

Miscellaneous built-in functions 297

Built-in functions for parallel processing 298

Appendix A. Redistributable libraries 301

Appendix B. ASCII character set . . . 303

Notices 307

Programming interface information 309

Trademarks and service marks 309

Industry standards 309

Index 311

Contents v

vi XL C/C++ Compiler Reference

About this document

This document contains information on setting up the compilation environment,

how to compile, link, and run programs that are written in the C or C++ languages

and how to specify compiler options, pragmas, macros and built-in functions in

your application. The guide also contains extensive cross-references to the relevant

sections of the other reference guides in the XL C/C++ documentation suite.

Who should read this document

This document is for anyone who wants to work with the XL C/C++ compiler and

is familiar with the Linux operating system, and who has some previous C or C++

programming experience. However, users new to C or C++ can still use this

document to find information on the capabilities and features unique to XL C/C++

compiler. This guide can help you understand what the features of the compiler

are, especially the options, and how to use them for effective software

development.

How to use this document

Throughout these pages, the xlc and xlc++ command invocations are used to

describe the actions of the compiler. You can, however, substitute other forms of

the compiler invocation command if your particular environment requires it, and

compiler option usage will remain the same unless otherwise specified.

Unless indicated otherwise, all of the text in this reference pertains to both C and

C++ languages. Where there are differences between languages, these are indicated

through qualifying text and icons.

While this document covers information about configuring the compiler and

compiling, linking and running C or C++ applications using XL C/C++ compiler, it

does not include the following topics:

v For information on C or C++ languages: see XL C/C++ Language Reference for

information on the syntax, semantics, and IBM® implementation of the C and

C++ programming languages.

v For information on programming topics: see XL C/C++ Programming Guide for

program portability and optimization.

How this document is organized

Chapter 1, “Configuring the compiler,” on page 1 discusses topics related to setting

up the compilation environment, including setting environment variables and

customizing the configuration file.

Chapter 2, “Compiling and linking applications,” on page 11 discusses topics

related to compilation tasks, including invoking the compiler, preprocessor, and

link-editor; types of input and output files; different methods for setting include

file path names and directory search sequences; different methods for specifying

compiler options and resolving conflicting compiler options; and compiler listings

and messages.

© Copyright IBM Corp. 1995, 2005 vii

Chapter 3, “Compiler options reference,” on page 31 begins with a summary of

options according to functional category, which allows you to look up and link to

options by function; and includes individual descriptions of each compiler option

sorted alphabetically. Each option description provides examples and a list of

related topics.

Chapter 4, “Reusing GNU C/C++ compiler options with glxc and glxc++,” on page

211 contains information on how to reuse GNU C/C++ compiler options through

the use of the compiler utilities gxlc and gxlc++.

Chapter 5, “Compiler pragmas reference,” on page 215 contains individual

descriptions of pragmas, including OpenMP directives.

Chapter 6, “Predefined macros,” on page 279 provides a list of compiler macros.

Chapter 7, “Built-in functions for POWER and PowerPC architectures,” on page

283 contains individual descriptions of XL C/C++built-in functions for POWER™

and PowerPC® architectures, categorized by their functionality.

Appendix A, “Redistributable libraries,” on page 301 lists the redistributable

libraries shipped with XL C/C++.

Appendix B, “ASCII character set,” on page 303 lists the ASCII character sets.

Conventions used in this document

The following sections discuss the conventions used in this document:

v “Typographical conventions”

v “Icons” on page ix

v “How to read syntax diagrams” on page ix

v “Examples” on page xi

Typographical conventions

The following table explains the typographical conventions used in this document.

 Table 1. Typographical conventions

Typeface Indicates Example

bold Commands, executable names,

compiler options and pragma

directives.

Use the -qmkshrobj compiler option to

create a shared object from the

generated object files.

italics Parameters or variables whose

actual names or values are to be

supplied by the user. Italics are

also used to introduce new terms.

Make sure that you update the size

parameter if you return more than the

size requested.

monospace Programming keywords and

library functions, compiler built-in

functions, file and directory names,

examples of program code,

compiler messages, command

strings, or user-defined names.

If one or two cases of a switch

statement are typically executed much

more frequently than other cases, break

out those cases by handling them

separately before the switch statement.

viii XL C/C++ Compiler Reference

Icons

All features described in this document apply to both C and C++ languages.

Where a feature is exclusive to one language, or where functionality differs

between languages, the following icons are used:

The text describes a feature that is supported in the C language only; or

describes behavior that is specific to the C language.

The text describes a feature that is supported in the C++ language only; or

describes behavior that is specific to the C++ language.

How to read syntax diagrams

v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.

The ��─── symbol indicates the beginning of a command, directive, or statement.

The ───� symbol indicates that the command, directive, or statement syntax is

continued on the next line.

The �─── symbol indicates that a command, directive, or statement is continued

from the previous line.

The ───�� symbol indicates the end of a command, directive, or statement.

Diagrams of syntactical units other than complete commands, directives, or

statements start with the �─── symbol and end with the ───� symbol.

v Required items appear on the horizontal line (the main path).

�� keyword required_item ��

v Optional items are shown below the main path.

�� keyword

optional_item
 ��

v If you can choose from two or more items, they are shown vertically, in a stack.

If you must choose one of the items, one item of the stack is shown on the main

path.

�� keyword required_choice1

required_choice2
 ��

If choosing one of the items is optional, the entire stack is shown below the

main path.

�� keyword

optional_choice1

optional_choice2

 ��

The item that is the default is shown above the main path.

��

keyword
 default_item

alternate_item

��

v An arrow returning to the left above the main line indicates an item that can be

repeated.

About this document ix

��

keyword

�

repeatable_item

��

A repeat arrow above a stack indicates that you can make more than one choice

from the stacked items, or repeat a single choice.

v Keywords are shown in nonitalic letters and should be entered exactly as shown

(for example, extern).

Variables are shown in italicized lowercase letters (for example, identifier). They

represent user-supplied names or values.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols

are shown, you must enter them as part of the syntax.

The following syntax diagram example shows the syntax for the #pragma

comment directive.

 �1� This is the start of the syntax diagram.

 �2� The symbol # must appear first.

 �3� The keyword pragma must appear following the # symbol.

 �4� The name of the pragma comment must appear following the keyword

pragma.

 �5� An opening parenthesis must be present.

 �6� The comment type must be entered only as one of the types indicated:

compiler, date, timestamp, copyright, or user.

 �7� A comma must appear between the comment type copyright or user, and

an optional character string.

 �8� A character string must follow the comma. The character string must be

enclosed in double quotation marks.

 �9� A closing parenthesis is required.

 �10� This is the end of the syntax diagram.

The following examples of the #pragma comment directive are syntactically correct

according to the diagram shown above:

 #pragma

 comment(date)

 #pragma comment(user)

 #pragma comment(copyright,"This text will appear in the module")

�1� �2� �3� �4� �5� �6� �9��10�

 ��─#──pragma──comment──(───────compiler───────────────────────────)─��

 │ │

 +─────date────────────────────────────+

 │ │

 +─────timestamp───────────────────────+

 │ │

 +──+──copyright──+──+─────────────────+

 │ │ │ |

 │ | | |

 +──user───────+ +──,─"characters"─+

 �7��8�

x XL C/C++ Compiler Reference

Examples

The examples in this document, except where otherwise noted, are coded in a

simple style that does not try to conserve storage, check for errors, achieve fast

performance, or demonstrate all possible methods to achieve a specific result.

Related information

IBM XL C/C++ publications

XL C/C++ provides product documentation in the following formats:

v Readme files

Readme files contain late-breaking information, including changes and

corrections to the product documentation. Readme files are located by default in

the /opt/ibmcmp/vacpp/8.0/ directory and in the root directory of the

installation CD.

v Installable man pages

Man pages are provided for the compiler invocations and all command-line

utilities provided with the product. Instructions for installing and accessing the

man pages are provided in the XL C/C++ Advanced Edition V8.0 for Linux

Installation Guide.

v Information center

The information center of searchable HTML files can be launched on a network

and accessed remotely or locally. Instructions for installing and accessing the

information center are provided in the XL C/C++ Advanced Edition V8.0 for Linux

Installation Guide. The information center is also viewable on the Web at:

http://publib.boulder.ibm.com/infocenter/lnxpcomp/index.jsp.

v PDF documents

PDF documents are located by default in the

/opt/ibmcmp/vacpp/8.0/doc/language/pdf directory, where language can be any

of the following supported languages:

– en_US

– ja_JP

– zh_CN

The PDF documents are also available on the Web at:

www.ibm.com/software/awdtools/xlcpp/library .

In addition to this document, the following files comprise the full set of XL

C/C++ product documentations:

 Table 2. XL C/C++ PDF files

Document title

PDF file

name Description

XL C/C++ Advanced

Edition V8.0 for Linux

Installation Guide,

GC09-7999-00

install.pdf Contains information for installing XL C/C++

and configuring your environment for basic

compilation and program execution.

Getting Started with XL

C/C++ Advanced Edition

V8.0 for Linux,

SC09-7997-00

getstart.pdf Contains an introduction to the XL C/C++

product, with information on setting up and

configuring your environment, compiling and

linking programs, and troubleshooting

compilation errors.

About this document xi

Table 2. XL C/C++ PDF files (continued)

Document title

PDF file

name Description

XL C/C++ Advanced

Edition V8.0 for Linux

Language Reference,

SC09-7998-00

language.pdf Contains information about the C and C++

programming languages, as supported by IBM,

including language extensions for portability

and conformance to non-proprietary standards.

XL C/C++ Advanced

Edition V8.0 for Linux

Programming Guide,

SC09-7996-00

proguide.pdf Contains information on advanced

programming topics, such as application

porting, interlanguage calls with Fortran code,

library development, application optimization

and parallelization, and the XL C/C++

high-performance libraries.

These PDF files are viewable and printable from Adobe Reader. If you do not

have the Adobe Reader installed, you can download it from www.adobe.com.

Additional documentation

More documentation related to XL C/C++, including redbooks, whitepapers,

tutorials, and other articles, is available on the Web at:

www.ibm.com/software/awdtools/xlcpp/library

Related publications

You might want to consult the following publications, which are also referenced

throughout this document:

v OpenMP Application Program Interface Version 2.5, available at

http://www.openmp.org

v AltiVec Technology Programming Interface Manual, available at

http://www.freescale.com

Technical support

Additional technical support is available from the XL C/C++ Support page. This

page provides a portal with search capabilities to a large selection of technical

support FAQs and other support documents. You can find the XL C/C++ Support

page on the Web at:

www.ibm.com/software/awdtools/xlcpp/support

If you cannot find what you need, you can e-mail:

compinfo@ca.ibm.com

For the latest information about XL C/C++, visit the product information site at:

www.ibm.com/software/awdtools/xlcpp

xii XL C/C++ Compiler Reference

http://www.openmp.org
http://www.freescale.com

How to send your comments

Your feedback is important in helping to provide accurate and high-quality

information. If you have any comments about this document or any other XL

C/C++ documentation, send your comments by e-mail to:

compinfo@ca.ibm.com

Be sure to include the name of the document, the part number of the document,

the version of XL C/C++, and, if applicable, the specific location of the text you

are commenting on (for example, a page number or table number).

About this document xiii

xiv XL C/C++ Compiler Reference

Chapter 1. Configuring the compiler

Before you can use XL C/C++ to compile C or C++ programs, you must set up the

environment variables the compiler requires, and the compiler configuration file

must exist on your system. Normally, the configuration file used by the compiler is

automatically generated during the installation procedure (for more information,

see the XL C/C++ Installation Guide), and you may have already set some of the

basic environment variables during the installation process.

“Setting environment variables” provides a complete list of the required and

optional environment variables you can set or reset after installing the compiler,

including those used for parallel processing.

If you want to customize the default or additional configuration files that you have

generated after installation, to specify alternate library paths, default compiler

options, and so on, you can consult “Customizing the configuration file” on page

8, which provides a description of the structure and content of the default

configuration file.

Setting environment variables

The Bourne Again SHell (bash) on Linux® systems is similar to the Bourne Shell

(bsh) found on AIX® systems. Use the bash interface to set the environment

variables required by the XL C/C++ compiler, either through the command line or

with a command file script.

The following statements, either typed at the command line or inserted into a

command file script, show how you can set environment variables in the Bourne

Again SHell. Paths shown assume that you are installing the compiler in the

default installation location.

LANG=en_US

NLSPATH=$NLSPATH:/opt/ibmcmp/msg/%L/%N:/opt/ibmcmp/vacpp/8.0/msg/%L/%N

export LANG NLSPATH

To set the variables so that all users have access to them, add the commands to the

file /etc/profile. To set them for a specific user only, add the commands to the

file .profile in the user’s home directory. The environment variables are set each

time the user logs in.

The following sections discuss the environment variables you can set for the

compiler:

v “General environment variables”

v “Environment variables for parallel processing” on page 2

General environment variables

Before using the compiler, ensure the following environment variables are set:

 LD_LIBRARY_PATH Specifies the directory search path for dynamically loaded

libraries. Used by the GNU linker at link time and at run time.

LD_RUN_PATH Specifies the directory search path for dynamically loaded

libraries. Used at run time only.

© Copyright IBM Corp. 1995, 2005 1

LANG Specifies the national language for message and help files.

The LANG environment variable can be set to any of the locales

provided on the system.

The national language code for United States English is en_US. If

the appropriate message catalogs have been installed on your

system, any other valid national language code can be

substituted for en_US.

To determine the current setting of the national language on your

system, use the following echo command:

echo $LANG

MANPATH Optionally specifies the directory search path for finding man

pages. MANPATH must contain

/opt/ibmcmp/vacpp/8.0/man/EN_US/ before the default man path.

NLSPATH Specifies the path name of the message and help files.

To determine the current setting of NLSPATH variable on your

system, use the following echo command:

echo $NLSPATH

PATH Specifies the directory search path for the executable files of the

compiler. Executables are in /opt/ibmcmp/vacpp/8.0/bin/ if

installed to the default location.

PDFDIR Optionally specifies the directory in which the profile data file is

created. The default value is unset, and the compiler places the

profile data file in the current working directory. Setting this

variable to an absolute path is recommended for profile-directed

feedback.

TMPDIR Optionally specifies the directory in which temporary files are

created. The default location, /tmp/, may be inadequate at high

levels of optimization, where paging and temporary files can

require significant amounts of disk space.

XL_NOCLONEARCH Instructs the program to only execute the generic code, where

generic code is the code that is not versioned for an architecture.

The XL_NOCLONEARCH environment variable is not set by

default; you can set it for debugging purposes in your

application.

Note: The LANG and NLSPATH environment variables are initialized when the

operating system is installed, and might differ from the ones you want to

use.

Related information

v “Message catalog errors” on page 28

v “-qpdf1, -qpdf2” on page 154

v “-qipa” on page 106

Environment variables for parallel processing

The XLSMPOPTS environment variable sets options for program run time using

loop parallelization. Suboptions for the XLSMPOPTS environment variables are

discussed in detail in “Suboptions of the XLSMPOPTS environment variable for

parallel processing” on page 3.

2 XL C/C++ Compiler Reference

If you are using OpenMP constucts for parallelization, you can also specify

runtime options using OMP environment variables, as discussed in “OpenMP

environment variables for parallel processing” on page 6.

When runtime options specified by OMP- and XLSMPOPTS environment variables

conflict, OMP options will prevail.

Note: You must use thread-safe compiler mode invocations when compiling

parallelized program code.

Suboptions of the XLSMPOPTS environment variable for parallel

processing

Runtime options affecting parallel processing can be specified with the

XLSMPOPTS environment variable. This environment variable must be set before

you run an application, and uses basic syntax of the form:

��

�

 :

XLSMPOPTS

=

option_and_args

��

For example, to have a program run time create 4 threads and use dynamic

scheduling with chunk size of 5, you would set the XLSMPOPTS environment

variable as shown below:

XLSMPOPTS=PARTHDS=4:SCHEDULE=DYNAMIC=5

Runtime option settings for the XLSMPOPTS environment variable are shown

below, grouped by category:

Scheduling algorithm options:

 XLSMPOPTS

environment variable

option

Description

schedule=algorithm=[n] This option specifies the scheduling algorithm used for loops not

explicitly assigned a scheduling algorithm.

Valid options for algorithm are:

v guided

v affinity

v dynamic

v static

If specified, the chunk size n must be an integer value of 1 or

greater.

The default scheduling algorithm is static.

Chapter 1. Configuring the compiler 3

Parallel environment options:

 XLSMPOPTS

environment variable

option

Description

parthds=num num represents the number of parallel threads requested, which is

usually equivalent to the number of processors available on the

system.

Some applications cannot use more threads than the maximum

number of processors available. Other applications can experience

significant performance improvements if they use more threads

than there are processors. This option gives you full control over

the number of user threads used to run your program.

The default value for num is the number of processors available

on the system.

usrthds=num num represents the number of user threads expected.

This option should be used if the program code explicitly creates

threads, in which case num should be set to the number of threads

created.

The default value for num is 0.

stack=num num specifies the largest amount of space required for a thread’s

stack.

The default value for num is 2097152.

The glibc library is compiled by default to allow a stack size of 2

Mb. Setting num to a value greater than this will cause the default

stack size to be used. If larger stack sizes are required, you should

link the program to a glibc library compiled with the

FLOATING_STACKS parameter turned on.

Performance tuning options:

 XLSMPOPTS

environment variable

option

Description

spins=num num represents the number of loop spins, or iterations, before a

yield occurs.

When a thread completes its work, the thread continues executing

in a tight loop looking for new work. One complete scan of the

work queue is done during each busy-wait state. An extended

busy-wait state can make a particular application highly

responsive, but can also harm the overall responsiveness of the

system unless the thread is given instructions to periodically scan

for and yield to requests from other applications.

A complete busy-wait state for benchmarking purposes can be

forced by setting both spins and yields to 0.

The default value for num is 100.

startproc=CPU ID Enables thread binding and specifies the CPU ID to which the first

thread binds. If the value provided is outside the range of

available processors, the SMP run time issues a warning message

and no threads are bound.

4 XL C/C++ Compiler Reference

XLSMPOPTS

environment variable

option

Description

stride=Number Specifies the increment used to determine the CPU ID to which

subsequent threads bind. Number must be greater than or equal to

1. If the value provided would cause a thread to be bound to a

CPU outside the range of available processors, a warning message

is issued and no threads are bound.

yields=num num represents the number of yields before a sleep occurs.

When a thread sleeps, it completely suspends execution until

another thread signals that there is work to do. This provides

better system utilization, but also adds extra system overhead for

the application.

The default value for num is 100.

delays=num num represents a period of do-nothing delay time between each

scan of the work queue. Each unit of delay is achieved by running

a single no-memory-access delay loop.

The default value for num is 500.

Dynamic profiling options:

 XLSMPOPTS

environment variable

option

Description

profilefreq=num num represents the sampling rate at which each loop is revisited

to determine appropriateness for parallel processing.

The runtime library uses dynamic profiling to dynamically tune

the performance of automatically-parallelized loops. Dynamic

profiling gathers information about loop running times to

determine if the loop should be run sequentially or in parallel the

next time through. Threshold running times are set by the

parthreshold and seqthreshold dynamic profiling options,

described below.

If num is 0, all profiling is turned off, and overheads that occur

because of profiling will not occur. If num is greater than 0,

running time of the loop is monitored once every num times

through the loop.

The default for num is 16. The maximum sampling rate is 32.

Values of num exceeding 32 are changed to 32.

parthreshold=mSec mSec specifies the expected running time in milliseconds below

which a loop must be run sequentially. mSec can be specified

using decimal places.

If parthreshold is set to 0, a parallelized loop will never be

serialized by the dynamic profiler.

The default value for mSec is 0.2 milliseconds.

Chapter 1. Configuring the compiler 5

XLSMPOPTS

environment variable

option

Description

seqthreshold=mSec mSec specifies the expected running time in milliseconds beyond

which a loop that has been serialized by the dynamic profiler

must revert to being run in parallel mode again. mSec can be

specified using decimal places.

The default value for mSec is 5 milliseconds.

 Related information

v “Summary of OpenMP pragma directives” on page 216

v “Built-in functions for parallel processing” on page 298

OpenMP environment variables for parallel processing

OpenMP runtime options affecting parallel processing are set by specifying OMP

environment variables. These environment variables, use syntax of the form:

�� env_variable = option_and_args ��

If an OMP environment variable is not explicitly set, its default setting is used.

OpenMP runtime options fall into different categories as described below:

Scheduling algorithm environment variable:

 OMP_SCHEDULE=algorithm This option specifies the scheduling algorithm used for

loops not explictly assigned a scheduling algorithm with

the omp schedule directive. For example:

OMP_SCHEDULE=“guided, 4”

Valid options for algorithm are:

v dynamic[, n]

v guided[, n]

v runtime

v static[, n]

If specifying a chunk size with n, the value of n must be

an integer value of 1 or greater.

The default scheduling algorithm is static.

6 XL C/C++ Compiler Reference

Parallel environment variables:

 OMP_NUM_THREADS=num num represents the number of parallel threads requested,

which is usually equivalent to the number of processors

available on the system.

This number can be overridden during program

execution by calling the omp_set_num_threads()

runtime library function.

Some applications cannot use more threads than the

maximum number of processors available. Other

applications can experience significant performance

improvements if they use more threads than there are

processors. This option gives you full control over the

number of user threads used to run your program.

The default value for num is the number of processors

available on the system.

You can override the setting of OMP_NUM_THREADS

for a given parallel section by using the num_threads

clause available in several #pragma omp directives.

OMP_NESTED=TRUE|FALSE This environment variable enables or disables nested

parallelism. The setting of this environment variable can

be overridden by calling the omp_set_nested() runtime

library function.

If nested parallelism is disabled, nested parallel regions

are serialized and run in the current thread.

In the current implementation, nested parallel regions are

always serialized. As a result, OMP_SET_NESTED does

not have any effect, and omp_get_nested() always

returns 0. If -qsmp=nested_par option is on (only in

non-strict OMP mode), nested parallel regions may

employ additional threads as available. However, no new

team will be created to run nested parallel regions.

The default value for OMP_NESTED is FALSE.

Dynamic profiling environment variable:

 OMP_DYNAMIC=TRUE|FALSE This environment variable enables or disables dynamic

adjustment of the number of threads available for

running parallel regions.

If set to TRUE, the number of threads available for

executing parallel regions may be adjusted at run time to

make the best use of system resources. See the

description for profilefreq=num in “Dynamic profiling

options” on page 5 for more information.

If set to FALSE, dynamic adjustment is disabled.

The default setting is TRUE.

v For information on the OpenMP specification, see: www.openmp.org/specs.

Chapter 1. Configuring the compiler 7

http://www.openmp.org

Customizing the configuration file

XL C/C++ generates a default configuration file /etc/opt/ibmcmp/vac/8.0/vac.cfg

at installation time (see the XL C/C++ Installation Guide for more information on the

various tools you can use to generate the configuration file during installation).

The configuration file specifies information that the compiler uses when you

invoke it.

If you are running on a single-user system, or if you already have a compilation

environment with compilation scripts or makefiles, you may want to leave the

default configuration file as it is. Otherwise, especially if you want many users to

be able to choose among several sets of compiler options, you may want to modify

existing stanzas or add new named stanzas to the configuration file. For example,

to make -qnoro the default for the xlc compiler invocation command, add -qnoro

to the xlc stanza in your copied version of the configuration file.

You can create new commands that are links to the existing commands. For

example, to create a link to the xlc_r command, you could specify something

similar to the following:

ln -s /opt/ibmcmp/vacpp/8.0/bin/xlc_r /home/lisa/bin/my_xlc

You can link the compiler invocation command to several different names. The

name you specify when you invoke the compiler determines which stanza of the

configuration file the compiler uses. You can add other stanzas to your copy of the

configuration file to customize your own compilation environment. You can use

the -F option with the compiler invocation command to make links to select

additional stanzas or to specify a specific stanza in another configuration file. For

example:

xlc myfile.c -Fmyconfig.cfg:SPECIAL

would compile myfile.c using the SPECIAL stanza in a myconfig.cfg

configuration file that you had created.

When you run the compiler under another name, it uses the options, libraries, and

so on, that are listed in the corresponding stanza.

Notes:

1. If you make any changes to the default configuration file and then move or

copy your make files to another system, you will also need to copy the

changed configuration file.

2. Installing a compiler program temporary fix (PTF) or an upgrade may

overwrite the vac.cfg file. Therefore, be sure to save a copy of any

modifications you have made before doing such an installation.

3. You cannot use tabs as separator characters in the configuration file. If you

modify the configuration file, make sure that you use spaces for any

indentation.

4. If you are mixing Message-Passing Interface (MPI) and threaded programming,

use the appropriate stanza in the vac.cfg file to link in the proper libraries and

to set the correct default behavior.

5. The compiler return code of 41 indicates that a configuration file error has been

detected.

8 XL C/C++ Compiler Reference

Configuration file attributes

A configuration file includes several stanzas. The items defined by stanzas in the

configuration file include the following:

 as Path name to be used for the assembler. The default is /usr/bin/as.

ccomp C front end. The default is /opt/ibmcmp/vac/8.0/exe/xlcentry.

cppcomp C++ front end. The default is /opt/ibmcmp/vacpp/8.0/exe/xlCentry.

code Path name to be used for the code generation phase of the compiler. The

default is /opt/ibmcmp/vac/8.0/exe/xlCcode .

codeopt List of options for the code-generation phase of the compiler.

crt Path name of the object file passed as the first parameter to the linkage editor.

If you do not specify either the -p or the -pg option, the crt value is used. The

default is /usr/lib/crt1.o.

csuffix Suffix for source programs. The default is c (lowercase c).

dis Path name of the disassembler. The default is /opt/ibmcmp/vac/8.0/exe/dis.

gcrt Path name of the object file passed as the first parameter to the linkage editor.

If you specify the -pg option, the gcrt value is used. The default is

/usr/lib/gcrt1.o.

ld Path name to be used to link C or C++ programs. The default is /usr/bin/ld.

ldopt List of options, directed to the linkage editor to override all normal processing

by the compiler. If the corresponding flag takes a parameter, the string is

formatted for the getopt subroutine as a concatenation of flag letters, with a

letter followed by a colon (:).

libraries2 Comma-separated list of library options that the compiler passes as the last

parameters to the linkage editor. libraries2 specifies the libraries that the

linkage editor is to use at link-edit time for both profiling and nonprofiling.

The default is empty.

mcrt Path name of the object file passed as the first parameter to the linkage editor

if you have specified the -p option. The default is /usr/lib/gcrt1.o.

options A string of option flags, separated by commas, to be processed by the compiler

as if they had been entered on the command line.

osuffix The suffix for object files. The default is .o.

use Values for attributes are taken from either the named stanza or the local

stanza. For single-valued attributes, values in the use stanza apply if no value

is provided in the local, or default, stanza. For comma-separated lists, the

values from the use stanza are added to the values from the local stanza.

xlc The path name of the xlc compiler component. The default is

/opt/ibmcmp/vac/8.0/bin/xlc.

xlC The path name of the xlC compiler component. The default is

/opt/ibmcmp/vacpp/8.0/bin/xlC.

 Related information

v “Specifying compiler options in a configuration file” on page 18

Chapter 1. Configuring the compiler 9

10 XL C/C++ Compiler Reference

Chapter 2. Compiling and linking applications

By default, an invocation of the XL C/C++ compiler performs preprocessing of

program source, compiling into object files, and linking into an executable. These

translation phases are actually performed by separate executables, which are

referred to as compiler components. In the absence of command-line options, an XL

C/C++ compiler invocation command automatically invokes the preprocessor and

linkage editor, as well as the component that performs translation of a source

program into object code, also referred to as the compiler. However, the

preprocessor and linkage editor can be invoked individually.

The following sections describe how to invoke the XL C/C++ compiler to

preprocess, compile and link source files and libraries:

v “Invoking the compiler”

v “Types of input files” on page 13

v “Types of output files” on page 15

v “Specifying compiler options” on page 16

v “Preprocessing” on page 21

v “Linking” on page 23

v “Compiler messages and listings” on page 25

Invoking the compiler

Different forms of the XL C/C++ compiler invocation commands support various

levels of the C and C++ languages. In most cases, you should use the xlc++

command to compile your C++ source files, and the xlc command to compile C

source files. Use xlc++ to link if you have both C and C++ object files.

 You can use other forms of the command if your particular environment requires

it. The various compiler invocation commands are:

 Basic Special

xlC xlC_r

xlc++ xlc++_r

xlc xlc_r

cc cc_r

c99 c99_r

c89 c89_r

XL C/C++ provides _r variations on the basic compiler invocations, as described

below:

 Table 3. Suffixes for special invocations

_r-suffixed

invocations

All _r-suffixed invocations allow for thread-safe compilation and you can

use them to link the programs that use mullti-threading. They

additionally define the macro names __VACPP_MULTI__ and

REENTRANT, and add the library -lpthread. The compiler option

-qthreaded is also added. Use these commands if you want to create

threaded applications.

© Copyright IBM Corp. 1995, 2005 11

Selecting an invocation command

The basic compiler invocation commands appear as the first entry of each line in

Table 4. Select a basic invocation using the following criteria:

 Table 4. Compiler invocations

Invocation Criteria

xlC
xlc++

Both invoke the compiler so that source files are compiled as C++ language

source code. If any of your source files are C++, you must use this invocation

to link with the correct runtime libraries. Source files are compiled with

-qalias=ansi set.

Files with .c suffixes, assuming you have not used the -+ compiler option, are

compiled as C language source code when -qlanglvl=extc89 is in effect.

xlc Invokes the compiler for C source files. The following compiler options are

implied with this invocation:

v -qlanglvl=extc89

v -qalias=ansi

v -qcpluscmt

v -qkeyword=inline

cc Invokes the compiler for C source files. The following compiler options are

implied with this invocation:

v -qlanglvl=extended

v -qnoro

v -qnoroconst

c99 Invokes the compiler for C source files, with support for ISO C99 language

features. Full ISO C99 (ISO/IEC 9899:1999) conformance requires the presence

of C99-compliant header files and runtime libraries. The following options are

implied with this invocation:

v -qlanglvl=stdc99

v -qalias=ansi

v -qstrict_induction

v -D_ANSI_C_SOURCE

v -D_ISOC99_SOURCE

v -D__STRICT_ANSI__

Use this invocation for strict conformance to the ANSI standard (ISO/IEC

9899:1999).

c89 Invokes the compiler for C source files, with support for ISO C89 language

features. The following options are implied with this invocation:

v -qlanglvl=stdc89

v -qalias=ansi

v -qstrict_induction

v -qnolonglong

v -D_ANSI_C_SOURCE

v -D__STRICT_ANSI__

Use this invocation for strict conformance to the ANSI standard (ISO/IEC

9899:1990).

12 XL C/C++ Compiler Reference

Table 4. Compiler invocations (continued)

Invocation Criteria

gxlc++ You can use this utility to compile C++ files. It accepts many common GNU

C/C++ options, maps them to their XL C/C++ option equivalents, and then

invokes xlc. For more information, refer to Chapter 4, “Reusing GNU C/C++

compiler options with glxc and glxc++,” on page 211.

gxlc You can use this utility to compile C files. It accepts many common gcc

options, maps them to their xlc option equivalents, and then invokes xlc. For

more information, refer to Chapter 4, “Reusing GNU C/C++ compiler options

with glxc and glxc++,” on page 211.

Invocation syntax

XL C/C++ is invoked using the following syntax, where invocation can be replaced

with any valid XL C/C++ invocation command:

��

invocation

�

command_line_options

input_files

��

The parameters of the compiler invocation command can be the names of input

files, compiler options, and linkage-editor options.

Compiler options perform a wide variety of functions, such as setting compiler

characteristics, describing the object code and compiler output to be produced, and

performing some preprocessor functions.

By default, the invocation command calls both the compiler and the linkage editor.

It passes linkage editor options to the linkage editor. Consequently, the invocation

commands also accept all linkage editor options. To compile without link-editing,

use the -c compiler option. The -c option stops the compiler after compilation is

completed and produces as output, an object file file_name.o for each file_name.c

input source file, unless the -o option was used to specify a different object file

name. The linkage editor is not invoked. You can link-edit the object files later

using the same invocation command, specifying the object files without the -c

option.

Related information

v “Types of input files”

v “Compiler messages and listings” on page 25

Types of input files

The compiler processes the source files in the order in which they appear. If the

compiler cannot find a specified source file, it produces an error message and the

compiler proceeds to the next specified file. However, the link editor will not be

run and temporary object files will be removed.

Your program can consist of several source files. All of these source files can be

compiled at once using only one invocation of the compiler. Although more than

one source file can be compiled using a single invocation of the compiler, you can

Chapter 2. Compiling and linking applications 13

specify only one set of compiler options on the command line per invocation. Each

distinct set of command-line compiler options that you want to specify requires a

separate invocation.

By default, the compiler preprocesses and compiles all the specified source files.

Although you will usually want to use this default, you can use the compiler to

preprocess the source file without compiling by specifying either the -E or the -P

option. If you specify the -P option, a preprocessed source file, file_name.i, is

created and processing ends.

The -E option preprocesses the source file, writes to standard output, and halts

processing without generating an output file.

You can input the following types of files to the XL C/C++ compiler:

 Table 5. Accepted input file types

C and C++ source

files

These are files containing C or C++ source code.

To use the C compiler to compile a C language source file, the source

file must have a .c (lowercase c) suffix, for example, mysource.c.

To use the C++ compiler, the source file must have a .C (uppercase C),

.cc, .cp, .cpp, .cxx, or .c++ suffix. To compile other files as C++ source

files, use the -+ compiler option. All files specified with this option with

a suffix other than .a, .o, .so, or .s, are compiled as C++ source files.

Preprocessed

source files

Preprocessed source files have a .i suffix, for example, file_name.i. The

compiler sends the preprocessed source file, file_name.i, to the compiler

where it is preprocessed again in the same way as a .c or .C file.

Preprocessed files are useful for checking macros and preprocessor

directives.

Object files Object files must have a .o suffix, for example, file_name.o. Object files,

library files, and nonstripped executable files serve as input to the

linkage editor. After compilation, the linkage editor links all of the

specified object files to create an executable file.

Assembler files Assembler files must have a .s suffix, for example, file_name.s. Assembler

files are assembled to create an object file.

Assembler-with-
cpp

Assembler files must have a .S suffix, for example, file_name.S. The

compiler compiles all source files with .S extension as if they are

assembler language source files that needs preprocessing.

Shared library

files

Shared library files must have a .so suffix, for example file_name.so.

Nonstripped

executable files

Executable and linking format (ELF) files that have not been stripped

with the Linux strip command can be used as input to the compiler.

Related information

v Options summary by functional category: Input control

14 XL C/C++ Compiler Reference

Types of output files

You can specify the following types of output files when invoking the XL C/C++

compiler.

 Executable files By default, executable files are named a.out. To name the executable file

something else, use the -o file_name option with the invocation

command. This option creates an executable file with the name you

specify as file_name. The name you specify can be a relative or absolute

path name for the executable file.

Object files The compiler gives object files a .o suffix, for example, file_name.o, unless

the -o file_name option is specified giving a different suffix or no suffix at

all.

If you specify the -c option, an output object file, file_name.o, is produced

for each input source file file_name.x, where x is a recognized C or C++

file name extension. The linkage editor is not invoked, and the object

files are placed in your current directory. All processing stops at the

completion of the compilation.

You can link-edit the object files later into a single executable file by

invoking the compiler.

Assembler files Assembler files must have a .s suffix, for example, file_name.s.

They are created by specifying the -S option. Assembler files are

assembled to create an object file.

Preprocessed

source files

Preprocessed source files have a .i suffix, for example, file_name.i.

To make a preprocessed source file, specify the -P option. The source

files are preprocessed but not compiled. You can also redirect the output

from the -E option to generate a preprocessed file that contains #line

directives.

A preprocessed source file, file_name.i, is produced for each source file

and has the same file name (with a .i extension) as the source file from

which it was produced.

Listing files Listing files have a .lst suffix, for example, file_name.lst.

Specifying any one of the listing-related options to the invocation

command produces a compiler listing (unless you have specified the

-qnoprint option). The file containing this listing is placed in your

current directory and has the same file name (with a .lst extension) as

the source file from which it was produced.

Shared library

files

Shared library files have a .so suffix, for example, my_shrlib.so.

Chapter 2. Compiling and linking applications 15

Target files Output files associated with the -M or -qmakedep options have a .d

suffix, for example, conversion.d.

The file contains targets suitable for inclusion in a description file for the

make command. A .d file is created for every input C or C++ file, and is

used by the make command to determine if a given input file needs to

be recompiled as a result of changes made to another input file. .d files

are not created for any other files (unless you use the -+ option so other

file suffixes are treated as .C files).

Related information

v Options summary by functional category: Output control

Specifying compiler options

Compiler options perform a wide variety of functions, such as setting compiler

characteristics, describing the object code and compiler output to be produced, and

performing some preprocessor functions. You can specify compiler options in one

or more of the following ways:

v On the command line

v In a configuration file which is a file with a .cfg extension.

v In your source program

v In a makefile.

The compiler assumes default settings for most compiler options not explicitly set

by you in the ways listed above.

When specifying compiler options, it is possible for option conflicts and

incompatibilities to occur. XL C/C++ resolves most of these conflicts and

incompatibilities in a consistent fashion, as follows:

In most cases, the compiler uses the following order in resolving conflicting or

incompatible options:

1. Pragma statements in source code will override compiler options specified on

the command line.

2. Compiler options specified on the command line will override compiler options

specified in a configuration file. If conflicting or incompatible compiler options

are specified in the same command line compiler invocation, the option

appearing later in the invocation takes precedence.

3. Compiler options specified in a configuration file, command line or source

program will override compiler default settings.

Option conflicts that do not follow this priority sequence are described in

“Resolving conflicting compiler options” on page 19.

Specifying compiler options on the command line

Most options specified on the command line override both the default settings of

the option and options set in the configuration file. Similarly, most options

specified on the command line are in turn overridden by pragma directives, which

provide you a means of setting compiler options right in the source file. Options

that do not follow this scheme are listed in “Resolving conflicting compiler

options” on page 19.

There are two kinds of command-line options:

16 XL C/C++ Compiler Reference

v -qoption_keyword (compiler-specific)

v Flag options

-q options

��

�

 -q option_keyword

:

=

suboption

 ��

Command-line options in the -qoption_keyword format are similar to on and off

switches. For most -q options, if a given option is specified more than once, the last

appearance of that option on the command line is the one recognized by the

compiler. For example, -qsource turns on the source option to produce a compiler

listing, and -qnosource turns off the source option so no source listing is produced.

For example:

xlc -qnosource MyFirstProg.c -qsource MyNewProg.c

would produce a source listing for both MyNewProg.c and MyFirstProg.c because

the last source option specified (-qsource) takes precedence.

You can have multiple -qoption_keyword instances in the same command line, but

they must be separated by blanks. Option keywords can appear in either

uppercase or lowercase, but you must specify the -q in lowercase. You can specify

any -qoption_keyword before or after the file name. For example:

xlc -qLIST -qfloat=nomaf file.c

xlc file.c -qxref -qsource

You can also abbreviate many compiler options. For example, specifying -qopt is

equivalent to specifying -qoptimize on the command line.

Some options have suboptions. You specify these with an equal sign following the

-qoption. If the option permits more than one suboption, a colon (:) must separate

each suboption from the next. For example:

xlc -qflag=w:e -qattr=full file.c

compiles the C source file file.c using the option -qflag to specify the severity

level of messages to be reported. The -qflag suboption w (warning) sets the

minimum level of severity to be reported on the listing, and suboption e (error)

sets the minimum level of severity to be reported on the terminal. The -qflag

option -qattr with suboption full will produce an attribute listing of all identifiers

in the program.

Flag options

The compilers available on Linux systems use a number of common conventional

flag options. IBM XL C/C++ supports these flags. Lowercase flags are different

from their corresponding uppercase flags. For example, -c and -C are two different

compiler options: -c specifies that the compiler should only preprocess and compile

and not invoke the linkage editor, while -C can be used with -P or -E to specify

that user comments should be preserved.

IBM XL C/C++ also supports flags directed to other Linux programming tools and

utilities (for example, the Linux ld command). The compiler passes on those flags

directed to ld at link-edit time.

Chapter 2. Compiling and linking applications 17

Some flag options have arguments that form part of the flag. For example:

xlc stem.c -F/home/tools/test3/new.cfg:xlc

where new.cfg is a custom configuration file.

You can specify flags that do not take arguments in one string. For example:

xlc -Ocv file.c

has the same effect as:

xlc -O -c -v file.c

and compiles the C source file file.c with optimization (-O) and reports on

compiler progress (-v), but does not invoke the linkage editor (-c).

A flag option that takes arguments can be specified as part of a single string, but

you can only use one flag that takes arguments, and it must be the last option

specified. For example, you can use the -o flag (to specify a name for the

executable file) together with other flags, only if the -o option and its argument are

specified last. For example:

xlc -Ovo test test.c

has the same effect as:

xlc -O -v -otest test.c

Most flag options are a single letter, but some are two letters. Note that specifying

-pg (extended profiling) is not the same as specifying -p -g (-p for profiling, and -g

for generating debug information). Take care not to specify two or more options in

a single string if there is another option that uses that letter combination.

Specifying compiler options in a configuration file

The default configuration file (/etc/opt/ibmcmp/vacpp/8.0/vac.cfg) defines values

and compiler options for the compiler. The compiler refers to this file when

compiling C or C++ programs. The configuration file is a plain text file, and you

can make entries to this file to support specific compilation requirements or to

support other C or C++ compilation environments.

For information on how the compiler resolves the conflicting or incompatible

options, see “Resolving conflicting compiler options” on page 19.

Related information

v “Customizing the configuration file” on page 8

Specifying compiler options in program source files

You can specify compiler options within your program source by using pragma

directives.

A pragma is an implementation-defined instruction to the compiler. It has one of

the general forms given below:

��

�

#

pragma

character_sequence

��

Where character_sequence is a series of characters that give specific compiler

18 XL C/C++ Compiler Reference

instruction and arguments, if any. More than one pragma construct can be

specified on a single pragma directive.

The unary operator _Pragma allows a preprocessor macro to be contained in a

pragma directive:

�� _Pragma (string_literal) ��

The string_literal may be prefixed with L, making it a wide-string literal. The string

literal is destringized and tokenized. The resulting sequence of tokens is processed

as if it appeared in a pragma directive. For example:

_Pragma ("pack(full)")

would be equivalent to

#pragma pack(full)

The character_sequence on a pragma is subject to macro substitutions, unless

otherwise stated. The compiler ignores unrecognized pragmas, issuing an

informational message indicating this.

Options specified with pragma directives in program source files override all other

option settings, except other pragma directives. The effect of specifying the same

pragma directive more than once varies. See the description for each pragma for

specific information.

Pragma settings can carry over into included files. To avoid potential unwanted

side-effects from pragma settings, you should consider resetting pragma settings at

the point in your program source where the pragma-defined behavior is no longer

required. Some pragma options offer reset or pop suboptions to help you do this.

These pragma directives are listed in the detailed descriptions of the options to

which they apply.

For complete details on the various pragma preprocessor directives supported by

XL C/C++, see Chapter 5, “Compiler pragmas reference,” on page 215.

Resolving conflicting compiler options

In general, if more than one variation of the same option is specified (with the

exception of -qxref and -qattr), the compiler uses the setting of the last one

specified. Compiler options specified on the command line must appear in the

order you want the compiler to process them.

Two exceptions to the rules of conflicting options are the -Idirectory and -Ldirectory

options, which have cumulative effects when they are specified more than once.

In most cases, the compiler uses the following order in resolving conflicting or

incompatible options:

1. Pragma statements in source code will override compiler options specified on

the command line.

2. Compiler options specified on the command line will override compiler options

specified in a configuration file. If conflicting or incompatible compiler options

are specified on the command line, the option appearing later on the command

line takes precedence.

3. Compiler options specified in a configuration file will override compiler default

settings.

Chapter 2. Compiling and linking applications 19

Not all option conflicts are resolved using the above rules. The table below

summarizes exceptions and how the compiler handles conflicts between them.

 Option Conflicting options Resolution

-qhalt Multiple severities specified by -qhalt Lowest severity specified

-qnoprint -qxref | -qattr | -qsource | -qlistopt |

-qlist

-qnoprint

-qfloat=rsqrt -qnoignerrno Last option specified

-qxref -qxref=FULL -qxref=FULL

-qattr -qattr=FULL -qattr=FULL

-p | -pg |

-qprofile

-p | -pg | -qprofile Last option specified

-E -P | -o | -S -E

-P -c | -o | -S -P

-# -v -#

-F -B | -t | -W | -qpath | configuration file

settings

-B | -t | -W | -qpath

-qpath -B | -t -qpath overrides -B and -t

-S -c -S

Related information

v “Acceptable compiler mode and processor architecture combinations” on page

208

v “Summary of compiler options by functional category” on page 31

Specifying compiler options for architecture-specific, 32-bit or

64-bit compilation

You can use XL C/C++ compiler options to optimize compiler output for use on

specific processor architectures. You can also instruct the compiler to compile in

either 32-bit or 64-bit mode.

The compiler evaluates compiler options in the following order, with the last

allowable one found determining the compiler mode:

1. Internal default (32-bit mode)

2. Configuration file settings

3. Command line compiler options (-q32, -q64, -qarch, -qtune)

4. Source file statements (#pragma options tune=suboption)

The compilation mode actually used by the compiler depends on a combination of

the settings of the -q32, -q64, -qarch and -qtune compiler options, subject to the

following conditions:

v Compiler mode is set according to the last-found instance of the -q32 or -q64

compiler options.

v Architecture target is set according to the last-found instance of the -qarch

compiler option, provided that the specified -qarch setting is compatible with

the compiler mode setting. If the -qarch option is not set, the compiler sets -qarch

to the appropriate default based on the effective compiler mode setting.

v Tuning of the architecture target is set according to the last-found instance of the

-qtune compiler option, provided that the -qtune setting is compatible with the

20 XL C/C++ Compiler Reference

architecture target and compiler mode settings. If the -qtune option is not set, the

compiler assumes a default -qtune setting according to the -qarch setting in use.

If -qarch is not specified, the compiler sets -qtune to the appropriate default

based on the effective -qarch as selected by default based on the effective

compiler mode setting.

Possible option conflicts and compiler resolution of these conflicts are described

below:

v -q32 or -q64 setting is incompatible with user-selected -qarch option.

Resolution: -q32 or -q64 setting overrides -qarch option; compiler issues a

warning message, sets -qarch to its default setting, and sets the -qtune option

accordingly to its default value.

v -qarch option is incompatible with user-selected -qtune option.

Resolution: Compiler issues a warning message, and sets -qtune to the -qarch

setting’s default -qtune value.

v Selected -qarch or -qtune options are not known to the compiler.

Resolution: Compiler issues a warning message, sets -qarch and -qtune to their

default settings. The compiler mode (32-bit or 64-bit) is determined by the

-q32/-q64 compiler settings.

Related information

v “Summary of compiler options by functional category” on page 31

Preprocessing

Preprocessing manipulates the text of a source file, usually as a first phase of

translation that is initiated by a compiler invocation. Common tasks accomplished

by preprocessing are macro substitution, testing for conditional compilation

directives, and file inclusion. XL C/C++ is an integrated, single-pass compiler,

which retains the ability to function as a multiple-pass compiler through the use of

compiler options. The XL C/C++ preprocessor is provided as an independent

compiler component.

The preprocessor can be invoked separately to process text without compiling. The

output is an intermediate file, which can be input for subsequent translation.

Preprocessing without compilation can be useful as a debugging aid because it

provides a way to see the result of include directives, conditional compilation

directives, and complex macro expansions.

The following table lists the options that direct the operation of the preprocessor.

 Option Description

E Instructs the compiler to preprocess the source files. #line directives are

generated.

P Preprocesses the C or C++ source files specified in the compiler invocation

and create an intermediary file with .i file name extension for each source

file.

C Preserves comments in preprocessed output.

D Defines a macro name from the command line, as if in a #define directive.

U Undefine a macro name defined by the compiler or by the -D option.

Chapter 2. Compiling and linking applications 21

Specifying path names for include files

When you imbed one source file in another using the #include preprocessor

directive, you must supply the name of the file to be included. You can specify a

file name either by using a full path name or by using a relative path name.

v Use a full path name to imbed files

The full path name, also called the absolute path name, is the file’s complete name

starting from the root directory. These path names start with the / (slash)

character. The full path name locates the specified file regardless of the directory

you are presently in (called your working or current directory).

The following example specifies the full path to file mine.h in John Doe’s

subdirectory example_prog:

/u/johndoe/example_prog/mine.h

v Use a relative path name to imbed files

The relative path name locates a file relative to the directory that holds the current

source file or relative to directories defined using the -Idirectory option.

Directory search sequence for include files using relative path

names

C and C++ define two versions of the #include preprocessor directive. IBM XL

C/C++ supports both. With the #include directive, the include file name is

enclosed between either the < > or “ ” delimiter characters.

Your choice of delimiter characters will determine the search path used to locate a

given include file name. The compiler will search for that include file in all

directories in the search path until the include file is found, as follows:

 #include type Directory search order

#include <file_name> 1. The compiler first searches for file_name in each user

directory specified by the -Idirectory compiler option, in the

order that they appear on the command line.

2. For C++ compilations, the compiler then searches the

directories specified by the -qcpp_stdinc and

-qgcc_cpp_stdinc compiler options.

3. Finally, the compiler then searches the directories specified

by the -qc_stdinc and -qgcc_c_stdinc compiler options.

#include “file_name” 1. The compiler first searches for the include file in the

directory where your current source file resides. The current

source file is the file that contains the directive

#include “file_name”.

2. The compiler then searches for the include file according to

the search order described above for #include <file_name>.

Notes:

1. file_name specifies the name of the file to be included, and can include a full or

partial directory path to that file if you desire.

v If you specify a file name by itself, the compiler searches for the file in the

directory search list.

v If you specify a file name together with a partial directory path, the compiler

appends the partial path to each directory in the search path, and tries to

find the file in the completed directory path.

22 XL C/C++ Compiler Reference

v If you specify a full path name, the two versions of the #include directive

have the same effect because the location of the file to be included is

completely specified.
2. The only difference between the two versions of the #include directive is that

the “ ” (user include) version first begins a search from the directory where

your current source file resides. Typically, standard header files are included

using the < > (system include) version, and header files that you create are

included using the “ ” (user include) version.

3. You can change the search order by specifying the -qstdinc and -qidirfirst

options along with the -Idirectory option.

Use the -qnostdinc option to search only the directories specified with the

-Idirectory option and the current source file directory, if applicable.

Use the -qidirfirst option with the #include “file_name” directive to search the

directories specified with the -Idirectory option before searching other

directories.

Use the -I option to specify the directory search paths.

Linking

The linkage editor link-edits specified object files to create one executable file.

Invoking the compiler with one of the invocation commands automatically calls

the linkage editor unless you specify one of the following compiler options: -E, -P,

-c, -S, -qsyntaxonly or -#.

Input files

Object files, unstripped executable files, and library files serve as input to

the linkage editor. Object files must have a suffix, for example, year.o.

Static library file names have an .a suffix, for example, libold.a. Dynamic

library file names have a .so suffix, for example, libold.so.

Output files

The linkage editor generates an executable file and places it in your current

directory. The default name for an executable file is a.out. To name the

executable file explicitly, use the -o file_name option with the compiler

invocation command, where file_name is the name you want to give to the

executable file. For example, to compile myfile.c and generate an

executable file called myfile, enter:

xlc myfile.c -o myfile

If you use the -qmkshrobj option to create a shared library, the shared

object created will have a .so file name extension.

 You can invoke the linkage editor explicitly with the ld command. However, the

compiler invocation commands set several linkage-editor options, and link some

standard files into the executable output by default. In most cases, it is better to

use one of the compiler invocation commands to link-edit your object files.

Note: When link-editing object files, do not use the -e option of the ld command.

The default entry point of the executable output is __start. Changing this

label with the -e flag can cause erratic results.

Related information

v “Options that control linking” on page 40

v Appendix A, “Redistributable libraries,” on page 301

Chapter 2. Compiling and linking applications 23

Order of linking

XL C/C++ links libraries in the following order:

1. user .o files and libraries

2. XL C/C++ libraries

3. C++ standard libraries

4. C standard libraries

The table below shows the linking order in greater detail for a ″Hello World″ type

of program.

Directory paths shown may vary depending on your particular compiler

configuration. See the default configuration file installed on your system for

information specific to your particular compiler configuration. See “Specifying

compiler options in a configuration file” on page 18 for more information about

compiler default configuration files in general.

 ld command

components

Options ld arguments xldriver attributes

ld gcc, g++ ld ld / ld_64

xlc, xlC ld

enable exception

handling

personality

handlers

all --eh-frame-hdr Option added to

command line by

xldriver

generate .ident

directives

-Qn

otherwise -Qy Option added to

command line by

xldriver

output kind -shared -static -shared Option added to

command line by

xldriver

-shared -shared

-static -static

Otherwise

arch 32-bit -melf32ppclinux Option added to

command line by

xldriver

64-bit -mel64ppc

dynamic loader 32-bit !-shared !-static -dynamic-linker /lib/ld.so.1 dynlib

64-bit !-shared !-static -dynamic-linker /lib64/ld64.so.1 dynlib64

call to main() 32-bit !-shared /usr/libcrt1.o crt

64-bit !-shared /usr/lib64/crt1.o crt_64

32-bit !-shared -p /usr/lib/gcrt1.o mcrt

32-bit !-shared -pg gcrt

64-bit !-shared -p /usr/lib64/gcrt1.o mcrt_64

64-bit !-shared -pg gcrt_64

init/fini functions

prolog

32-bit all /usr/lib/crti.o crtp

64-bit all /usr/lib64/crti.o crtp_64

init/fini register -shared -static crtbeginT.o crtbegin_t /

crtbegin_t_64 -static

-shared crtbeginS.o crtbegin_s /

crtbegin_s_64

otherwise crtbegin.o crtbegin / crtbegin_64

library search

paths

32-bit gcc -L<gcc>/gcc-lib gcc_libdirs

64-bit gcc -L<gcc64>/gcc-lib gcc_libdirs_64

32-bit g++ -L<gcc>/gcc-lib/powerpc-suse-linux-gnu/3.2
-L<gcc>/gcc-lib

gcc_libdirs

64-bit g++ -Lgcc64/gcc-lib/powerpc64-linux-gnu/3.2
-Lgcc64/gcc-lib

gcc_libdirs_64

24 XL C/C++ Compiler Reference

ld command

components

Options ld arguments xldriver attributes

user .o files and

libraries

all

vacpp libraries all libraries2 / libraries2_64

C++ standard

libraries

g++ -lstdc++ -lm gcc_cpp_libs /

gcc_cpp_libs_64

C standard

libraries

gcc
-static
-static -shared-libgcc
-shared -static-libgcc

-lgcc
-lgcc_eh
-lc
-lgcc
-lgcc_eh

gcc_static_libs /

gcc_static_libs_64

g++
-shared-libgcc

-lgcc_s
-lgcc
-lc
-lgcc_s
-lgcc

gcc_shared_libs /

gcc_shared_libs_64

all gcc_libs / gcc_libs_64

save/restore

routines

all crtsavres.o crtsavres / crtsavres_64

init/fini run crtend.o crtend / crtend_64

-shared crtendS.o crtend_s / crtend_s_64

init/fini functions

epilog

all /usr/lib/crtn.o crte

/usr/lib64/crtn.o crte_64

Compiler messages and listings

The following sections discuss the various methods of reporting provided by the

compiler after compilation:

v “Compiler messages”

v “Compiler listings” on page 27

v “Compiler return codes” on page 28

v “Message catalog errors” on page 28

v “Paging space errors during compilation” on page 29

Compiler messages

When the compiler encounters a programming error while compiling a C or C++

source program, it issues a diagnostic message to the standard error device and if

the appropriate options have been selected, to the listing file.

This section also outlines some of the basic reporting mechanisms the compiler

uses to describe compilation errors.

The compiler issues messages specific to the C or C++ language.

If you specify the compiler option “-qsrcmsg” on page 180 and the error is

applicable to a particular line of code, the reconstructed source line or partial

source line is included with the error message in the stderr file. A reconstructed

source line is a preprocessed source line that has all the macros expanded.

If you specify the “-qsource” on page 177 compiler option, the compiler will place

messages in the source listing. For example, if you compile your file using the

command line invocation xlc -qsource filename.c, then you will find a file called

filename.lst in your current directory.

Chapter 2. Compiling and linking applications 25

You can control the diagnostic messages issued, according to their severity, using

either the “-qflag” on page 82 option or the “-w” on page 205 option. To get

additional informational messages about potential problems in your program, use

the “-qinfo” on page 100 option.

Compiler message format

Diagnostic messages have the following format when the -qnosrcmsg option is

active (which is the default):

“file”, line line_number.column_number: 15dd-nnn (severity) text.

where:

 file is the name of the C or C++ source file with the error

line_number is the line number of the error

column_number is the column number for the error

15 is the compiler product identifier

dd is a two-digit code indicating the XL C/C++ component that issued the

message. dd can have the following values:

00 - code generating or optimizing message

01 - compiler services message

05 - message specific to the C compiler

06 - message specific to the C compiler

40 - message specific to the C++ compiler

86 - message specific to interprocedural analysis (IPA)

nnn is the message number

severity is a letter representing the severity of the error

text is a message describing the error

Diagnostic messages have the following format when the -qsrcmsg option is

specified:

x - 15dd-nnn(severity) text.

where x is a letter referring to a finger in the finger line.

Message severity levels and compiler response

XL C/C++ uses a five-level classification scheme for diagnostic messages. Each

level of severity is associated with a compiler response. Not every error halts

compilation. The following table provides a key to the abbreviations for the

severity levels and the associated compiler response.

 Letter Severity Compiler response

I Informational Compilation continues. The message reports conditions found

during compilation.

W Warning Compilation continues. The message reports valid but

possibly unintended conditions.

E Error

Compilation continues and object code is generated.

Error conditions exist that the compiler can correct, but the

program might not produce the expected results.

S Severe error Compilation continues, but object code is not generated. Error

conditions exist that the compiler cannot correct.

26 XL C/C++ Compiler Reference

Letter Severity Compiler response

U Unrecoverable

error

The compiler halts. An internal compiler error has occurred.

v If the message indicates a resource limit (for example, file

system full or paging space full), provide additional

resources and recompile.

v If the message indicates that different compiler options are

needed, recompile using them.

v Check for and correct any other errors reported prior to the

unrecoverable error.

v If the message indicates an internal compiler error, the

message should be reported to your IBM service

representative.

 Related information

v Options summary by functional category: Listings and messages

v Options summary by functional category: Error checking and debugging

Compiler listings

A listing is a type of compiler output that contains information about a particular

compilation. As a debugging aid, a compiler listing is useful for determining what

has gone wrong in a compilation. For example, any diagnostic messages emitted

during compilation are written to the listing.

Use the -qsource option to request a listing. Listing information is organized in

sections. A listing contains a header section and a combination of other sections,

depending on other options in effect. The contents of these sections are described

as follows.

Header section Lists the compiler name, version, and release, as

well as the source file name and the date and time

of the compilation.

Source section Lists the input source code with line numbers. If

there is an error at a line, the associated error

message appears after the source line. Lines

containing macros have additional lines showing

the macro expansion. By default, this section only

lists the main source file. Use the -qshowinc option

to expand all header files as well.

Options section Lists the nondefault options that were in effect

during the compilation. To list all options in effect,

specify the -qlistopt option.

Attribute and cross-reference listing section

Provides information about the variables used in

the compilation unit, such as type, storage

duration, scope, and where they are defined and

referenced. This section is only produced if the

options -qattr and -qxref options in effect.

Independently, each of these options provides

different information on the identifiers used in the

compilation.

File table section Lists the file name and number for each main

source file and include file. Each file is associated

with a file number, starting with the main source

file, which is assigned file number 0. For each file,

the listing shows from which file and line the file

was included. If the -qshowinc option is also in

Chapter 2. Compiling and linking applications 27

effect, each source line in the source section will

have a file number to indicate which file the line

came from.

Compilation epilogue section Displays a summary of the diagnostic messages by

severity level, the number of source lines read, and

whether or not the compilation was successful.

Object section Lists the object code generated by the compiler.

This section is useful for diagnosing execution time

problems, if you suspect the program is not

performing as expected due to code generation

error. This section is only produced if the -qlist

option is in effect.

Related information

v Summary of command line options: Listings and messages

Compiler return codes

At the end of compilation, the compiler sets the return code to zero under any of

the following conditions:

v No messages are issued.

v The highest severity level of all errors diagnosed is less than the setting of the

-qhalt compiler option, and the number of errors did not reach the limit set by

the -qmaxerr compiler option.

v No message specified by the -qhaltonmsg compiler option is issued.

Otherwise, the compiler sets the return code to one of the following values:

 Return code Error type

1 Any error with a severity level higher than the setting of the -qhalt

compiler option has been detected.

40 An option error or an unrecoverable error has been detected.

41 A configuration file error has been detected.

249 No files specified.

250 An out-of-memory error has been detected. The compiler cannot

allocate any more memory for its use.

251 A signal-received error has been detected. That is, an unrecoverable

error or interrupt signal has occurred.

252 A file-not-found error has been detected.

253 An input/output error has been detected: files cannot be read or

written to.

254 A fork error has been detected. A new process cannot be created.

255 An error has been detected while the process was running.

Note: Return codes may also be displayed for runtime errors.

Message catalog errors

Before the compiler can compile your program, the message catalogs must be

installed and the environment variables LANG and NLSPATH must be set to a

language for which the message catalog has been installed.

28 XL C/C++ Compiler Reference

If you see the following message during compilation, the appropriate message

catalog cannot be opened:

Error occurred while initializing the message system in

file: message_file

where message_file is the name of the message catalog that the compiler cannot

open. This message is issued in English only.

You should then verify that the message catalogs and the environment variables

are in place and correct. If the message catalog or environment variables are not

correct, compilation can continue, but diagnostic messages are suppressed and the

following message is issued instead:

No message text for message_number

where message_number is the IBM XL C/C++ internal message number. This

message is issued in English only.

To determine which message catalogs are installed on your system, assuming that

you have installed the compiler to the default location, you can list all of the file

names for the catalogs by the following command:

ls /opt/ibmcmp/vacpp/8.0/msg/$LANG/*.cat

where LANG is the environment variable on your system that specifies the system

locale.

The compiler calls the message catalogs for en_US by default if LANG is not set

correctly,

For more information about the NLSPATH and LANG environment variables, see

your operating system documentation.

Paging space errors during compilation

If the operating system runs low on paging space during a compilation, the

compiler issues the following message:

1501-229 Compilation ended due to lack of space.

To minimize paging-space problems, do any of the following and recompile your

program:

v Reduce the size of your program by splitting it into two or more source files

v Compile your program without optimization

v Reduce the number of processes competing for system paging space

v Increase the system paging space

See your operating system documentation for more information about paging

space and how to allocate it.

Chapter 2. Compiling and linking applications 29

30 XL C/C++ Compiler Reference

Chapter 3. Compiler options reference

This chapter contains detailed descriptions of the individual options available in

XL C/C++. The chapter begins with a summary view of the options by functional

category. Finally, a reference list of compatible hardware-related options is

provided.

Summary of compiler options by functional category

The XL C/C++ options available on the Linux platform are grouped into the

following categories, based on the essence or nature of the functionality the option

provides:

v Input control. Accepted language features, search paths for input file.

v Output control. Characteristics of the object code, data size and alignment, file

names of output files.

v Optimization. Predefined levels of optimization, specialized optimization

techniques, code size.

v Error checking and debugging. Includes options for profiling and initializing

automatic variables.

v Listings and messages. Includes options to produce output more specialized

than that of -qsource or -qinfo.

v Compatibility. Reinstates specific functionality of an earlier compiler, hardware

v Integer and floating-point control. Options that direct rounding and the handling

of long long and floating-point types.

v Linking. Search paths for input to and output from the linkage editor.

v Compiler customization. Control of internal compiler operation, such as how

templates are handled.

To get detailed information on any option listed, see the full description page(s) for

that option. Those pages describe each of the compiler options, including:

v The purpose of the option and additional information about its behavior. Unless

specifically noted, all options apply to both C and C++ program compilations.

v The command-line syntax of the compiler option. The first line under the Syntax

heading specifies the command-line or configuration-file method of specification.

The second line, if one appears, is the #pragma options keyword for use in your

source file.

v The default setting of the option if you do not specify the option on the

command line, in the configuration file, or in a pragma directive within your

program.

Options that control input

 Table 6. Options for standards compliance

Option name Type Default Description

-qlanglvl -qopt See “-qlanglvl” on

page 119.

Selects the C or C++ language level

for compilation.

© Copyright IBM Corp. 1995, 2005 31

Table 7. Options for language extensions

Option name Type Default Description

-qaltivec -qopt -qnoaltivec Enables compiler support for VMX

vector data types.

-qasm -qopt -qasm=gcc Controls the interpretation of and

subsequent code generation for asm

statements.

-qdigraph -qopt See “-qdigraph” on

page 72.

Enables the use of digraph character

sequences in your program source.

-qdollar -qopt -qnodollar Allows the $ symbol to be used in

the names of identifiers.

-qkeyword -qopt See “-qkeyword” on

page 117.

Controls whether a specified string

is treated as a keyword or an

identifier.

-qtrigraph -qopt -qtrigraph Enables the use of trigraph

character sequences in your

program source.

-qutf -qopt -qnoutf Enables recognition of UTF literal

syntax.

 Table 8. Options for search paths

Option name Type Default Description

-qc_stdinc -qopt - Changes the standard search

location for the C headers.

-qcinc

-qopt -qnocinc Instructs the compiler to place an

extern "C" { } wrapper around

the contents of an include file.

-qcomplexgccincl -qopt -qcomplexgccincl
=/usr/include

Instructs the compiler to

internally wrap #pragma

complexgcc(on) and #pragma

complexgcc(pop) directives

around include files found in

specified directories.

-qcpp_stdinc

-qopt - Changes the standard search

location for the C++ headers.

-qgcc_c_stdinc

-qopt - Changes the standard search

location for the gcc headers.

-qgcc_cpp_stdinc

-qopt - Changes the standard search

location for the g++ headers.

-I -flag - Specifies an additional search

path for #include file names that

do not specify an absolute path.

-qidirfirst -qopt -qnoidirfirst Specifies the search order for files

included with the #include “

file_name” directive.

-qstdinc -qopt -qstdinc Specifies which files are included

with #include <file_name> and

#include “ file_name” directives.

32 XL C/C++ Compiler Reference

Table 9. Other input options

Option name Type Default Description

-+ (plus

sign)

-flag - Compiles any file, filename.nnn, as a

C++ language file, where nnn is any

suffix other than .o, .a, or .s.

-C -flag - Preserves comments in preprocessed

output.

-qcpluscmt

-qopt See “-qcpluscmt” on

page 64.

Enables the recognition of C++

comments in C source files.

-D -flag - Defines the identifier name as in a

#define preprocessor directive.

-qmbcs, -qdbcs -qopt -qnombcs, -qnodbcs Enables the recognition of multibyte

characters in source code.

-qignprag -qopt - Instructs the compiler to ignore

certain pragma statements.

-qsyntaxonly

-qopt - Causes the compiler to perform

syntax checking without generating

an object file.

-qsourcetype -qopt -qsourcetype=default Instructs the compiler to treat all

source files as if they are the source

type specified by this option,

regardless of actual source file name

suffix.

-U -flag - Undefines a specified identifier

defined by the compiler or by the -D

option.

Options that control output

 Table 10. Options for file output

Option name Type Default Description

-E -flag - Instructs the compiler to preprocess

the source files.

-M -flag - Creates an output file that contains

targets suitable for inclusion in a

description file for the make

command.

-o -flag - Specifies an output location for the

object, assembler, or executable files

created by the compiler.

-P -flag - Preprocesses the C or C++ source

files named in the compiler

invocation and creates an output

preprocessed source file for each

input source file.

-S -flag - Generates an assembly language file

(.s) for each source file.

-s -flag - Strips the symbol table.

-qfuncsect -qopt -qnofuncsect Places instructions for each function

in a separate object file control

section or csect.

Chapter 3. Compiler options reference 33

Table 10. Options for file output (continued)

Option name Type Default Description

-qmakedep -qopt - Creates an output file that contains

targets suitable for inclusion in a

description file for the make

command.

-qppline -qopt -qppline Enables generation of #line

directives in the preprocessed

output.

 Table 11. Options for signedness

Option name Type Default Description

-qbitfields -qopt -qbitfields=signed Specifies if bit fields are signed.

-qchars -qopt -qchars=unsigned Instructs the compiler to treat all

variables of type char as either

signed or unsigned.

-qupconv

-qopt -qnoupconv Preserves the unsigned specification

when performing integral

promotions.

 Table 12. Options for data size and alignment

Option name Type Default Description

-qalign -qopt -qalign=linuxppc Specifies the aggregate alignment

rules the compiler uses for file

compilation.

-qenum -qopt See “-qenum” on

page 78.

Specifies the amount of storage

occupied by enumerations.

 Table 13. Options that control the characteristics of the object code

Option name Type Default Description

-qenablevmx -qopt -qenablevmx Enables generation of VMX (Vector

Multimedia Extension) instructions

on supporting architectures.

-qpic -qopt -qnopic Instructs the compiler to generate

Position-Independent Code

suitable for use in shared libraries.

-qreserved_reg

-qopt - Indicates that the given list of

registers cannot be used during

the compilation except as a stack

pointer, frame pointer or in some

other fixed role.

-qstaticinline

-qopt -qnostaticinline Treats inline functions as being

static.

-qstatsym -qopt -qnostatsym Adds user-defined, non-external

names that have a persistent

storage class to the name list.

-qvftable

-qopt -qvftable Controls the generation of virtual

function tables.

34 XL C/C++ Compiler Reference

Table 13. Options that control the characteristics of the object code (continued)

Option name Type Default Description

-qvrsave -qopt -qvrsave Controls function prolog and

epilog code necessary to maintain

the VRSAVE register.

-qxcall -qopt -qnoxcall Generates code to treat static

routines within a compilation unit

as if they were external calls.

 Table 14. Options that control the placement of strings and constant data

Option name Type Default Description

-qro -qopt See “-qro” on page

169.

Specifies the storage type for string

literals.

-qroconst -qopt See “-qroconst” on

page 169.

Specifies the storage location for

constant values.

 Table 15. Other output options

Option name Type Default Description

-# (pound sign) -flag - Traces the compilation without

doing anything.

-c -flag - Instructs the compiler to pass source

files to the compiler without sending

them to the linkage editor.

-q32, -q64 -qopt -q32 Selects 32-bit or 64-bit compiler

mode.

-qalloca -qopt - Substitutes inline code for calls to

function alloca as if #pragma alloca

directives are in the source code.

-qrtti -qopt -qrtti Generates runtime type

identification (RTTI) information for

the typeid operator and the

dynamic_cast operator.

-qsaveopt -qopt -qnosaveopt Saves the compiler options into an

object file.

-qthreaded -qopt See “-qthreaded” on

page 192.

Indicates that the program will run

in a multi-threaded environment.

Options for performance optimization

 Table 16. Options for defined optimization levels

Option name Type Default Description

-O, -qoptimize,

-qoptimize

-flag,

-qopt

-qnooptimize Optimizes code at a choice of levels

during compilation.

 Table 17. Options for ABI performance tuning

Option name Type Default Description

-qdataimported -qopt - Marks data as imported.

-qdatalocal -qopt - Marks data as local.

Chapter 3. Compiler options reference 35

Table 17. Options for ABI performance tuning (continued)

Option name Type Default Description

-qlibansi -qopt -qnolibansi Assumes that all functions with the

name of an ANSI C library function

are in fact the system functions.

-qminimaltoc -qopt -qnominimaltoc Avoids TOC overflow conditions in

64-bit compilations by placing TOC

entries into a separate data section

for each object file.

-qproclocal,

-qprocimported,

-qprocunknown

-qopt See “-qproclocal,

-qprocimported,

-qprocunknown” on

page 161.

Marks functions as local, imported,

or unknown.

-qtocdata -qopt -qnotocdata. Specifies the thread-local storage

model to be used by the application.

-qunwind -qopt -qunwind Informs the compiler that the

application does not rely on any

program stack unwinding

mechanism.

 Table 18. Options that restrict optimization

Option name Type Default Description

-qprefetch -qopt -qprefetch Enables generation of prefetching

instructions in compiled code.

-qsmallstack -qopt -qnosmallstack Instructs the compiler to reduce the

size of the stack frame.

-qspill -qopt -qspill=512 Specifies the size of the register

allocation spill area.

-qstrict -qopt See “-qstrict” on page

183.

Turns off aggressive optimizations of

the -O3 option that have the

potential to alter the semantics of

your program.

 Table 19. Options for processor and architectural optimization

Option name Type Default Description

-qarch -qopt -qarch=ppc64grsq Specifies the architecture on which

the executable program will be run.

-qcache -qopt - Specifies a cache configuration for a

specific execution machine.

-qdirectstorage -qopt -qnodirectstorage. Informs the compiler that

write-through enabled or

cache-inhibited storage may be

referenced.

-qtune -qopt See “-qtune” on page

197.

Specifies the architecture for which

the executable program is optimized.

36 XL C/C++ Compiler Reference

Table 20. Options for loop optimization

Option name Type Default Description

-qhot -qopt -qnohot Instructs the compiler to perform

high-order loop analysis and

transformations during optimization.

-qstrict_induction -qopt See

“-qstrict_induction”

on page 184.

Disables loop induction variable

optimizations that have the potential

to alter the semantics of your

program.

-qunroll -qopt -qunroll=auto Unrolls inner loops in the program.

 Table 21. Options for code size reduction

Option name Type Default Description

-qcompact -qopt -qnocompact When used with optimization,

reduces code size where possible, at

the expense of execution speed.

-qeh -qopt -qeh Controls exception handling.

-qkeepinlines

-qopt -qnokeepinlines Instructs the compiler to keep or

discard definitions for unreferenced

external inline functions.

 Table 22. Options for whole-program analysis

Option name Type Default Description

-qipa -qopt See “-qipa” on page

106.

Turns on or customizes a class of

optimizations known as

interprocedural analysis (IPA).

 Table 23. Options for function inlining

Option name Type Default Description

-qinline -qopt See “-qinline” on

page 104.

Attempts to inline functions instead

of generating calls to a function.

-Q -flag See “-Q” on page 164. Attempts to inline functions.

 Table 24. Options for performance data collection

Option name Type Default Description

-qpdf1, -qpdf2 -qopt -qnopdf1, -qnopdf2 Tunes optimizations through

profile-directed feedback.

-qshowpdf -qopt -qnoshowpdf Used together with -qpdf1 and a

minimum of -O to add additional

call and block count profiling

information to an executable.

Options for error checking and debugging

 Table 25. Options for debugging

Option name Type Default Description

-g -flag - Generates debugging information for

use by a debugger.

Chapter 3. Compiler options reference 37

Table 25. Options for debugging (continued)

Option name Type Default Description

-qdbxextra

-qopt -qnodbxextra Specifies that all typedef

declarations, struct, union, and enum

type definitions are included for

debugger processing.

-qfullpath -qopt -qnofullpath Specifies the path information that is

stored for files when you use the -g

option.

-qlinedebug -qopt -qnolinedebug Generates abbreviated line number

and source file name information for

the debugger.

-qsymtab

-qopt - Determines what information

appears in the symbol table.

 Table 26. Options for profiling

Option name Type Default Description

-p -flag - Sets up the object files produced by

the compiler for profiling.

-pg -flag - Sets up the object files for profiling.

 Table 27. Other error checking and debugging options

Option name Type Default Description

-qgenproto

-qopt -qnogenproto Produces ANSI prototypes from

K&R function definitions.

-qinitauto -qopt -qnoinitauto Initializes automatic storage to a

specified two-digit hexadecimal byte

value.

-qkeepparm -qopt -qnokeepparm Ensures that function parameters are

stored on the stack even if the

application is optimized.

-qproto -qopt -qnoproto Assumes all functions are

prototyped.

-qtbtable -qopt See “-qtbtable” on

page 188.

Sets traceback table characteristics.

Options that control listings and messages

 Table 28. Options for listings

Option name Type Default Description

-qattr -qopt -qnoattr Produces a compiler listing

that includes an attribute

listing for all identifiers.

-qdump_class_hierarchy -qopt - Outputs the class layout and

structure of the inheritance to

standard error.

-qlist -qopt -qnolist Produces a compiler listing

that includes an object listing.

38 XL C/C++ Compiler Reference

Table 28. Options for listings (continued)

Option name Type Default Description

-qlistopt -qopt -qnolistopt Produces a compiler listing

that displays all options in

effect.

-qprint -qopt -qprint -qnoprint suppresses listings.

-qshowinc -qopt -qnoshowinc Used together with -qsource

to selectively show user

header files (includes using ″

″) or system header files

(includes using < >) in the

program source listing.

-qsource -qopt -qnosource Produces a compiler listing

and includes source code.

-qtabsize -qopt -qtabsize=8 Changes the length of tabs as

perceived by the compiler.

-qxref -qopt -qnoxref Produces a compiler listing

that includes a cross-reference

listing of all identifiers.

 Table 29. Options for messages

Option name Type Default Description

-qflag -qopt -qflag=i:i Specifies the minimum

severity level of diagnostic

messages to be reported.

-qformat -qopt See “-qformat” on page 88 Warns of possible problems

with string input and

output format

specifications.

-qhalt -qopt -qhalt=s Instructs the compiler to

stop after the compilation

phase when it encounters

errors of specified severity

or greater.

-qhaltonmsg -qopt - Instructs the compiler to

stop after the compilation

phase when it encounters a

specific error message.

-qinfo -qopt

-qnoinfo

-qinfo=lan:trx

Produces informational

messages.

-qphsinfo -qopt -qnophsinfo Reports the time taken in

each compilation phase.

-qreport -qopt -qnoreport Instructs the compiler to

produce transformation

reports that show how

program loops are

parallelized and optimized.

-qsrcmsg -qopt -qnosrcmsg Adds the corresponding

source code lines to the

diagnostic messages in the

stderr file.

Chapter 3. Compiler options reference 39

Table 29. Options for messages (continued)

Option name Type Default Description

-qsuppress -qopt See “-qsuppress” on page

185.

Specifies compiler message

numbers to be suppressed.

-qversion -qopt -qnoversion Displays the version of the

compiler being invoked.

-V -flag - Instructs the compiler to

report information on the

progress of the compilation

in a command-like format.

-v -flag - Instructs the compiler to

report information on the

progress of the compilation.

-w -flag - Requests that warning

messages be suppressed.

Options for compatibility

 Table 30. Options for compatibility

Option name Type Default Description

-qabi_version

-qopt See “-qabi_version”

on page 44.

Specifies a C++ ABI version for

binary compatibility with different

levels of GNU C++.

Options that control integer and floating-point processing

 Table 31. Options for integer and floating-point control

Option name Type Default Description

-qfloat -qopt See “-qfloat” on page

83.

Specifies various floating point

options to speed up or improve the

accuracy of floating point operations.

-qflttrap -qopt -qnoflttrap Generates extra instructions to detect

and trap floating point exceptions.

-qlonglit -qopt -qnolonglit Makes unsuffixed literals the long

type for 64-bit mode.

-qlonglong -qopt See “-qlonglong” on

page 139.

Allows long long types in your

program.

-y -flag -yn Specifies the compile-time rounding

mode of constant floating-point

expressions.

Options that control linking

 Table 32. Options for linker input control

Option name Type Default Description

-qbigdata -qopt -qnobigdata In 32-bit mode, allows initialized

data to be larger than 16 MB in size.

40 XL C/C++ Compiler Reference

Table 32. Options for linker input control (continued)

Option name Type Default Description

-e -flag - Specifies the entry name for the

shared object. Equivalent to using ld

-e name.

-L -flag See “-L” on page 117. Searches the specified directory at

link time for library files specified

by the -l option.

-l -flag See “-l” on page 118. Searches a specified library for

linking.

-qlib -qopt -qlib Instructs the compiler to use the

standard system libraries at link

time.

-R -flag See “-R” on page 166. Searches the specified directory at

run time for shared libraries.

 Table 33. Options for linker output control

Option name Type Default Description

-qmkshrobj -qopt - Creates a shared object from

generated object files.

-qstaticlink -qopt -qnostaticlink Controls linking to shared libraries.

-r -flag - Produces a relocatable object.

 Table 34. Other linker options

Option name Type Default Description

-qcrt -qopt -qcrt Instructs the linkage editor to use

the standard system startup files at

link time.

-qinlglue -qopt -qnoinlglue Generates fast external linkage by

inlining the pointer glue code

necessary to make a call to an

external function or a call through a

function pointer.

-qpriority

-qopt -qpriority=65535 Specifies the priority level for the

initialization of static objects.

Options for customizing the compiler

 Table 35. Options for general customization

Option name Type Default Description

-B -flag - Determines substitute path names

for the compiler, assembler, linkage

editor, and preprocessor.

-F -flag - Names an alternative configuration

file for the compiler.

-qasm_as -qopt - Specifies the path and flags used to

invoke the assembler.

Chapter 3. Compiler options reference 41

Table 35. Options for general customization (continued)

Option name Type Default Description

-qmaxmem -qopt -qmaxmem=8192 Limits the amount of memory used

for local tables of specific,

memory-intensive optimizations.

-qpath -qopt - Constructs alternate program and

path names.

-t -flag See “-t” on page 187. Adds the prefix specified by the -B

option to designated programs.

-W -flag - Passes the listed options to a

designated compiler program.

-qtls -qopt See “-qtls” on page

192.

Marks data as local.

 Table 36. Template-related options

Option name Type Default Description

-qtempinc -qopt -qnotempinc. Generates separate include files

for template functions and class

declarations, and places these

files in a directory which can be

optionally specified.

-qtemplaterecompile

-qopt See

“-qtemplaterecompile”

on page 190.

Helps manage dependencies

between compilation units that

have been compiled using the

-qtemplateregistry compiler

option.

-qtemplateregistry

-qopt -qnotemplateregistry Maintains records of all

templates as they are

encountered in the source and

ensures that only one

instantiation of each template is

made.

-qtempmax -qopt -qtempmax=1 Specifies the maximum number

of template include files to be

generated by the tempinc option

for each header file.

-qtmplinst -qopt -qtmplinst=auto Manages the implicit

instantiation of templates.

-qtmplparse

-qopt -qtmplparse=no Controls whether parsing and

semantic checking are applied to

template definition

implementations.

Individual option descriptions

This section contains descriptions of the individual compiler options available in

XL C/C++.

-+ (plus sign)

42 XL C/C++ Compiler Reference

Description

Compiles any file, filename.nnn, as a C++ language file, where nnn is any suffix

other than .a, .o, .so, .S or .s.

Syntax

�� -+ ��

Notes

If you do not use the -+ option, files must have a suffix of .C (uppercase C), .cc,

.cp, .cpp, .cxx, or .c++ to be compiled as a C++ file. If you compile files with suffix

.c (lowercase c) without specifying -+, the files are compiled as a C language file.

The -+ option should not be used together with the -qsourcetype option.

Example

To compile the file myprogram.cplspls as a C++ source file, enter:

 xlc++ -+ myprogram.cplspls

Related information

v “-qsourcetype” on page 178

v Options that control input: Other input options

-# (pound sign)

Description

Traces the compilation without invoking anything. This option previews the

compilation steps specified on the command line. When the xlc++ command is

issued with this option, it names the programs within the preprocessor, compiler,

and linkage editor that would be invoked, and the options that would be specified

to each program. The preprocessor, compiler, and linkage editor are not invoked.

Syntax

�� -# ��

Notes

Use this command to determine the commands and files that will be involved in a

particular compilation. It avoids the overhead of compiling the source code and

overwriting any existing files, such as .lst files. Information is displayed to

standard output.

This option displays the same information as -v, but does not invoke the compiler.

The -# option overrides the -v option.

Example

To preview the steps for the compilation of the source file myprogram.c, enter:

xlc myprogram.c -#

Related information

v “-v” on page 202

v Options that control output: Other output options

Chapter 3. Compiler options reference 43

-q32, -q64

Description

Selects either 32-bit or 64-bit compiler mode.

Syntax

��
 32

-q

64

��

Notes

If this option is not explicitly specified on the command line, the compiler will

default to 32-bit output mode.

If the compiler is invoked in 64-bit mode, the __64BIT__ preprocessor macro is

defined.

Use -q32 and -q64 options, along with the -qarch and -qtune compiler options, to

optimize the output of the compiler to the architecture on which that output will

be used.

Example

To specify that the executable program testing compiled from myprogram.c is to run

on a computer with a 32-bit PowerPC architecture, enter:

xlc -o testing myprogram.c -q32 -qarch=ppc

Important!

v If you mix 32-bit and 64-bit compilation modes for different source files, your

objects will not bind. You must recompile completely to ensure that all objects

are in the same mode.

v Your link options must reflect the type of objects you are linking. If you

compiled 64-bit objects, you must link these objects using 64-bit mode.

Related information

v “-qarch” on page 49

v “-qtune” on page 197

v “Acceptable compiler mode and processor architecture combinations” on page

208

v Options that control output: Other output options

-qabi_version

Description

Specifies the C++ ABI version for binary compatibility with different levels of GNU

C++.

Syntax

�� -q abi_version = 1

2
 ��

where:

1 Specifies the same C++ ABI behavior as in GNU C++ 3.2.

44 XL C/C++ Compiler Reference

2 Specifies the same C++ ABI behavior as in GNU C++ 3.4, if this version is

supported by the operating system.

Notes

The option -qabi_version is provided for compatibility with the GNU C++ option

-fabi-version=n, which allows the user to specify the version of the C++ abstract

binary interface used during compilation. The default setting of -qabi_version

depends on the compiling machine itself and the level of GNU C++ configured

during the installation of XL C++. The default is -qabi_version=1 if GNU C++ 3.2

or 3.3 is installed on the compiling machine.

Informational messages

The value of -qabi_version can be ascertained by compiling with -qlistopt in

effect.

Related information

v “-qlistopt” on page 137

v Options for compatibility

-qaggrcopy

Description

Enables destructive copy operations for structures and unions.

Syntax

�� -q aggrcopy = nooverlap

overlap
 ��

Default setting

The default setting of this option is -qaggrcopy=overlap when compiling with

-qlanglvl=extended or -qlanglvl=classic in effect. Otherwise, the default is

-qaggrcopy=nooverlap.

Programs that do not comply to the ANSI C standard as it pertains to non-overlap

of source and destination assignment may need to be compiled with the

-qaggrcopy=overlap compiler option.

Notes

If the -qaggrcopy=nooverlap compiler option is enabled, the compiler assumes that

the source and destination for structure and union assignments do not overlap.

This assumption lets the compiler generate faster code.

Example

xlc myprogram.c -qaggrcopy=nooverlap

Related information

v “-qlanglvl” on page 119

v Summary of command line options: Optimization flags

Chapter 3. Compiler options reference 45

-qalias

Description

Instructs the compiler to apply aliasing assertions to your compilation unit. The

compiler will take advantage of the aliasing assertions to improve optimizations

where possible, unless you specify otherwise.

Syntax

��

�

 :

noaddrtaken

noallptrs

typeptr

ansi

-q

alias

=

noansi

notypeptr

allptrs

addrtaken

��

where available aliasing options are:

 [no]typeptr If notypeptr is specified, pointers to different types are never aliased. In

other words, in the compilation unit, no two pointers of different types

will point to the same storage location.

[no]allptrs If noallptrs is specified, pointers are never aliased (this also implies

-qalias=typeptr). Therefore, in the compilation unit, no two pointers

will point to the same storage location.

[no]addrtaken If noaddrtaken is specified, variables are disjoint from pointers unless

their address is taken. Any class of variable for which an address has

not been recorded in the compilation unit will be considered disjoint

from indirect access through pointers.

[no]ansi If ansi is specified, type-based aliasing is used during optimization,

which restricts the lvalues that can be safely used to access a data

object. The optimizer assumes that pointers can only point to an object

of the same type. This (ansi) is the default for the xlc, xlc++, xlC, c89

and c99 invocation commands. This option has no effect unless you

also specify the -O option.

If you select noansi, the optimizer makes worst case aliasing

assumptions. It assumes that a pointer of a given type can point to an

external object or any object whose address is already taken, regardless

of type. This is the default for the cc invocation command.

Notes

The following are not subject to type-based aliasing:

v Signed and unsigned types. For example, a pointer to a signed int can point to

an unsigned int.

v Character pointer types can point to any type.

v Types qualified as volatile or const. For example, a pointer to a const int can

point to an int.

Example

To specify worst-case aliasing assumptions when compiling myprogram.c, enter:

xlc myprogram.c -O -qalias=noansi

Related information

46 XL C/C++ Compiler Reference

v “#pragma disjoint” on page 225

v Options for performance optimization: Options for aliasing

-qalign

Description

Specifies what aggregate alignment rules the compiler uses for file compilation.

Use this option to specify the maximum alignment to be used when mapping a

class-type object, either for the whole source program or for specific parts.

Syntax

��
 linuxppc

-q

align

=

bit_packed

��

where available alignment options are:

 linuxppc The compiler uses default GNU C/C++ alignment rules to maintain

compatibility with GNU C/C++ objects. This is the default.

bit_packed The compiler uses the bit_packed alignment rules. This suboption is similar

to the GCC -fpack-struct option.

Notes

If you use the -qalign option more than once on the command line, the last

alignment rule specified applies to the file.

You can control the alignment of a subset of your code by using #pragma

align(alignment_rule) to override the setting of the -qalign compiler option. Use

#pragma align(reset) to revert to a previous alignment rule. The compiler stacks

alignment directives, so you can go back to using the previous alignment directive,

without knowing what it is, by specifying the #pragma align(reset) directive. For

example, you can use this option if you have a class declaration within an include

file and you do not want the alignment rule specified for the class to apply to the

file in which the class is included.

Examples

Example 1 - Affecting only aggregate definition

Using the compiler invocation:

xlc++ file2.C /* <-- default alignment rule for file is */

 /* linuxppc because no alignment rule specified */

Where file2.C has:

extern struct A A1;

typedef struct A A2;

#pragma options align=bit_packed /* <-- use bit_packed alignment rules*/

struct A {

 int a;

 char c;

};

#pragma options align=reset /* <-- Go back to default alignment rules */

struct A A1; /* <-- aligned using bit_packed alignment rules since */

A2 A3; /* this rule applied when struct A was defined */

Chapter 3. Compiler options reference 47

Example 2 - Imbedded pragmas

Using the compiler invocation:

xlc -qalign=linuxppc file.c /* <-- default alignment rule for file */

 /* is linuxppc */

Where file.c has:

struct A {

 int a;

 struct B {

 char c;

 double d;

#pragma options align=bit_packed /* <-- B will be unaffected by this */

 /* #pragma, unlike previous behavior; */

 /* linuxppc alignment rules still */

 /* in effect */

 } BB;

#pragma options align=reset /* <-- A is unaffected by this #pragma; */

} AA; /* linuxppc alignment rules still */

 /* in effect */

Related information

v “#pragma align” on page 217

v “#pragma options” on page 248

v “#pragma pack” on page 253

v Options that control output: Options for data size and alignment

v "The __align specifier" in the XL C/C++ Language Reference

v "Aligning data in aggregates"in the XL C/C++ Programming Guide

v ″The aligned variable attribute″ in the XL C/C++ Language Reference

v ″The packed variable attribute″ in the XL C/C++ Language Reference

-qalloca

Description

Substitutes inline code for calls to function alloca, as if #pragma alloca directives

were in the source code.

Syntax

�� -q alloca ��

Notes

If #pragma alloca is unspecified, and if you do not use -ma, alloca is

treated as a user-defined identifier rather than as a built-in function.

In C++ programs, you should use the __alloca built-in function. If your

source code already references alloca as a function name, use the following option

on the command line when invoking the compiler:

-Dalloca=__alloca

You may want to consider using a C99 variable length array in place of alloca.

Example

To compile myprogram.c so that calls to the function alloca are treated as inline,

enter:

48 XL C/C++ Compiler Reference

xlc myprogram.c -qalloca

Related information

v “#pragma alloca” on page 218

v “-D” on page 69

v “-ma” on page 141

v Options that control output: Other output options

-qaltivec

Description

Enables compiler support for vector data types.

Syntax

��
 noaltivec

-q

altivec

��

Notes

This option instructs the compiler to support vector data types and operators and

has effect only when -qarch is set or implied to be a target architecture that

supports VMX instructions and the -qenablevmx compiler option is in effect (it is

in effect by default on currently supported Linux distributions). Otherwise, the

compiler will ignore -qaltivec and issue a warning message.

When -qaltivec is in effect, the following macros are defined:

v __ALTIVEC__ is defined to 1.

v __VEC__ is defined to 10205.

Example

To enable compiler support for vector programming, enter:

xlc myprogram.c -qarch=ppc64v -qaltivec

Related information

v “#pragma altivec_vrsave” on page 219

v “-qarch”

v “-qenablevmx” on page 77

v ″Appendix C. Vector data types and literals″in theXL C/C++ Language Reference

v AltiVec Technology Programming Interface Manual, available at

http://www.freescale.com

v Options that control input: Options for language extensions

-qarch

Description

Specifies the general processor architecture for which the code (instructions) should

be generated.

In general, the -qarch option allows you to target a specific architecture for the

compilation. For any given -qarch setting, the compiler defaults to a specific,

matching -qtune setting, which can provide additional performance improvements.

The resulting code may not run on other architectures, but it will provide the best

performance for the selected architecture. To generate code that can run on more

than one architecture, specify a -qarch suboption that supports a group of

Chapter 3. Compiler options reference 49

http://www.freescale.com

architectures, such as ppc, or ppc64; doing this will generate code that runs on all

supported architectures, all PowerPC architectures, or all 64-bit PowerPC

architectures, respectively. When a -qarch suboption is specified with a group

argument, you can specify -qtune as either auto, or provide a specific architecture

in the group. In the case of -qtune=auto, the compiler will generate code that runs

on all architectures in the group specified by the -qarch suboption, but select

instruction sequences that have best performance on the architecture of the

machine used to compile. Alternatively you can target a specific architecture for

tuning performance.

Syntax

��
 ppc64grsq

-q

arch

=

auto

pwr3

pwr4

pwr5

pwr5x

ppc

ppc64v

ppc64

ppcgr

ppc64gr

ppc970

rs64b

rs64c

��

where available options specify broad families of processor architectures or

subgroups of those architecture families, described below.

 auto v This option is implied if -O4 or -O5 is set or implied.

v Produces object code containing instructions that will run on the hardware

platform on which it is compiled.

pwr3 v Produces object code containing instructions that will run on any POWER3™,

POWER4™, POWER5™, POWER5+™ or PowerPC 970 hardware platform.

v Defines the _ARCH_PPC, _ARCH_PPCGR, _ARCH_PPC64,

_ARCH_PPC64GR, _ARCH_PPC64GRSQ, and _ARCH_PWR3 macros.

pwr4 v Produces object code containing instructions that will run on the POWER4,

POWER5, POWER5+ or PowerPC 970 hardware platform.

v Defines the _ARCH_PPC, _ARCH_PPCGR, _ARCH_PPC64,

_ARCH_PPC64GR, _ARCH_PPC64GRSQ, _ARCH_PWR3, and

_ARCH_PWR4 macros.

pwr5 v Produces object code containing instructions that will run on the POWER5 or

POWER5+ hardware platforms.

v Defines the _ARCH_PPC, _ARCH_PPCGR, _ARCH_PPC64,

_ARCH_PPC64GR, _ARCH_PPC64GRSQ, _ARCH_PWR3, _ARCH_PWR4,

and _ARCH_PWR5 macros.

pwr5x v Produces object code containing instructions that will run on the POWER5+

hardware platforms.

v Defines the _ARCH_PPC, _ARCH_PPCGR, _ARCH_PPC64,

_ARCH_PPC64GR, _ARCH_PPC64GRSQ, _ARCH_PWR3, _ARCH_PWR4,

_ARCH_PWR5 and _ARCH_PWR5X macros.

50 XL C/C++ Compiler Reference

ppc v In 32-bit mode, produces object code containing instructions that will run on

any of the 32-bit PowerPC hardware platforms. This suboption will cause the

compiler to produce single-precision instructions to be used with

single-precision data.

v Defines the _ARCH_PPC macro.

v Specifying -qarch=ppc together with -q64 implies -qarch=ppc64grsq.

ppc64 v Produces object code that will run on any of the 64-bit PowerPC hardware

platforms.

v This suboption can be selected when compiling in 32-bit mode, but the

resulting object code may include instructions that are not recognized or

behave differently when run on 32-bit PowerPC platforms.

v Defines the _ARCH_PPC and _ARCH_PPC64 macros.

ppcgr v In 32-bit mode, produces object code for PowerPC processors that support

optional graphics instructions.

v Specifying -qarch=ppcgr together with -q64 silently upgrades the

architecture setting to -qarch=ppc64grsq.

v Defines the _ARCH_PPC and _ARCH_PPCGR macros.

ppc64gr v Produces code for any 64-bit PowerPC hardware platform that supports

optional graphics instructions.

v Defines the _ARCH_PPC, _ARCH_PPCGR, _ARCH_PPC64, and

_ARCH_PPC64GR macros.

ppc64grsq v Produces code for any 64-bit PowerPC hardware platform that supports

optional graphics and square root instructions.

v Defines the _ARCH_PPC, _ARCH_PPCGR, _ARCH_PPC64,

_ARCH_PPC64GR, and _ARCH_PPC64GRSQ macros.

ppc64v v Generates instructions for generic PowerPC chips with VMX processors,

such as the PowerPC 970. Valid in 32-bit or 64-bit mode.

v Defines the _ARCH_PPC, _ARCH_PPCGR, _ARCH_PPC64,

_ARCH_PPC64GR, _ARCH_PPC64GRSQ, _ARCH_PPC64V macros.

ppc970 v Generates instructions specific to the PowerPC 970 architecture.

v Defines the _ARCH_PPC, _ARCH_PPC64V, _ARCH_PPCGR,

_ARCH_PPC64, _ARCH_PPC970, _ARCH_PWR3, _ARCH_PWR4,

_ARCH_PPC64GR, and_ARCH_PPC64GRSQ macros.

rs64b v Produces object code that will run on RS64II platforms.

v Defines the _ARCH_PPC, _ARCH_PPCGR, _ARCH_PPC64,

_ARCH_PPC64GR, _ARCH_PPC64GRSQ, and _ARCH_RS64B macros.

rs64c v Produces object code that will run on RS64III platforms.

v Defines the _ARCH_PPC, _ARCH_PPCGR, _ARCH_PPC64,

_ARCH_PPC64GR, _ARCH_PPC64GRSQ, and _ARCH_RS64C macros.

Notes

If you want maximum performance on a specific architecture and will not be using

the program on other architectures, use the appropriate architecture option.

You can use -qarch=suboption with -qtune=suboption. -qarch=suboption specifies the

architecture for which the instructions are to be generated, and -qtune=suboption

specifies the target platform for which the code is optimized. If -qarch is specified

without -qtune, the compiler uses the default tuning option for the specified

architecture, and the listing shows the effective -qtune setting.

Chapter 3. Compiler options reference 51

Example

To specify that the executable program testing compiled from myprogram.c is to run

on a computer with a 32-bit PowerPC architecture, enter:

xlc -o testing myprogram.c -q32 -qarch=ppc

Related information

v “-qtune” on page 197

v “Specifying compiler options for architecture-specific, 32-bit or 64-bit

compilation” on page 20

v “Acceptable compiler mode and processor architecture combinations” on page

208

v Options for performance optimization: Options for processor and architectural

optimization

v "Optimizing your applications"in the XL C/C++ Programming Guide

-qasm

Description

Controls the interpretation of and subsequent generation of code for an asm

assembly statement.

Syntax

The default is -qasm=gcc, independent of the language level. Specifying

-qasm without a suboption is equivalent to specifying the default.

��
 asm=gcc

-q

noasm

��

The default is also-qasm=gcc, independent of the language level.

��
 asm=gcc

-q

asm=stdcpp

noasm

��

Notes

The -qasm option and its negative form control whether or not code is emitted for

an assembly statement. The positive form of the option directs the compiler to

generate code for assembly statements in the source code. The suboptions specify

the syntax used to interpret the content of the assembly statement. For example,

specifying -qasm=gcc instructs the compiler to recognize the extended GCC syntax

and semantics for assembly statements.

The token asm is not a C language keyword. Therefore, at language levels

stdc89 and stdc99, which enforce strict compliance to the C89 and C99 standards,

respectively, the option -qkeyword=asm must also be specified to compile source

that generates assembly code. At all other language levels, the token asm is treated

as a keyword unless the option -qnokeyword=asm is in effect. In C, the

compiler-specific variants __asm and __asm__ are keywords at all language levels

and cannot be disabled.

The tokens asm, __asm, and __asm__ are keywords at all language levels.

Suboptions of -qnokeyword=token can be used to disable each of these reserved

words individually.

52 XL C/C++ Compiler Reference

Predefined macros

Whenever asm is treated as a keyword, the compiler predefines one of the

following mutually exclusive macros, depending on the assembly language syntax

specified. If assembler code is generated, the macro has the value 1; otherwise, 0.

 __IBM_GCC_ASM

__IBM_STDCPP_ASM

Informational messages

When the option -qinfo=eff is also in effect, the compiler emits an informational

message if no code is generated for an assembly statement.

Whenever an assembly statement is recognized as a valid language feature, the

option -qinfo=por instructs the compiler to report it in an informational message.

 The system assembler program must be available for this command to have effect.

See the “-qasm_as” compiler option for more information.

Example

The following code snippet shows an example of the GCC conventions for asm

syntax in inline statements:

int a, b, c;

int main() {

 asm("add %0, %1, %2" : "=r"(a) : "r"(b), "r"(c));

}

Related information

v “-qlanglvl” on page 119

v “-qinfo” on page 100

v “-qkeyword” on page 117

v Options that control input: Options for language extensions

v ″Inline assembly statements″in theXL C/C++ Language Reference

v ″Keywords for language extensions″in theXL C/C++ Language Reference

-qasm_as

Description

Specifies the path and flags used to invoke the assembler in order to handle

assembler code in an asm assembly statement.

Syntax

�� -q asm_as = asm_path flags

noasm_as
 ��

where

 asm_path A space-separated list of flags required to invoke the

assembler for assembly statements

flags The full path name of the assembler to be used

By default, the compiler reads the asm_path from the compiler configuration file.

Chapter 3. Compiler options reference 53

Notes

Use this option to specify an alternate assembler program and the flags required to

invoke that assembler.

This option overrides the default setting of the as command defined in the

compiler configuration file.

Example

To instruct the compiler to use the assembler program at /bin/as when it

encounters inline assembler code in myprog.c, specify the following on the

command line:

xlc myprog.c -qasm_as=/bin/as

Related information

v “-qasm” on page 52

v Compiler customization

v Options for customizing the compiler: Options for general customization

-qattr

Description

Produces a compiler listing that includes an attribute listing for all identifiers.

Syntax

��
 noattr

-q

attr

=

full

��

where:

 -qnoattr Does not produce an attribute listing for identifiers in the program.

-qattr=full Reports all identifiers in the program.

-qattr Reports only those identifiers that are used.

See also “#pragma options” on page 248.

Notes

This option does not produce a cross-reference listing unless you also specify

-qxref.

The -qnoprint option overrides this option.

If -qattr is specified after -qattr=full, it has no effect. The full listing is produced.

Example

To compile the program myprogram.C and produce a compiler listing of all

identifiers, enter:

xlc++ myprogram.C -qxref -qattr=full

A typical cross-reference listing has the form:

54 XL C/C++ Compiler Reference

Related information

v “-qprint” on page 160

v “-qxref” on page 206

v Options that control listings and messages: Options for listing

-B

Description

Determines substitute path names for programs such as the compiler, assembler,

linkage editor, and preprocessor.

Syntax

�� -B

prefix

program
 ��

where program can be a compiler component or a program name recognized by the

-t compiler option.

Default

If -B is specified but prefix is not, the default prefix is /lib/o. If -Bprefix is not

specified at all, the prefix of the standard program names is /lib/n.

If -B is specified but -tprograms is not, the default is to construct path names for all

the standard program names.

Notes

The optional prefix defines part of a path name to the new programs. The compiler

does not add a / between the prefix and the program name.

To form the complete path name for each program, IBM XL C/C++ adds prefix to

the standard program names for the compiler, assembler, editor and preprocessor.

Use this option if you want to keep multiple levels of some or all of IBM XL

C/C++ executables and have the option of specifying which one you want to use.

If -Bprefix is not specified, the default path is used.

-B -tprograms specifies the programs to which the -B prefix name is to be

appended.

The -Bprefix -tprograms options override the -Fconfig_file option.

Example

To compile myprogram.C using a substitute xlc++ compiler in /lib/tmp/mine/ enter:

xlc++ myprogram.C -B/lib/tmp/mine/ -tc

Chapter 3. Compiler options reference 55

To compile myprogram.C using a substitute editor in /lib/tmp/mine/, enter:

xlc++ myprogram.C -B/lib/tmp/mine/ -tl

Related information

v “-qpath” on page 153

v “-t” on page 187

v “Invoking the compiler” on page 11

v Options for customizing the compiler: Options for general customization

-qbigdata

Description

In 32-bit mode, allows initialized data to be larger than 16 MB in size.

Syntax

��
 nobigdata

-q

bigdata

��

Notes

In 32-bit mode, the GNU C/C++ size limit for initialized data is 16 MB. Use this

option when creating 32-bit applications in which initialized data and call routines

in shared libraries (such as open(), close(), printf()) exceed 16 MB.

Related information

v Options that control linking: Options for linker input control

-qbitfields

Description

Specifies if bit fields are signed. By default, bit fields are signed.

Syntax

��
 signed

-q

bitfields

=

unsigned

��

where options are:

 signed Bit fields are signed.

unsigned Bit fields are unsigned.

Related information

v Summary of command line options: Options for signedness

-C

Description

Preserves comments in preprocessed output.

56 XL C/C++ Compiler Reference

Syntax

�� -C ��

Notes

The -C option has no effect without either the -E or the -P option. With the -E

option, comments are written to standard output. With the -P option, comments

are written to an output file.

Example

To compile myprogram.c to produce a file myprogram.i that contains the

preprocessed program text including comments, enter:

xlc myprogram.c -P -C

Related information

v “-E” on page 75

v “-P” on page 152

v Summary of command line options: Other input options

-c

Description

Instructs the compiler to pass source files to the compiler component only. The

compiled source files are not sent to the linkage editor. The compiler creates an

output object file, file_name.o, for each valid source file, such as file_name.c,

file_name.i, file_name.C, file_name.cpp.

Syntax

�� -c ��

Notes

The -c option is overridden if either the -E, -P, or -qsyntaxonly options are

specified.

The -c option can be used in combination with the -o option to provide an explicit

name of the object file that is created by the compiler.

Example

To compile myprogram.C to produce an object file myprogram.o, but no executable

file, enter the command:

xlc++ myprogram.C -c

To compile myprogram.C to produce the object file new.o and no executable file,

enter:

xlc++ myprogram.C -c -o new.o

Related information

v “-E” on page 75

v “-o” on page 151

v “-P” on page 152

v “-qsyntaxonly” on page 186

v Options that control output: Other output options

Chapter 3. Compiler options reference 57

-qc_stdinc

Description

Changes the standard search location for the C headers.

Syntax

��

�

 :

-q

c_stdinc

=

path

��

Notes

The standard search path for C headers is determined by combining the search

paths specified by both this (-qc_stdinc) and the -qgcc_c_stdinc compiler option, in

that order. You can find the default search path for this option in the compiler

default configuration file.

If one of these compiler options is not specified or specifies an empty string, the

standard search location will be the path specified by the other option. If a search

path is not specified by either of the -qc_stdinc or -qgcc_c_stdinc compiler options,

the default header file search path is used.

If this option is specified more than once, only the last instance of the option is

used by the compiler. To specify multiple directories for a search path, specify this

option once, using a : (colon) to separate multiple search directories.

This option is ignored if the -qnostdinc option is in effect.

Example

To specify mypath/headers1 and mypath/headers2 as being part of the standard

search path, enter:

xlc myprogram.c -qc_stdinc=mypath/headers1:mypath/headers2

Related information

v “-qcpp_stdinc” on page 68

v “-qgcc_c_stdinc” on page 90

v “-qstdinc” on page 182

v “Directory search sequence for include files using relative path names” on page

22

v “Specifying compiler options in a configuration file” on page 18

v Options that control input: Options for search paths

-qcache

Description

The -qcache option specifies the cache configuration for a specific execution

machine. If you know the type of execution system for a program, and that system

has its instruction or data cache configured differently from the default case, use

this option to specify the exact cache characteristics. The compiler uses this

information to calculate the benefits of cache-related optimizations.

58 XL C/C++ Compiler Reference

Syntax

��

�

 :

-q

cache

=

assoc

=

0

1

n>1

auto

cost

=

cycles

level

=

1

2

3

line

=

bytes

size

=

Kbytes

type

=

C

c

D

d

I

i

��

where available cache options are:

 assoc=number Specifies the set associativity of the cache, where number is one of:

0 Direct-mapped cache

1 Fully associative cache

N>1 n-way set associative cache

auto Automatically detects the specific cache configuration of the compiling

machine. This assumes that the execution environment will be the same

as the compilation environment.

cost=cycles Specifies the performance penalty resulting from a cache miss.

level=level Specifies the level of cache affected, where level is one of:

1 Basic cache

2 Level-2 cache or, if there is no level-2 cache, the table lookaside

buffer (TLB)

3 TLB
If a machine has more than one level of cache, use a separate -qcache

option.

line=bytes Specifies the line size of the cache.

size=Kbytes Specifies the total size of the cache.

type=cache_type The settings apply to the specified type of cache, where cache_type is one

of:

C or c Combined data and instruction cache

D or d Data cache

I or i Instruction cache

Notes

The -qtune setting determines the optimal default -qcache settings for most typical

compilations. You can use the -qcache to override these default settings. However,

if you specify the wrong values for the cache configuration, or run the program on

a machine with a different configuration, the program will work correctly but may

be slightly slower.

Chapter 3. Compiler options reference 59

You must specify -O4, -O5, or -qipa with the -qcache option.

Use the following guidelines when specifying -qcache suboptions:

v Specify information for as many configuration parameters as possible.

v If the target execution system has more than one level of cache, use a separate

-qcache option to describe each cache level.

v If you are unsure of the exact size of the cache(s) on the target execution

machine, specify an estimated cache size on the small side. It is better to leave

some cache memory unused than it is to experience cache misses or page faults

from specifying a cache size larger than actually present.

v The data cache has a greater effect on program performance than the instruction

cache. If you have limited time available to experiment with different cache

configurations, determine the optimal configuration specifications for the data

cache first.

v If you specify the wrong values for the cache configuration, or run the program

on a machine with a different configuration, program performance may degrade

but program output will still be as expected.

v The -O4 and -O5 optimization options automatically select the cache

characteristics of the compiling machine. If you specify the -qcache option

together with the -O4 or -O5 options, the option specified last takes precedence.

Example

To tune performance for a system with a combined instruction and data level-1

cache, where cache is 2-way associative, 8 KB in size and has 64-byte cache lines,

enter:

xlc++ -O4 -qcache=type=c:level=1:size=8:line=64:assoc=2 file.C

Related information

v “-O, -qoptimize” on page 148

v “-qipa” on page 106

v Options for performance optimization: Options for processor and architectural

optimization

v "Optimizing your applications"in the XL C/C++ Programming Guide

-qchars

Description

Instructs the compiler to treat all variables of type char as either signed or

unsigned.

Syntax

��
 unsigned

-q

chars

=

signed

��

See also “#pragma chars” on page 222 and “#pragma options” on page 248.

Notes

You can also specify sign type in your source program using either of the

following preprocessor directives:

#pragma options chars=sign_type

#pragma chars (sign_type)

60 XL C/C++ Compiler Reference

where sign_type is either signed or unsigned.

Regardless of the setting of this option, the type of char is still considered to be

distinct from the types unsigned char and signed char for purposes of

type-compatibility checking or C++ overloading.

Example

To treat all char types as signed when compiling myprogram.c, enter:

xlc myprogram.c -qchars=signed

Related information

v Summary of command line options: Options for signedness

-qcheck

Description

Generates code that performs certain types of runtime checking. If a violation is

encountered, a runtime exception is raised by sending a SIGTRAP signal to the

process.

Syntax

��

�

 nocheck

-q

check

:

=

all

nullptr

nonullptr

bounds

nobounds

divzero

nodivzero

��

where:

 all Switches on all the following suboptions. You can use the all

option along with the no... form of one or more of the other

options as a filter.

For example, using:

xlc++ myprogram.C -qcheck=all:nonullptr

provides checking for everything except for addresses contained in

pointer variables used to reference storage.

If you use all with the no... form of the options, all should be the

first suboption.

[no]nullptr Performs runtime checking of addresses contained in pointer

variables used to reference storage. The address is checked at the

point of use; a trap will occur if the value is less than 512.

Chapter 3. Compiler options reference 61

[no]bounds Performs runtime checking of addresses when subscripting within

an object of known size. The index is checked to ensure that it will

result in an address that lies within the bounds of the object’s

storage. A trap will occur if the address does not lie within the

bounds of the object.

This suboption has no effect on accesses to a variable length array.

[no]divzero Performs runtime checking of integer division. A trap will occur if

an attempt is made to divide by zero.

See also “#pragma options” on page 248.

Notes

The -qcheck option has several suboptions, as described above. If you use more

than one suboption, separate each one with a colon (:).

Specifying the -qcheck option without any suboptions, and without any other

variations of -qcheck on the command line, turns all of the suboptions on.

Using the -qcheck option with suboptions turns the specified suboptions on if they

do not have the no prefix, and off if they have the no prefix.

You can specify the -qcheck option more than once. The suboption settings are

accumulated, but the later suboptions override the earlier ones.

The -qcheck option affects the runtime performance of the application. When

checking is enabled, runtime checks are inserted into the application, which may

result in slower execution.

Examples

1. For -qcheck=nullptr:bounds:

void func1(int* p) {

 p = 42; / Traps if p is a null pointer */

}

void func2(int i) {

 int array[10];

 array[i] = 42; /* Traps if i is outside range 0 - 9 */

}

2. For -qcheck=divzero:

void func3(int a, int b) {

 a / b; /* Traps if b=0 */

}

Related information

v Options for error checking and debugging: Options for error checking

-qcinc

Description

Instructs the compiler to place an extern "C" { } wrapper around the contents of

an include file.

62 XL C/C++ Compiler Reference

Syntax

��
 nocinc

-q

cinc

=

directory_prefix

��

where:

 directory_prefix Specifies the directory where files affected by this option are

found.

Notes

Include files from specified directories have the tokens extern ″C″ { inserted before

the first statement in the include file, and } appended after the last statement in the

include file.

Example

Assume your application myprogram.C includes header file foo.h, which is located

in directory /usr/tmp and contains the following code:

int foo();

Compiling your application with:

xlc++ myprogram.C -qcinc=/usr/tmp

will include header file foo.h into your application as:

extern "C" {

int foo();

}

Related information

v Options that control input: Options for search paths

-qcompact

Description

When used with optimization, reduces code size where possible, at the expense of

execution speed.

Syntax

��
 nocompact

-q

compact

��

See also “#pragma options” on page 248.

Notes

Code size is reduced by inhibiting optimizations that replicate or expand code

inline, such as inlining or loop unrolling. Execution time may increase.

Example

To compile myprogram.C, instructing the compiler to reduce code size whenever

possible, enter:

xlc++ myprogram.C -O -qcompact

Chapter 3. Compiler options reference 63

Related information

v Options for performance optimization: Options for code size reduction

-qcomplexgccincl

Description

The -qcomplexgccincl compiler option instructs the compiler to internally wrap

#pragma complexgcc(on) and #pragma complexgcc(pop) directives around include

files found in specified directories.

Syntax

��
 complexgccincl = /usr/include

-q

nocomplexgccincl

=

pathname

��

where:

 pathname Specifies a search path for include files. If pathname is not specified, the

compiler assumes a pathname of /usr/include.

Notes

Include files found in directories specified by the -qcomplexgccincl compiler

option are internally wrapped by the #pragma complexgcc(on) and #pragma

complexgcc(pop) directives.

Include files found in directories specified by -qnocomplexgccincl are not wrapped

by these directives.

The default setting is -qcomplexgccincl=/usr/include.

Related information

v “#pragma complexgcc” on page 224

v Options that control input: Options for search paths

-qcpluscmt

Description

Use this option if you want C++ comments to be recognized in C source files.

Syntax

�� -q nocpluscmt

cpluscmt
 ��

Default

The default setting varies:

v -qcpluscmt is implicitly selected when you invoke the compiler with xlc or c99

and related _r invocations.

v -qcpluscmt is also implicitly selected when -qlanglvl is set to stdc99 or extc99.

You can override these implicit selections by specifying -qnocpluscmt after the

64 XL C/C++ Compiler Reference

-qlanglvl option on the command line; for example: -qlanglvl=stdc99

-qnocpluscmt or -qlanglvl=extc99 -qnocpluscmt.

v Otherwise, the default setting is -qnocpluscmt.

Notes

The __C99_CPLUSCMT compiler macro is defined when cpluscmt is selected.

The character sequence // begins a C++ comment, except within a header name, a

character constant, a string literal, or a comment. Comments do not nest, and

macro replacement is not performed within comments. The following character

sequences are ignored within a C++ comment:

v //

v /*

v */

C++ comments have the form //text. The two slashes (//) in the character sequence

must be adjacent with nothing between them. Everything to the right of them until

the end of the logical source line, as indicated by a new-line character, is treated as

a comment. The // delimiter can be located at any position within a line.

// comments are not part of C89. The result of the following valid C89 program will

be incorrect if -qcpluscmt is specified:

main() {

 int i = 2;

 printf(“%i\n”, i //* 2 */

 + 1);

}

The correct answer is 2 (2 divided by 1). When -qcpluscmt is specified, the result

is 3 (2 plus 1).

The preprocessor handles all comments in the following ways:

v If the -C option is not specified, all comments are removed and replaced by a

single blank.

v If the -C option is specified, comments are output unless they appear on a

preprocessor directive or in a macro argument.

v If -E is specified, continuation sequences are recognized in all comments and are

output

v If -P is specified, comments are recognized and stripped from the output,

forming concatenated output lines.

A comment can span multiple physical source lines if they are joined into one

logical source line through use of the backslash (\) character. You can represent the

backslash character by a trigraph (??/).

Examples

1. Example of C++ Comments

The following examples show the use of C++ comments:

// A comment that spans two \

 physical source lines

// A comment that spans two ??/

 physical source lines

2. Preprocessor Output Example 1

Chapter 3. Compiler options reference 65

For the following source code fragment:

int a;

int b; // A comment that spans two \

 physical source lines

int c;

 // This is a C++ comment

int d;

The output for the -P option is:

int a;

int b;

int c;

int d;

The C89 mode output for the -P -C options is:

int a;

int b; // A comment that spans two physical source lines

int c;

 // This is a C++ comment

int d;

The output for the -E option is:

int a;

int b;

int c;

int d;

The C89 mode output for the -E -C options is:

#line 1 “fred.c”

int a;

int b; // a comment that spans two \

 physical source lines

int c;

 // This is a C++ comment

int d;

Extended mode output for the -P -C options or -E -C options is:

int a;

int b; // A comment that spans two \

 physical source lines

int c;

 // This is a C++ comment

int d;

3. Preprocessor Output Example 2 - Directive Line

For the following source code fragment:

int a;

#define mm 1 // This is a C++ comment on which spans two \

 physical source lines

int b;

 // This is a C++ comment

int c;

The output for the -P option is:

int a;

int b;

int c;

The output for the -P -C options:

int a;

int b;

 // This is a C++ comment

int c;

66 XL C/C++ Compiler Reference

The output for the -E option is:

#line 1 “fred.c”

int a;

#line 4

int b;

int c;

The output for the -E -C options:

#line 1 “fred.c”

int a;

#line 4

int b;

 // This is a C++ comment

int c;

4. Preprocessor Output Example 3 - Macro Function Argument

For the following source code fragment:

#define mm(aa) aa

int a;

int b; mm(// This is a C++ comment

 int blah);

int c;

 // This is a C++ comment

int d;

The output for the -P option:

int a;

int b; int blah;

int c;

int d;

The output for the -P -C options:

int a;

int b; int blah;

int c;

 // This is a C++ comment

int d;

The output for the -E option is:

#line 1 “fred.c”

int a;

int b;

int blah;

int c;

int d;

The output for the -E -C option is:

#line 1 “fred.c”

int a;

int b;

int blah;

int c;

 // This is a C++ comment

int d;

5. Compile example

To compile myprogram.c so that C++ comments are recognized as comments,

enter:

xlc myprogram.c -qcpluscmt

Related information

v “-C” on page 56

Chapter 3. Compiler options reference 67

v “-E” on page 75

v “-qlanglvl” on page 119

v “-P” on page 152

v Options that control input: Other input options

-qcpp_stdinc

Description

Changes the standard search location for the C++ headers.

Syntax

��

�

 :

-q

cpp_stdinc

=

path

��

Notes

The standard search path for C++ headers is determined by combining the search

paths specified by both this (-qcpp_stdinc) and the -qgcc_cpp_stdinc compiler

option, in that order. You can find the default search path for this option in the

compiler default configuration file.

If one of these compiler options is not specified or specifies an empty string, the

standard search location will be the path specified by the other option. If a search

path is not specified by either of the -qcpp_stdinc or -qgcc_cpp_stdinc compiler

options, the default header file search path is used.

If this option is specified more than once, only the last instance of the option is

used by the compiler. To specify multiple directories for a search path, specify this

option once, using a : (colon) to separate multiple search directories.

This option is ignored if the -qnostdinc option is in effect.

Example

To make mypath/headers1 and mypath/headers2 the standard search path, enter:

xlc++ myprogram.C -qcpp_stdinc=mypath/headers1:mypath/headers2

Related information

v “-qc_stdinc” on page 58

v “-qgcc_cpp_stdinc” on page 91

v “-qstdinc” on page 182

v “Directory search sequence for include files using relative path names” on page

22

v “Specifying compiler options in a configuration file” on page 18

v Options that control input: Options for search paths

-qcrt

Description

Instructs the linkage editor to use the standard system startup files at link time.

68 XL C/C++ Compiler Reference

Syntax

��
 crt

-q

nocrt

��

Notes

If the -qnocrt compiler option is specified, the compiler will not use the standard

system startup files at link time.

Related information

v “-qlib” on page 135

v Options that control linking: Other linker options

-D

Description

Defines the macro name as in a #define preprocessor directive.

Syntax

�� -D name

=

definition

 ��

definition is an optional definition or value assigned to name.

Notes

You can also define a macro name in your source program using the #define

preprocessor directive, provided that the macro name has not already been defined

by the -D compiler option.

-Dname= is equivalent to #define name.

-Dname is equivalent to #define name 1. (This is the default.)

Using the #define directive to define a macro name already defined by the -D

option will result in an error condition.

To aid in program portability and standards compliance, the operating system

provides several header files that refer to macro names you can set with the -D

option. You can find most of these header files either in the /usr/include directory

or in the /usr/include/sys directory.

To ensure that the correct macros for your source file are defined, use the -D

option with the appropriate macro name.

The -Uname option, which is used to undefine macros defined by the -D option,

has a higher precedence than the -Dname option.

Example

1. To specify that all instances of the name COUNT be replaced by 100 in

myprogram.c, enter:

xlc myprogram.c -DCOUNT=100

Chapter 3. Compiler options reference 69

This is equivalent to having #define COUNT 100 at the beginning of the source

file.

Related information

v “-U” on page 198

v Chapter 6, “Predefined macros,” on page 279

v Summary of command line options: Other input options

-qdataimported

Description

Marks data as imported.

Syntax

��

�

 -q dataimported

:

=

names

 ��

Notes

This option applies only to 64-bit compilations.

When this option is in effect, imported variables are dynamically bound with a

shared portion of a library.

v Specifying -qdataimported instructs the compiler to assume that all variables are

imported.

v Specifying -qdataimported=names marks the named variables as being imported,

where names is a list of variable names separated by colons (:). Variables not

explicitly named are not affected.

Note:

In C++ programs, variable names must be specified using their

mangled names. For example, assuming the following code segment:

struct C{

 static int i;

}

you would specify the variable C::i as being imported by specifying the

compiler option in the following manner:

-qdataimported=i__1C

You can use the operating system dump -tv or nm utilities to get the

mangled names from an object file. To verify a mangled name, use the

c++filt utility.

Conflicts among the -qdataimported and -qdatalocal data-marking options are

resolved in the following manner:

 Options that list variable names: The last explicit specification for a particular variable

name is used.

Options that change the default: This form does not specify a name list. The last option

specified is the default for variables not explicitly listed

in the name-list form.

70 XL C/C++ Compiler Reference

Related information

v “-qdatalocal”

v Options for performance optimization: Options for ABI performance tuning

-qdatalocal

Description

Marks data as local.

Syntax

��

�

 :

-q

datalocal

=

names

��

Notes

This option applies only to 64-bit compilation.

When this option is in effect, local variables are statically bound with the functions

that use them.

v You must specify which variables are local. If no names are specified, the linkage

editor will fail to link at link-time.

v Specifying -qdatalocal=names marks the named variables as local, where names is

a list of identifiers separated by colons (:). Variables not explicitly named are not

affected.

Note:

In C++ programs, variable names must be specified using their

mangled names. For example, assuming the following code segment:

struct C{

 static int i;

}

you would specify the variable C::i as being local data by specifying the

compiler option in the following manner:

-qdatalocal=i__1C

You can use the operating system dump -tv or nm utilities to get the

mangled names from an object file. To verify a mangled name, use the

c++filt utility.

Performance may decrease if an imported variable is assumed to be local.

Conflicts among the -qdataimported and -qdatalocal data-marking options are

resolved in the following manner:

 Options that list variable names: The last explicit specification for a particular variable

name is used.

Options that change the default: This form does not specify a name list. The last option

specified is the default for variables not explicitly

listed in the name-list form.

Related information

v “-qdataimported” on page 70

v Options for performance optimization: Options for ABI performance tuning

Chapter 3. Compiler options reference 71

-qdbxextra

Description

Specifies that all typedef declarations, struct, union, and enum type definitions are

included for debugging.

Syntax

��
 nodbxextra

-q

dbxextra

��

Notes

Use this option with the -g option to produce additional debugging information

for use with a debugger.

When you specify the -g option, debugging information is included in the object

file. To minimize the size of object and executable files, the compiler only includes

information for symbols that are referenced. Debugging information is not

produced for unreferenced arrays, pointers, or file-scope variables unless

-qdbxextra is specified.

Using -qdbxextra may make your object and executable files larger.

Example

To include all symbols in myprogram.c for debugging, enter:

xlc myprogram.c -g -qdbxextra

Related information

v “-qfullpath” on page 89

v “-qlinedebug” on page 136

v “-g” on page 90

v “#pragma options” on page 248.

v Options for error checking and debugging: Options for debugging

-qdigraph

Description

Lets you use digraph key combinations or keywords to represent characters not

found on some keyboards.

Syntax

�� -q nodigraph

digraph
 ��

See also “#pragma options” on page 248.

Defaults

v

-qdigraph when -qlanglvl is set to extc89, extended, extc99 or stdc99.

v

-qnodigraph when -qlanglvl is set to all other language levels.

v

-qdigraph

72 XL C/C++ Compiler Reference

Notes

A digraph is a keyword or combination of keys that lets you produce a character

that is not available on all keyboards.

The digraph key combinations are:

 Key combination Character produced

<% {

%> }

<: [

:>]

%% #

Additional keywords, valid in C++ programs only, are:

 Keyword Character produced

bitand &

and &&

bitor |

or ||

xor ^

compl ~

and_eq &=

or_eq |=

xor_eq ^=

not !

not_eq !=

Example

To disable digraph character sequences when compiling your program, enter:

xlc++ myprogram.C -qnodigraph

Related information

v “-qlanglvl” on page 119

v “-qtrigraph” on page 196

v Options that control input: Options for language extensions

-qdirectstorage

Description

Informs the compiler that write-through enabled or cache-inhibited storage may be

referenced.

Syntax

��
 nodirectstorage

-q

directstorage

��

Notes

The -qdirectstorage compiler option informs the compiler that write-through

enabled or cache-inhibited storage may be referenced, and that appropriate

compiler output should be generated.

Chapter 3. Compiler options reference 73

The PowerPC architecture allows many different implementations of cache

organization. To ensure that your application will execute correctly on all

implementations, you should assume that separate instruction and data caches

exist and program your application accordingly.

Depending on the storage control attributes specified by the program and the

function being performed, your program may use cache instructions to guarantee

that the function is performed correctly.

For example, the dcbz instruction allocates a block of data in the cache and then

initializes it to a series of zeroes. Though it can be used to boost performance

when zeroing a large block of data, the dcbz instruction should be used with

caution because it will cause an alignment error to occur under any of the

following conditions:

v The cache block specified by the instruction is in a memory region marked

cache-inhibited.

v The cache is in write-though mode.

v The L1 Dcache or L2 cache is disabled.

Specifying -qdirectstorage will suppress generation of the dcbz instruction, and

avoid the alignment errors mentioned above.

Related information

v Options for performance optimization: Options for processor and architectural

optimization

-qdollar

Description

Allows the $ symbol to be used in the names of identifiers.

Syntax

��
 nodollar

-q

dollar

��

When -qdollar is in effect, the dollar symbol $ in an identifier is treated as a base

character. If the options -qnodollar and -qlanglvl=ucs are both in effect, the dollar

symbol is treated as an extended character and translated into \u0024.

Example

To compile myprogram.c so that $ is allowed in identifiers in the program, enter:

xlc myprogram.c -qdollar

Related information

v “#pragma options” on page 248

v “-qlanglvl” on page 119

v Options that control input: Options for language extensions

-qdump_class_hierarchy

74 XL C/C++ Compiler Reference

Description

For each class object, this option dumps a representation of its hierarchy and

virtual function table layout to a file. The file name is made by appending .class

to the source file name. For example, if you compile myprogram.C using

-qdump_class_hierarchy, a file named myprogram.C.class is created.

Syntax

�� -qdump_class_hierarchy ��

Related information

v Options that control listings and messages: Options for listing

-E

Description

Instructs the compiler to preprocess the source files named in the compiler

invocation and creates an output preprocessed source file.

Syntax

�� -E ��

Notes

The -E and -P options have different results. When the -E option is specified, the

compiler assumes that the input is a C or C++ file and that the output will be

recompiled or reprocessed in some way. These assumptions are:

v Original source coordinates are preserved. This is why #line directives are

produced.

v All tokens are output in their original spelling, which, in this case, includes

continuation sequences. This means that any subsequent compilation or

reprocessing with another tool will give the same coordinates (for example, the

coordinates of error messages).

The -P option is used for general-purpose preprocessing. No assumptions are made

concerning the input or the intended use of the output. This mode is intended for

use with input files that are not written in C or C++. As such, all

preprocessor-specific constructs are processed as described in the ANSI C standard.

In this case, the continuation sequence is removed as described in the “Phases of

Translation” of that standard. All non-preprocessor-specific text should be output

as it appears.

Using -E causes #line directives to be generated to preserve the source coordinates

of the tokens. Blank lines are stripped and replaced by compensating #line

directives.

The line continuation sequence is removed and the source lines are concatenated

with the -P option. With the -E option, the tokens are output on separate lines in

order to preserve the source coordinates. The continuation sequence may be

removed in this case.

The -E option overrides the -P, -o, and -qsyntaxonly options, and accepts any file

name.

Chapter 3. Compiler options reference 75

If used with the -M option, -E will work only for files with a .C, .cpp, .cc (all C++

source files), .c (C source files), or a .i (preprocessed source files) file name suffix.

Source files with unrecognized file name suffixes are treated and preprocessed as C

files, and no error message is generated.

Unless -C is specified, comments are replaced in the preprocessed output by a

single space character. New lines and #line directives are issued for comments that

span multiple source lines, and when -C is not specified. Comments within a

macro function argument are deleted.

Example

To compile myprogram.C and send the preprocessed source to standard output,

enter:

xlc++ myprogram.C -E

If myprogram.C has a code fragment such as:

#define SUM(x,y) (x + y) ;

int a ;

#define mm 1 ; /* This is a comment in a

 preprocessor directive */

int b ; /* This is another comment across

 two lines */

int c ;

 /* Another comment */

c = SUM(a, /* Comment in a macro function argument*/

 b) ;

the output will be:

#line 2 “myprogram.C”

int a;

#line 5

int b;

int c;

c =

(a + b);

Related information

v “-M” on page 140

v “-o” on page 151

v “-P” on page 152

v “-qsyntaxonly” on page 186

v Options that control output: Options for file output

-e

Description

This option is used only together with the -qmkshrobj compiler option. See the

description for the “-qmkshrobj” on page 147 compiler option for more

information.

Syntax

�� -e name ��

Related information

76 XL C/C++ Compiler Reference

v “-qmkshrobj” on page 147

v Options that control linking: Options for linker input control

-qeh

Description

Controls whether exception handling is enabled in the module being compiled.

Syntax

��
 eh

-q

noeh

��

where:

 -qeh Exception handling is enabled.

-qnoeh If your program does not use C++ structured exception handling, compile with

-qnoeh to prevent generation of code that is not needed by your application.

Notes

Specifying -qeh also implies -qrtti. If -qeh is specified together with -qnortti, RTTI

information will still be generated as needed.

Related information

v “-qrtti” on page 170

v Options for performance optimization: Options for code size reduction

-qenablevmx

Description

Enables generation of Vector Multimedia Extension (VMX) instructions.

Syntax

��
 enablevmx

-q

noenablevmx

��

Defaults

On all supported Linux distributions, -qenablevmx is set by default.

Notes

v Some processors are able to support Vector Multimedia Extension (VMX)

instructions. These instructions can offer higher performance when used with

algorithmic-intensive tasks such as multimedia applications.

v If -qnoenablevmx is in effect, -qaltivec and -qhot=simd cannot be used.

Related information

v “-qaltivec” on page 49

v “-qarch” on page 49

v “-qhot” on page 94

v Options that control output: Options that control the characteristics of the object

code

Chapter 3. Compiler options reference 77

-qenum

Description

Specifies the amount of storage occupied by enumerations.

Syntax

��

 (2)

intlong

(1)

int

-q

enum

=

small

1

2

4

8

��

Notes:

1 C compilation default

2 C++ compilation default

where valid enum settings are:

 1 Specifies that enumerations occupy 1 byte of storage, are of type char if the range

of enumeration values falls within the limits of signed char, and unsigned char

otherwise.

2 Specifies that enumerations occupy 2 bytes of storage, are of type short if the

range of enumeration values falls within the limits of signed short, and unsigned

short otherwise.

4 Specifies that enumerations occupy 4 bytes of storage are of type int if the range

of enumeration values falls within the limits of signed int, and unsigned int

otherwise.

8 Specifies that enumerations occupy 8 bytes of storage.

In 32-bit compilation mode, the enumeration is of type long long if the range of

enumeration values falls within the limits of signed long long, and unsigned long

long otherwise.

In 64-bit compilation mode, the enumeration is of type long if the range of

enumeration values falls within the limits of signed long, and unsigned long

otherwise.

int Specifies that enumerations occupy 4 bytes of storage and are represented by int.

Values cannot exceed the range of signed int in C compilations.

intlong Specifies that enumerations will occupy 8 bytes of storage if the range of values in

the enumeration exceeds the limit for int. See the description for “-qenum.”

If the range of values in the enumeration does not exceed the limit for int, the

enumeration will occupy 4 bytes of storage and is represented by int.

small Specifies that enumerations occupy the smallest amount of space (1, 2, 4, or 8 bytes

of storage) that can accurately represent the range of values in the enumeration.

Signage is unsigned, unless the range of values includes negative values.
If an 8-byte enum results, the actual enumeration type used is dependent on

compilation mode. See the description for “-qenum”

Notes

The -qenum=small option allocates to an enum variable the amount of storage that

is required by the smallest predefined type that can represent that range of enum

constants. By default, an unsigned predefined type is used. If any enum constant is

negative, a signed predefined type is used.

78 XL C/C++ Compiler Reference

The -qenum=1|2|4|8 options allocate a specific amount of storage to an enum

variable . If the specified storage size is smaller than that required by the range of

enum variables, a severe error message is issued and compilation stops.

The ISO C 1989 and ISO C1999 Standards require that enumeration values not

exceed the range of int. When compiling with -qlanglvl=stdc89 or

-qlanglvl=stdc99 in effect, the compiler will behave as follows if the value of an

enumeration exceeds the range of int:

v If -qenum=int is in effect, a Severe error message is issued and compilation

stops.

v For all other settings of -qenum, an Informational message is issued and

compilation continues.

The tables that follow show the priority for selecting a predefined type. The table

also shows the predefined type, the maximum range of enum constants for the

corresponding predefined type, and the amount of storage that is required for that

predefined type, that is, the value that the sizeof operator would yield when

applied to the minimum-sized enum.

Related information

“Summary of compiler options by functional category” on page 31
“#pragma enum” on page 227
“#pragma options” on page 248

Chapter 3. Compiler options reference 79

E
n

u
m

er
at

io
n

si

ze
s

an
d

ty

p
es

–

A
ll

ty
pe

s
ar

e
si

gn
ed

un

le
ss

ot

he
rw

is
e

no
te

d
.

en

um
=

1
en

um
=

2
en

um
=

4
en

um
=

8

32
-b

it

co

m
pi

la
ti

on

m

od
e

64
-b

it

co

m
pi

la
ti

on

m

od
e

R
an

ge

va
r

co
ns

t
va

r
co

ns
t

va
r

co
ns

t
va

r
co

ns
t

va
r

co
ns

t

0.
.1

27

ch
ar

in

t
sh

or
t

in
t

in
t

in
t

lo
ng

lo

ng

lo
ng

lo

ng

lo
ng

lo

ng

-1
28

..1
27

ch

ar

in
t

sh
or

t
in

t
in

t
in

t
lo

ng

lo

ng

lo
ng

lo

ng

lo
ng

lo

ng

0.
.2

55

un
si

gn
ed

ch
ar

in
t

sh
or

t
in

t
in

t
in

t
lo

ng

lo

ng

lo
ng

lo

ng

lo
ng

lo

ng

0.
.3

27
67

E

R
R

O
R

1

in
t

sh
or

t
in

t
in

t
in

t
lo

ng

lo

ng

lo
ng

lo

ng

lo
ng

lo

ng

-3
27

68
..3

27
67

E

R
R

O
R

1

in
t

sh
or

t
in

t
in

t
in

t
lo

ng

lo

ng

lo
ng

lo

ng

lo
ng

lo

ng

0.
.6

55
35

E

R
R

O
R

1

in
t

un
si

gn
ed

sh
or

t
in

t
in

t
in

t
lo

ng

lo

ng

lo
ng

lo

ng

lo
ng

lo

ng

0.
.2

14
74

83
64

7
E

R
R

O
R

1

in
t

E
R

R
O

R
1

in
t

in
t

in
t

lo
ng

lo

ng

lo
ng

lo

ng

lo
ng

lo

ng

-(
21

47
48

36
47

+
1)

..2
14

74
83

64
7

E
R

R
O

R
1

in
t

E
R

R
O

R
1

in
t

in
t

in
t

lo
ng

lo

ng

lo
ng

lo

ng

lo
ng

lo

ng

0.
.4

29
49

67
29

5
E

R
R

O
R

1

un
si

gn
ed

in

t
E

R
R

O
R

1

un
si

gn
ed

in
t

un
si

gn
ed

in

t
un

si
gn

ed

in

t
lo

ng

lo

ng

lo
ng

lo

ng

lo
ng

lo

ng

0.
.(2

6
3
-1

)
E

R
R

O
R

1

lo
ng

2
b

E
R

R
O

R
1

lo
ng

2
b

E
R

R
O

R
1

lo
ng

2
b

lo
ng

lo

ng
2

b

lo
ng

lo

ng
2

b

lo
ng

2
b

lo
ng

2
b

-2
6

3
..(

26
3
-1

)
E

R
R

O
R

1

lo
ng

2
b

E
R

R
O

R
1

lo
ng

2
b

E
R

R
O

R
1

lo
ng

2
b

lo
ng

lo

ng
2

b

lo
ng

lo

ng
2

b

lo
ng

2
b

lo
ng

2
b

0.
.2

6
4

E
R

R
O

R
1

un
si

gn
ed

lo
ng

2
b

E
R

R
O

R
1

un
si

gn
ed

lo
ng

2
b

E
R

R
O

R
1

un
si

gn
ed

lo
ng

2
b

un
si

gn
ed

lo
ng

lo

ng
2

b

un
si

gn
ed

lo
ng

lo

ng
2

b

un
si

gn
ed

lo
ng

2
b

un
si

gn
ed

lo
ng

2
b

N
ot

es
:

1.

T
he

se

en

um
er

at
io

ns

ar

e
to

o
la

rg
e

fo
r

th
e

-q
en

u
m

=
1|

2|
4

se
tt

in
gs

. A

Se

ve
re

er

ro
r

is

is

su
ed

an

d

co

m
pi

la
ti

on

st

op
s.

To

co

rr
ec

t
th

is

co

nd
it

io
n,

yo

u
sh

ou
ld

re

d
uc

e
th

e
ra

ng
e

of

th

e
en

um
er

at
io

ns
, c

ho
os

e
a

la
rg

er

-q

en
u

m

se

tt
in

g,

or

ch

oo
se

a

d
yn

am
ic

-q

en
u

m

se

tt
in

g
su

ch

as

sm

al
l

or

in

tl
on

g.

2.

E
nu

m
er

at
io

n
ty

pe
s

m
us

t
no

t
ex

ce
ed

th

e
ra

ng
e

of

in

t
w

he
n

co
m

pi
lin

g
C

ap

pl
ic

at
io

ns

to

IS

O

C

19

89

an

d

IS

O

C

19

99

St

an
d

ar
d

s.

W

he
n

co
m

pi
lin

g
w

it
h

-q
la

n
gl

vl
=

st
d

c8
9

or

-q

la
n

gl
vl

=
st

d
c9

9
in

ef

fe
ct

, t
he

co

m
pi

le
r

w
ill

be

ha
ve

as

fo

llo
w

s
if

th

e
va

lu
e

of

an

en

um
er

at
io

n
ex

ce
ed

s
th

e
ra

ng
e

of

in

t:

a.

If

-q

en
u

m
=

in
t

is

in

ef

fe
ct

, a

se

ve
re

er

ro
r

m
es

sa
ge

is

is

su
ed

an

d

co

m
pi

la
ti

on

st

op
s.

b.

Fo
r

al
l

ot
he

r
se

tt
in

gs

of

-q

en
u

m
, a

n
in

fo
rm

at
io

na
l

m
es

sa
ge

is

is

su
ed

an

d

co

m
pi

la
ti

on

co

nt
in

ue
s.

80 XL C/C++ Compiler Reference

E
n

u
m

er
at

io
n

si

ze
s

an
d

ty

p
es

–

A
ll

ty
pe

s
ar

es
ig

ne
d

un
le

ss

ot

he
rw

is
e

no
te

d
.

en

um
=

in
t

en
um

=
in

tl
on

g
en

um
=

sm
al

l

32
-b

it

co

m
pi

la
ti

on

m

od
e

64
-b

it

co

m
pi

la
ti

on

m

od
e

32
-b

it

co

m
pi

la
ti

on

m

od
e

64
-b

it

co

m
pi

la
ti

on

m

od
e

R
an

ge

va
r

co
ns

t
va

r
co

ns
t

va
r

co
ns

t
va

r
co

ns
t

va
r

co
ns

t

0.
.1

27

in
t

in
t

in
t

in
t

in
t

in
t

un
si

gn
ed

ch
ar

in
t

un
si

gn
ed

ch
ar

in
t

-1
28

..1
27

in

t
in

t
in

t
in

t
in

t
in

t
si

gn
ed

ch

ar

in
t

si
gn

ed

ch

ar

in
t

0.
.2

55

in
t

in
t

in
t

in
t

in
t

in
t

un
si

gn
ed

ch
ar

in
t

un
si

gn
ed

ch
ar

in
t

0.
.3

27
67

in

t
in

t
in

t
in

t
in

t
in

t
un

si
gn

ed

sh
or

t
in

t
un

si
gn

ed

sh
or

t
in

t

-3
27

68
..3

27
67

in

t
in

t
in

t
in

t
in

t
in

t
sh

or
t

in
t

sh
or

t
in

t

0.
.6

55
35

in

t
in

t
in

t
in

t
in

t
in

t
un

si
gn

ed

sh
or

t
in

t
un

si
gn

ed

sh
or

t
in

t

0.
.2

14
74

83
64

7
in

t
in

t
in

t
in

t
in

t
in

t
un

si
gn

ed

in
t

un
si

gn
ed

in
t

un
si

gn
ed

in
t

un
si

gn
ed

in
t

-(
21

47
48

36
47

+
1)

..2
14

74
83

64
7

in
t

in
t

in
t

in
t

in
t

in
t

in
t

in
t

in
t

in
t

0.
.4

29
49

67
29

5
un

si
gn

ed

in

t
un

si
gn

ed

in
t

un
si

gn
ed

in

t
un

si
gn

ed

in

t
un

si
gn

ed

in

t
un

si
gn

ed

in

t
un

si
gn

ed

in
t

un
si

gn
ed

in
t

un
si

gn
ed

in
t

un
si

gn
ed

in
t

0.
.(2

6
3
-1

)
E

R
R

2
a

E
R

R
2

a

lo
ng

lo

ng
2

b

lo
ng

lo

ng
2

b

lo
ng

2
b

lo
ng

2
b

un
si

gn
ed

lo
ng

lo

ng
2

b

un
si

gn
ed

lo
ng

lo

ng
2

b

un
si

gn
ed

lo
ng

2
b

un
si

gn
ed

lo
ng

2
b

-2
6

3
..(

26
3
-1

)
E

R
R

2
a

E
R

R
2

a

lo
ng

lo

ng
2

b

lo
ng

lo

ng
2

b

lo
ng

2
b

lo
ng

2
b

lo
ng

lo

ng
2

b

lo
ng

lo

ng
2

b

lo
ng

2
b

lo
ng

2
b

0.
.2

6
4

E
R

R
2

a

E
R

R
2

a

un
si

gn
ed

lo
ng

lo

ng
2

b

un
si

gn
ed

lo
ng

lo

ng
2

b

un
si

gn
ed

lo
ng

2
b

un
si

gn
ed

lo
ng

2
b

un
si

gn
ed

lo
ng

lo

ng
2

b

un
si

gn
ed

lo
ng

lo

ng
2

b

un
si

gn
ed

lo
ng

2
b

un
si

gn
ed

lo
ng

2
b

N
ot

es
:

1.

T
he

se

en

um
er

at
io

ns

ar

e
to

o
la

rg
e

fo
r

th
e

-q
en

u
m

=
1|

2|
4

se
tt

in
gs

. A

Se

ve
re

er

ro
r

is

is

su
ed

an

d

co

m
pi

la
ti

on

st

op
s.

To

co

rr
ec

t
th

is

co

nd
it

io
n,

yo

u
sh

ou
ld

re

d
uc

e
th

e
ra

ng
e

of

th

e
en

um
er

at
io

ns
, c

ho
os

e
a

la
rg

er

en

um

se

tt
in

g,

or

ch

oo
se

a

d
yn

am
ic

en

um

se

tt
in

g,

su

ch

as

sm

al
l

or

in

tl
on

g.

2.

E
nu

m
er

at
io

n
ty

pe
s

m
us

t
no

t
ex

ce
ed

th

e
ra

ng
e

of

in

t
w

he
n

co
m

pi
lin

g
C

ap

pl
ic

at
io

ns

to

IS

O

C

19

89

an

d

IS

O

C

19

99

St

an
d

ar
d

s.

W

he
n

co
m

pi
lin

g
w

it
h

-q
la

n
gl

vl
=

st
d

c8
9

or

-q

la
n

gl
vl

=
st

d
c9

9
in

ef

fe
ct

, t
he

co

m
pi

le
r

w
ill

be

ha
ve

as

fo

llo
w

s
if

th

e
va

lu
e

of

an

en

um
er

at
io

n
ex

ce
ed

s
th

e
ra

ng
e

of

in

t:

a.

If

-q

en
u

m
=

in
t

is

in

ef

fe
ct

, a

se

ve
re

er

ro
r

m
es

sa
ge

is

is

su
ed

an

d

co

m
pi

la
ti

on

st

op
s.

b.

Fo
r

al
l

ot
he

r
se

tt
in

gs

of

-q

en
u

m
, a

n
in

fo
rm

at
io

na
l

m
es

sa
ge

is

is

su
ed

an

d

co

m
pi

la
ti

on

co

nt
in

ue
s.

Chapter 3. Compiler options reference 81

Related information

v Options that control output: Options for data size and alignment

-F

Description

Names an alternative configuration file (.cfg) for the compiler.

Syntax

�� -F config_file

:

stanza

:

stanza

 ��

where suboptions are:

 config_file Specifies the name of a compiler configuration file.

stanza Specifies the name of the command used to invoke the compiler. This directs

the compiler to use the entries under stanza in the config_file to set up the

compiler environment.

Notes

The default is a configuration file configured at installation time. Any file names or

stanzas that you specify on the command line or within your source file override

the defaults specified in the configuration file.

The -B, -t, and -W options override the -F option.

Example

To compile myprogram.c using a configuration file called /usr/tmp/myvac.cfg,

enter:

xlc myprogram.c -F/usr/tmp/myvac.cfg:xlc

Related information

v “-B” on page 55

v “-t” on page 187

v “-W” on page 204

v “Specifying compiler options in a configuration file” on page 18

v Options for customizing the compiler: Options for general customization

-qflag

Description

Specifies the minimum severity level of diagnostic messages to be reported in a

listing and displayed on a terminal. The diagnostic messages display with their

associated sub-messages.

82 XL C/C++ Compiler Reference

Syntax

��

 (1) (2)

i

i

-qflag

=

w

:

w

e

e

s

s

u

u

��

Notes:

1 Minimum severity level messages reported in listing

2 Minimum severity level messages reported on terminal

where message severity levels are:

 severity Description

i Information

w Warning

e Error

s Severe error

u Unrecoverable error

See also “#pragma options” on page 248.

Notes

You must specify a minimum message severity level for both listing and terminal

reporting.

Specifying informational message levels does not turn on the -qinfo option.

Example

To compile myprogram.C so that the listing shows all messages that were generated

and your workstation displays only error and higher messages (with their

associated information messages to aid in fixing the errors), enter:

xlc++ myprogram.C -qflag=i:e

Related information

v “-qinfo” on page 100

v “-w” on page 205

v “Compiler messages” on page 25

v Options that control listings and messages: Options for messages

-qfloat

Description

Specifies various floating-point options. These options provide different strategies

for speeding up or improving the accuracy of floating-point calculations.

Syntax

Chapter 3. Compiler options reference 83

��

�

 :

nospnans

norsqrt

norrm

norelax

nonans

maf

nohsflt

fold

nofltint

complexgcc

-qfloat

=

nocomplexgcc

fltint

nofold

hsflt

nomaf

nans

relax

rrm

rsqrt

spnans

��

Option selections are described in the Notes section below. See also “#pragma

options” on page 248.

Notes

Using float suboptions other than the default settings may produce varying results

in floating point computations. Incorrect computational results may be produced if

not all required conditions for a given suboption are met. For these reasons, you

should only use this option if you are experienced with floating-point calculations

involving IEEE floating-point values and can properly assess the possibility of

introducing errors in your program.

You can specify one or more of the following float suboptions.

 complexgcc
nocomplexgcc

Enables compatibility with GCC passing parameters and returning values

of complex type. The default is float=complexgcc when compiling in

32-bit mode, and float=nocomplexgcc when compiling in 64-bit mode.

fltint
nofltint

Speeds up floating-point-to-integer conversions by using faster inline code

that does not check for overflows. The default is float=nofltint, which

checks floating-point-to-integer conversions for out-of-range values.

This suboption must only be used with an optimization option.

v With -O2 in effect, -qfloat=nofltint is the implied setting.

v With -O3 and greater in effect, -qfloat=fltint is implied.

To include range checking in floating-point-to-integer conversions with

the -O3 option, specify -qfloat=nofltint.

v -qnostrict sets -qfloat=fltint

Changing the optimization level will not change the setting of the fltint

suboption if fltint has already been specified.

If the -qstrict | -qnostrict and -qfloat= options conflict, the last setting is

used.

fold
nofold

Specifies that constant floating-point expressions are to be evaluated at

compile time rather than at run time.

84 XL C/C++ Compiler Reference

hsflt
nohsflt

Note: The hsflt suboption is for specific applications in which

floating-point computations have known characteristics. Using this option

when you are compiling other application programs can produce incorrect

results without warning. Also, using this option with -qfloat=rndsngl,

-q64, or -qarch=ppc or any other PPC family architecture setting may

produce incorrect results on rs64b or future systems.

The hsflt option speeds up calculations by truncating instead of rounding

computed values to single precision before storing and on conversions

from floating point to integer. The nohsflt suboption specifies that

single-precision expressions are rounded after expression evaluation and

that floating-point-to-integer conversions are to be checked for

out-of-range values.

The hsflt suboption overrides the rndsngl, nans, and spnans suboptions.

The -qfloat=hsflt option replaces the obsolete -qhsflt option. Use

-qfloat=hsflt in your new applications.

This option has little effect unless the -qarch option is set to pwr, pwr2,

pwrx, pwr2s or, in 32-bit mode, com. For PPC family architectures, all

single-precision (float) operations are rounded. This option only affects

double-precision (double) expressions cast to single-precision (float).

maf
nomaf

Makes floating-point calculations faster and more accurate by using

floating-point multiply-add instructions where appropriate. The results

may not be exactly equivalent to those from similar calculations

performed at compile time or on other types of computers. Negative zero

results may be produced. This option may affect the precision of

floating-point intermediate results.

nans
nonans

Generates extra instructions to detect signalling NaN (Not-a-Number)

when converting from single-precision to double-precision at run time.

The option nonans specifies that this conversion need not be detected.

-qfloat=nans is required for full compliance to the IEEE 754 standard.

When used with the -qflttrap or -qflttrap=invalid option, the compiler

detects invalid operation exceptions in comparison operations that occur

when one of the operands is a signalling NaN.

relax
norelax

Relaxes the strict IEEE-conformance slightly for greater speed, typically

by removing some trivial, floating-point arithmetic operations, such as

adds and subtracts involving a zero on the right.

rrm
norrm

Prevents floating-point optimizations that are incompatible with runtime

rounding to plus and minus infinity modes. Informs the compiler that the

floating-point rounding mode may change at run time or that the

floating-point rounding mode is not round to nearest at run time.

-qfloat=rrm must be specified if the Floating Point Status and Control

register is changed at run time (as well as for initializing exception

trapping).

Chapter 3. Compiler options reference 85

rsqrt
norsqrt

Specifies whether a sequence of code that involves division by the result

of a square root can be replaced by calculating the reciprocal of the square

root and multiplying. Allowing this replacement produces code that runs

faster.

v For -O2, the default is -qfloat=norsqrt.

v For -O3, the default is -qfloat=rsqrt. Use -qfloat=norsqrt to override

this default.

v -qnostrict sets -qfloat=rsqrt. (Note that -qfloat=rsqrt means that errno

will not be set for any sqrt function calls.)

v -qfloat=rsqrt has no effect unless -qignerrno is also specified.

Changing the optimization level will not change the setting of the rsqrt

option if rsqrt has already been specified. If the -qstrict | -qnostrict and

-qfloat= options conflict, the last setting is used.

spnans
nospnans

Generates extra instructions to detect signalling NaN on conversion from

single-precision to double-precision. The option nospnans specifies that

this conversion need not be detected.

Example

To compile myprogram.C so that constant floating point expressions are evaluated at

compile time and multiply-add instructions are not generated, enter:

xlc++ myprogram.C -qfloat=fold:nomaf

Related information

v “-qarch” on page 49

v “-qcomplexgccincl” on page 64

v “-qflttrap”

v “-qstrict” on page 183

v “#pragma complexgcc” on page 224

v Options that control integer and floating-point processing

-qflttrap

Description

Generates extra instructions to detect and trap runtime floating-point exceptions.

Syntax

��

�

 noflttrap

-q

flttrap

:

=

overflow

underflow

zerodivide

invalid

inexact

enable

imprecise

nanq

no

��

86 XL C/C++ Compiler Reference

where suboptions do the following:

 enable Enables the specified exceptions in the prologue of the main program. With

the exception of nanq (described below), this suboption is required if you

want to turn on exception trapping options listed below without modifying

the source code.

overflow Generates code to detect and trap floating-point overflow.

underflow Generates code to detect and trap floating-point underflow.

zerodivide Generates code to detect and trap floating-point division by zero.

invalid Generates code to detect and trap floating-point invalid operation

exceptions.

inexact Generates code to detect and trap floating-point inexact exceptions.

imprecise Generates code for imprecise detection of the specified exceptions. If an

exception occurs, it is detected, but the exact location of the exception is not

determined.

nanq Generates code to detect and trap NaNQ (Not a Number Quiet) exceptions

handled by or generated by floating point operations. The nanq and

nonanq settings are not affected by -qnoflttrap, -qflttrap, or

-qflttrap=enable.

Notes

This option is recognized during linking. -qnoflttrap specifies that these extra

instructions need not be generated.

Specifying the -qflttrap option with no suboptions is equivalent to setting

-qflttrap=overflow:underflow:zerodivide:invalid:inexact. The exceptions are not

automatically enabled, and all floating-point operations are checked to provide

precise exception-location information.

If specified with #pragma options, the -qnoflttrap option must be the first option

specified.

If your program contains signalling NaNs, you should use the -qfloat=nans along

with -qflttrap to trap any exceptions.

The compiler exhibits behavior as illustrated in the following examples when the

-qflttrap option is specified together with -qoptimize options:

v with -O2:

– 1/0 generates a div0 exception and has a result of infinity

– 0/0 generates an invalid operation
v with -O3 or greater:

– 1/0 generates a div0 exception and has a result of infinity

– 0/0 returns zero multiplied by the result of the previous division.

Example

To compile myprogram.c so that floating-point overflow and underflow and divide

by zero are detected, enter:

xlc myprogram.c -qflttrap=overflow:underflow:zerodivide:enable

Related information

v “-qfloat” on page 83

v “#pragma options” on page 248

v Options that control integer and floating-point processing

Chapter 3. Compiler options reference 87

-qformat

Description

Warns of possible problems with string input and output format specifications.

Functions diagnosed are printf, scanf, strftime, strfmon family functions and

functions marked with format attributes.

Syntax

��

�

 -qnoformat

-qformat

=

noall

=

all

-qformat

:

=

all

no

exarg

nlt

sec

y2k

zln

��

where suboptions are:

 all Turns on all format diagnostic messages.

exarg Warns if excess arguments appear in printf and scanf style function calls.

nlt Warns if a format string is not a string literal, unless the format function takes its

format arguments as a va_list.

sec Warns of possible security problems in use of format functions.

y2k Warns of strftime formats that produce a 2-digit year.

zln Warns of zero-length formats.

Note: Specifying no in front of any of the above suboptions disables that group of

diagnostic messages. For example, to turn off diagnostic messages for y2k warnings, specify

-qformat=noy2k on the command line.

Notes

If -qformat is not specified on the command line, the compiler assumes a default

setting of -qnoformat, which is equivalent to -qformat=noall.

If -qformat is specified on the command line without any suboptions, the compiler

assumes a default setting of -qformat=all.

Examples

1. To enable all format string diagnostics, enter either of the following:

xlc++ myprogram.C -qformat=all

xlc++ myprogram.C -qformat

2. To enable all format diagnostic checking except that for y2k date diagnostics,

enter:

xlc++ myprogram.C -qformat=all:noy2k

Related information

v Options that control listings and messages: Options for messages

88 XL C/C++ Compiler Reference

-qfullpath

Description

Specifies what path information is stored for files when you use the -g compiler

option.

Syntax

��
 nofullpath

-q

fullpath

��

Notes

Using -qfullpath causes the compiler to preserve the absolute (full) path name of

source files specified with the -g option.

The relative path name of files is preserved when you use -qnofullpath.

-qfullpath is useful if the executable file was moved to another directory. If you

specified -qnofullpath, the debugger would be unable to find the file unless you

provide a search path in the debugger. Using -qfullpath would locate the file

successfully.

Related information

v “-qlinedebug” on page 136

v “-g” on page 90

v Options for error checking and debugging: Options for debugging

-qfuncsect

Description

Places instructions for each function in a separate object file control section or

csect. By default, each object file will consist of a single control section combining

all functions defined in the corresponding source file.

Syntax

��
 nofuncsect

-q

funcsect

��

Notes

Using multiple csects can reduce the size of the final executable by allowing the

editor to remove functions that are not called or that have been inlined by the

optimizer at all places they are called.

If this option is specified in #pragma options, the pragma directive must be

specified before the first statement in the compilation unit.

Related information

v “#pragma options” on page 248

v Options that control output: Options for file output

Chapter 3. Compiler options reference 89

-g

Description

Generates information used for debugging tools such as the GNU GDB Debugger.

Syntax

�� -g ��

Notes

Specifying -g will turn off all inlining unless you explicitly request it. For example:

 Options Effect on inlining

-g No inlining.

-O Inline declared functions.

-O -Q Inline declared functions and auto inline others.

-g -O Inline declared functions.

-g -O -Q Inline declared functions and auto inline others.

The default with -g is not to include information about unreferenced symbols in

the debugging information.

To include information about both referenced and unreferenced symbols, use the

-qdbxextra option with -g.

To specify that source files used with -g are referred to by either their absolute or

their relative path name, use -qfullpath.

You can also use the -qlinedebug option to produce abbreviated debugging

information in a smaller object size.

Example

To compile myprogram.c to produce an executable program testing so you can

debug it, enter:

xlc myprogram.c -o testing -g

To compile myprogram.c to produce an executable program named testing_all,

and containing additional information about unreferenced symbols so you can

debug it, enter:

xlc myprogram.c -o testing_all -g -qdbxextra

Related information

v “-qdbxextra” on page 72

v “-qfullpath” on page 89

v “-qlinedebug” on page 136

v “-O, -qoptimize” on page 148

v “-Q” on page 164

v Options for error checking and debugging: Options for debugging

-qgcc_c_stdinc

90 XL C/C++ Compiler Reference

Description

Changes the standard search location for the GCC headers.

Syntax

��

�

 :

-qgcc_c_stdinc

=

path

��

Notes

The standard search path for GCC headers is determined by combining the search

paths specified by both the -qc_stdinc and this (-qgcc_c_stdinc) compiler option, in

that order. You can find the default search path for this option in the compiler

default configuration file.

If one of these compiler options is not specified or specifies an empty string, the

standard search location will be the path specified by the other option. If a search

path is not specified by either of the -qc_stdinc or -qgcc_c_stdinc compiler options,

the default header file search path is used.

If this option is specified more than once, only the last instance of the option is

used by the compiler. To specify multiple directories for a search path, specify this

option once, using a : (colon) to separate multiple search directories.

This option is ignored if the -qnostdinc option is in effect.

Example

To specify mypath/headers1 and mypath/headers2 as being part of the standard

search path, enter:

xlc myprogram.c -qgcc_c_stdinc=mypath/headers1:mypath/headers2

Related information

v “-qc_stdinc” on page 58

v “-qcpp_stdinc” on page 68

v “-qgcc_cpp_stdinc”

v “-qstdinc” on page 182

v “Directory search sequence for include files using relative path names” on page

22

v “Specifying compiler options in a configuration file” on page 18

v Options that control input: Options for search paths

-qgcc_cpp_stdinc

Description

Changes the standard search location for the g++ headers.

Syntax

��

�

 :

-qgcc_cpp_stdinc

=

path

��

Chapter 3. Compiler options reference 91

Notes

The standard search path for g++ headers is determined by combining the search

paths specified by both the -qcpp_stdinc and this (-qgcc_cpp_stdinc) compiler

option, in that order. You can find the default search path for this option in the

compiler default configuration file.

If one of these compiler options is not specified or specifies an empty string, the

standard search location will be the path specified by the other option. If a search

path is not specified by either of the -qcpp_stdinc or -qgcc_cpp_stdinc compiler

options, the default header file search path is used.

If this option is specified more than once, only the last instance of the option is

used by the compiler. To specify multiple directories for a search path, specify this

option once, using a : (colon) to separate multiple search directories.

This option is ignored if the -qnostdinc option is in effect.

Example

To specify mypath/headers1 and mypath/headers2 as being part of the standard

search path, enter:

xlc++ myprogram.C -qgcc_cpp_stdinc=mypath/headers1:mypath/headers2

Related information

v “-qc_stdinc” on page 58

v “-qcpp_stdinc” on page 68

v “-qgcc_c_stdinc” on page 90

v “-qstdinc” on page 182

v “Directory search sequence for include files using relative path names” on page

22

v “Specifying compiler options in a configuration file” on page 18

v Options that control input: Options for search paths

-qgenproto

Description

Produces ANSI prototypes from K&R function definitions. This should help to ease

the transition from K&R to ANSI.

Syntax

��
 nogenproto

-q

genproto

=

parmnames

��

Notes

Using -qgenproto without parmnames will cause prototypes to be generated

without parameter names. Parameter names are included in the prototype when

parmnames is specified.

Example

For the following function, foo.c:

92 XL C/C++ Compiler Reference

foo(a,b,c)

 float a;

 int *b;

 int c;

specifying

xlc -c -qgenproto foo.c

produces

int foo(double, int*, int);

The parameter names are dropped. On the other hand, specifying

xlc -c -qgenproto=parmnames foo.c

produces

int foo(double a, int* b, int c);

In this case the parameter names are kept.

Note that float a is represented as double or double a in the prototype, since ANSI

states that all narrow-type arguments (such as chars, shorts, and floats) are

widened before they are passed to K&R functions.

Related information

v Options for error checking and debugging: Other error checking and debugging

options

-qhalt

Description

Instructs the compiler to stop after the compilation phase when it encounters

errors of specified severity or greater.

Syntax

��
 s

-qhalt

=

e

i

w

u

��

where severity levels in order of increasing severity are:

 severity Description

i Information

w Warning

e Error (C only)

s Severe error

u Unrecoverable error

See also “#pragma options” on page 248.

Chapter 3. Compiler options reference 93

Notes

When the compiler stops as a result of the -qhalt option, the compiler return code

is nonzero.

When -qhalt is specified more than once, the lowest severity level is used.

The -qhalt option can be overridden by the -qmaxerr option.

Diagnostic messages may be controlled by the -qflag option.

Example

To compile myprogram.c so that compilation stops if a warning or higher level

message occurs, enter:

xlc myprogram.c -qhalt=w

Related information

v “-qflag” on page 82

v “-qmaxerr” on page 144

v Options that control listings and messages: Options for messages

-qhaltonmsg

Description

Instructs the compiler to stop after the compilation phase when it encounters the

specified msg_number.

Syntax

��

�

 ,

-qhaltonmsg

=

msg_number

��

Notes

When the compiler stops as a result of the -qhaltonmsg option, the compiler return

code is nonzero.

You can specify more than one message number with the -qhaltonmsg option.

Additional message numbers must be separated by a comma.

Related information

v “Compiler messages” on page 25

v Options that control listings and messages: Options for messages

-qhot

Description

Instructs the compiler to perform high-order loop analysis and transformations

during optimization.

Syntax

94 XL C/C++ Compiler Reference

��
 nohot

-q

hot

vector

simd

=

arraypad

=

n

level

=

0

1

nosimd

novector

��

where:

 arraypad Because of the implementation of the cache architecture, array dimensions

that are powers of two can lead to decreased cache utilization. The arraypad

suboption permits the compiler to increase the dimensions of arrays where

doing so might improve the efficiency of array-processing loops. If you use

the arraypad suboption with no numeric value, the compiler will pad any

arrays where it infers there may be a benefit and will pad by whatever

amount it chooses. Not all arrays will necessarily be padded, and different

arrays may be padded by different amounts.

arraypad=n The compiler will pad every array in the code. The pad amount must be a

positive integer value, and each array will be padded by an integral number

of elements. Because n is an integral value, we recommend that pad values be

multiples of the largest array element size, typically 4, 8, or 16.

level=0 The compiler performs a subset of the high-order transformations.

When you specify -qhot=level=0, the default is set to novector, nosimd and

noarraypad.

If you specify -qhot=level=0 before -O4 , level is set to 1. If you specify

-qhot=level=0 after -O4, level is set to 0.

level=1 -qhot=level=1 is equivalent to -qhot and the compiler options that imply

-qhot also imply -qhot=level=1 unless -qhot=level=0 is explicitly specified.

The default hot level for all -qhot suboptions other than level is 1. For

example, specifying -O3 -qhot=novector sets the hot level to 1.

Specifying -O4 or -qsmp implies -qhot=level=1, unless you explicitly specify

-qhot=level=0 option.

Chapter 3. Compiler options reference 95

simd |

nosimd

The compiler converts certain operations that are performed in a loop on

successive elements of an array into a call to a Vector Multimedia Extension

(VMX) instruction. This call calculates several results at one time, which is

faster than calculating each result sequentially.

Parallel operations occur in 16-byte vector registers. The compiler divides

vectors that exceed the register length into 16-byte units to facilitate

optimization. A 16-byte unit can contain one of the following types of data:

v 4 Integers.

v 8 2–byte units

v 16 1–byte units

Applying -qhot=simd optimization is useful for applications with significant

image processing demands.

This suboption has effect only if you specify an architecture that supports

VMX instructions; in these conditions, -qhot=simd is set as the default.

If you specify -qhot=nosimd, the compiler performs optimizations on loops

and arrays, but avoids replacing certain code with calls to VMX instructions.

vector |

novector

When specified with -qnostrict and -qignerrno, or an optimization level of

-O3 or higher, the vector suboption causes the compiler to convert certain

operations that are performed in a loop on successive elements of an array

(for example, square root, reciprocal square root) into a call to MASS library

routine. This call will calculate several results at one time, which is faster than

calculating each result sequentially. The compiler uses standard registers with

no vector size restrictions. The vector suboption supports single and

double-precision floating-point mathematics, and is useful for applications

with significant mathematical processing demands.

Since vectorization can affect the precision of your program’s results, if you

are using -O4 or higher, you should specify -qhot=novector if the change in

precision is unacceptable to you.

Default

The default is -qnohot.

Specifying -qhot without suboptions implies -qhot=nosimd, -qhot=noarraypad,

-qhot=vector, and -qhot=level=1. The -qhot option is also implied by -qsmp, -O4,

and-O5.

Notes

If you do not also specify optimization of at least level 2 when specifying -qhot on

the command line, the compiler assumes -O2.

Both -qhot=arraypad and -qhot=arraypad=n are unsafe options. They do not

perform any checking for reshaping or equivalences that may cause the code to

break if padding takes place.

Example

The following example turns on the -qhot=arraypad option:

xlc -qhot=arraypad myprogram.c

Related information

v “-qarch” on page 49

v “-C” on page 56

v “-O, -qoptimize” on page 148

v “-qstrict” on page 183

96 XL C/C++ Compiler Reference

v “-qsmp” on page 175

v Options for performance optimization: Options for loop optimization

v ″Using the Mathematical Acceleration Subsystem (MASS)″in theXL C/C++

Programming Guide

-I

Description

Specifies an additional search path for include file names that do not specify an

absolute path.

Syntax

�� -I directory ��

Notes

The value for directory must be a valid path name (for example, /u/golnaz,

or /tmp, or ./subdir). The compiler appends a slash (/) to the directory and then

concatenates it with the file name before doing the search. The path directory is the

one that the compiler searches first for include files whose names do not start with

a slash (/). If directory is not specified, the default is to search the standard

directories.

If the -I directory option is specified both in the configuration file and on the

command line, the paths specified in the configuration file are searched first.

The -I directory option can be specified more than once on the command line. If

you specify more than one -I option, directories are searched in the order that they

appear on the command line.

If you specify a full (absolute) path name on the #include directive, this option has

no effect.

Example

To compile myprogram.C and search /usr/tmp and then /oldstuff/history for

included files, enter:

xlc++ myprogram.C -I/usr/tmp -I/oldstuff/history

Related information

v “Directory search sequence for include files using relative path names” on page

22

v Options that control input: Options for search paths

-qidirfirst

Description

Specifies the search order for files included with the #include “file_name” directive.

Syntax

��
 noidirfirst

-q

idirfirst

��

See also “#pragma options” on page 248.

Chapter 3. Compiler options reference 97

Notes

Use -qidirfirst with the -I option.

The normal search order (for files included with the #include “file_name” directive)

without the idirfirst option is:

1. Search the directory where the current source file resides.

2. Search the directory or directories specified with the -I option.

3. Search the standard include directories.

With -qidirfirst, the directories specified with the -I option are searched before the

directory where the current file resides.

-qidirfirst has no effect on the search order for the #include <file_name> directive.

-qidirfirst is independent of the -qnostdinc option, which changes the search order

for both #include "file_name" and #include <file_name>.

The search order of files is described in “Directory search sequence for include files

using relative path names” on page 22..

The last valid #pragma options [no]idirfirst remains in effect until replaced by a

subsequent #pragma options [no]idirfirst.

Example

To compile myprogram.c and search /usr/tmp/myinclude for included files before

searching the current directory (where the source file resides), enter:

xlc myprogram.c -I/usr/tmp/myinclude -qidirfirst

Related information

v “-I” on page 97

v “-qstdinc” on page 182

v “Directory search sequence for include files using relative path names” on page

22

v Options that control input: Options for search paths

-qignerrno

Description

Allows the compiler to perform optimizations that assume errno is not modified

by system calls.

Syntax

��
 noignerrno

-q

ignerrno

��

See also “#pragma options” on page 248.

Notes

Some system library routines set errno when an exception occurs. This setting and

subsequent side effects of errno may be ignored by specifying -qignerrno.

98 XL C/C++ Compiler Reference

Specifying a -O3 or greater optimization option will also set -qignerrno. If you

require both optimization and the ability to set errno, you should specify

-qnoignerrno after the optimization option on the command line.

Related information

v “-O, -qoptimize” on page 148

v Options for performance optimization: Options for side effects

-qignprag

Description

Instructs the compiler to ignore certain pragma statements.

Syntax

��

�

 :

-qignprag

=

disjoint

isolated_call

all

ibm

omp

��

where pragma statements affected by this option are:

 disjoint Ignores all #pragma disjoint directives in the source file.

isolated_call Ignores all #pragma isolated_call directives in the source file.

all Ignores all #pragma isolated_call and #pragma disjoint directives in the

source file.

ibm

Ignores all #pragma ibm snapshot directives in the source file.

omp Ignores all OpenMP parallel processing directives in the source file, such as

#pragma omp parallel, #pragma omp critical.

See also “#pragma options” on page 248.

Notes

This option is useful for detecting aliasing pragma errors. Incorrect aliasing gives

runtime errors that are hard to diagnose. When a runtime error occurs, but the

error disappears when you use -qignprag with the -O option, the information

specified in the aliasing pragmas is likely incorrect.

Example

To compile myprogram.c and ignore any #pragma isolated_call directives, enter:

xlc myprogram.c -qignprag=isolated

Related information

v “#pragma disjoint” on page 225

v “#pragma isolated_call” on page 238

v “#pragma ibm snapshot” on page 233

v “Summary of OpenMP pragma directives” on page 216

v Options that control input: Other input options

Chapter 3. Compiler options reference 99

-qinfo

Description

Produces informational messages.

Syntax

��

�

 noinfo

=

all

-q

info

:

=

all

no

group

private

reduction

��

��

�

 info=lan:trx

=

all:noppt

-q

info

:

=

all

no

group

private

reduction

noinfo

��

where -qinfo options and diagnostic message groups are described in the Notes

section below.

See also “#pragma info” on page 234 and “#pragma options” on page 248.

Defaults

If you do not specify -qinfo on the command line, the compiler assumes:

1.

-qnoinfo

2.

-qinfo=lan:trx

If you specify -qinfo on the command line without any suboptions, the compiler

assumes:

1.

-qinfo=all

2.

-qinfo=all:noppt

Notes

Specifying -qinfo=all or -qinfo with no suboptions turns on all diagnostic

messages for all groups except for the ppt (preprocessor trace) group in C++ code.

Specifying -qnoinfo or -qinfo=noall turns off all diagnostic messages for all

groups.

100 XL C/C++ Compiler Reference

You can use the #pragma options info=suboption[:suboption ...] or #pragma options

noinfo forms of this compiler option to temporarily enable or disable messages in

one or more specific sections of program code.

Available forms of the -qinfo option are:

 all Turns on all diagnostic messages for all groups.

The -qinfo and -qinfo=all forms of the option have the same effect.

The -qinfo and -qinfo=all forms of the option both have the same

effect, but do not include the ppt group (preprocessor trace).

lan Enables diagnostic messages informing of language level effects. This is the

default for C++ compilations.

noall Turns off all diagnostic messages for specific portions of your program.

private Lists shared variables made private to a parallel loop.

reduction Lists all variables that are recognized as reduction variables inside a parallel

loop.

Chapter 3. Compiler options reference 101

group Turns on or off specific groups of messages, where group can be one or more

of:

group Type of messages returned or suppressed

c99|noc99 C code that may behave differently between C89 and C99

language levels.

cls|nocls C++ classes.

cmp|nocmp Possible redundancies in unsigned comparisons.

cnd|nocnd Possible redundancies or problems in conditional expressions.

cns|nocns Operations involving constants.

cnv|nocnv Conversions.

dcl|nodcl Consistency of declarations.

eff|noeff Statements and pragmas with no effect.

enu|noenu Consistency of enum variables.

ext|noext Unused external definitions.

gen|nogen General diagnostic messages.

gnr|nognr Generation of temporary variables.

got|nogot Use of goto statements.

ini|noini Possible problems with initialization.

inl|noinl Functions not inlined.

lan|nolan Language level effects.

obs|noobs Obsolete features.

ord|noord Unspecified order of evaluation.

par|nopar Unused parameters.

por|nopor Nonportable language constructs.

ppc|noppc Possible problems with using the preprocessor.

ppt|noppt Trace of preprocessor actions.

pro|nopro Missing function prototypes.

rea|norea Code that cannot be reached.

ret|noret Consistency of return statements.

trd|notrd Possible truncation or loss of data or precision.

tru|notru Variable names truncated by the compiler.

trx|notrx Hexadecimal floating point constants rounding.

uni|nouni Uninitialized variables.

upg|noupg Generates messages describing new behaviors of the current

compiler release as compared to the previous release.

use|nouse Unused auto and static variables.

vft|novft Generation of virtual function tables in C++ programs.

zea|nozea Zero-extent arrays.

102 XL C/C++ Compiler Reference

Example

To compile myprogram.C to produce informational message about all items except

conversions and unreached statements, enter:

xlc++ myprogram.C -qinfo=all -qinfo=nocnv:norea

Related information

v “-qhaltonmsg” on page 94

v “-qsuppress” on page 185

v Options that control listings and messages: Options for messages

-qinitauto

Description

Initializes automatic variables to the two-digit hexadecimal byte value hex_value.

Syntax

��
 noinitauto

-q

initauto

=

hex_value

��

See also “#pragma options” on page 248.

Notes

The option generates extra code to initialize the value of automatic variables. It

reduces the runtime performance of the program and should only be used for

debugging.

There is no default setting for the initial value of -qinitauto. You must set an

explicit value (for example, -qinitauto=FA).

Example

To compile myprogram.c so that automatic variables are initialized to hex value FF

(decimal 255), enter:

xlc myprogram.c -qinitauto=FF

Related information

v Options for error checking and debugging: Other error checking and debugging

options

-qinlglue

Description

Generates fast external linkage by inlining the pointer glue code necessary to make

a call to an external function or a call through a function pointer.

Syntax

��
 noinlglue

-q

inlglue

��

See also “#pragma options” on page 248.

Notes

This option applies only to 64-bit compilation.

Chapter 3. Compiler options reference 103

Glue code, generated by the linkage editor, is used for passing control between two

external functions, or when you call functions through a pointer. Therefore the

-qinlglue option only affects function calls through pointers or calls to an external

compilation unit. For calls to an external function, you should specify that the

function is imported by using, for example, the -qprocimported option.

For performance enhancement on selected architectures, inlining of glue code is

now automated through the selection of hardware tuning options. Specifying

-qtune=pwr4, -qtune=pwr5, -qtune=ppc970, or -qtune=auto on a system that uses

one of these architectures, will automatically enable the -qinlglue option. If you

use the -qtune option with any of these suboptions and want to disable inlining of

glue code, make sure to specify -qnoinlglue as well. Note, however, that

-qcompact overrides the -qinlglue setting regardless of other options specified, so

if you want -qinlglue to be enabled, you should not specify -qcompact.

Inlining glue code can cause the code size to grow. The option -qcompact reduces

code size, but it should be noted that -qcompact overrides -qinlglue, regardless of

other options specified.

 Related information

v “-q32, -q64” on page 44

v “-qcompact” on page 63

v “-qproclocal, -qprocimported, -qprocunknown” on page 161

v “-qtune” on page 197

v Options that control linking: Other linker options

-qinline

Description

Attempts to inline functions instead of generating calls to those functions. Inlining

is performed if possible but, depending on which optimizations are performed,

some functions might not be inlined.

Syntax

��

�

 noinline

-q

inline

=threshold=num

:

+

names

-

��

The following -qinline options apply in the C language:

 -qinline The compiler attempts to inline all appropriate functions with 20

executable source statements or fewer, subject to any other

settings of the suboptions to the -qinline option. If -qinline is

specified last, all functions are inlined.

104 XL C/C++ Compiler Reference

-qinline=threshold=num Sets a size limit on the functions to be inlined. The number of

executable statements must be less than or equal to num for the

function to be inlined. num must be a positive integer. The

default value is 20. Specifying a threshold value of 0 causes no

functions to be inlined except those functions marked with

supported forms of the inline function specifier.

The num value applies to logical C statements. Declarations are

not counted, as you can see in the example below:

increment()

{

 int a, b, i;

 for (i=0; i<10; i++) /* statement 1 */

 {

 a=i; /* statement 2 */

 b=i; /* statement 3 */

 }

}

-qinline-names The compiler does not inline functions listed by names. Separate

each name with a colon (:). All other appropriate functions are

inlined. The option implies -qinline.

For example:

-qinline-salary:taxes:expenses:benefits

causes all functions except those named salary, taxes, expenses,

or benefits to be inlined if possible.

A warning message is issued for functions that are not defined

in the source file.

-qinline+names Attempts to inline the functions listed by names and any other

appropriate functions. Each name must be separated by a colon

(:). The option implies -qinline.

For example,

-qinline+food:clothes:vacation

causes all functions named food, clothes, or vacation to be

inlined if possible, along with any other functions eligible for

inlining.

A warning message is issued for functions that are not defined

in the source file or that are defined but cannot be inlined.

This suboption overrides any setting of the threshold value. You

can use a threshold value of zero along with -qinline+names to

inline specific functions. For example:

-qinline=threshold=0

followed by:

-qinline+salary:taxes:benefits

causes only the functions named salary, taxes, or benefits to be

inlined, if possible, and no others.

-qnoinline Does not inline any functions. If -qnoinline is specified last, no

functions are inlined.

The following -qinline options apply to the C++ language:

 -qinline Compiler inlines all functions that it can.

Chapter 3. Compiler options reference 105

-qnoinline Compiler does not inline any functions.

Default

The default is to treat inline specifications as a hint to the compiler, and the result

depends on other options that you select:

v If you optimize your program using one of the -O compiler options, the

compiler attempts to inline all functions declared as inline. Otherwise, the

compiler attempts to inline only some of the simpler functions declared as

inline.

Notes

The -qinline option is functionally equivalent to the -Q option.

If you specify the -g option (to generate debug information), inlining may be

affected. See the information for the “-g” on page 90 compiler option.

Because inlining does not always improve runtime performance, you should test

the effects of this option on your code. Do not attempt to inline recursive or

mutually recursive functions.

Normally, application performance is optimized if you request optimization (-O

option), and compiler performance is optimized if you do not request optimization.

To maximize inlining, specify optimization (-O) and also specify the appropriate

-qinline options.

The XL C/C++ keywords inline, __inline__, _inline, _Inline, and __inline

override all -qinline options except -qnoinline. The compiler tries to inline

functions marked with these keywords regardless of other -qinline option settings.

See ″The inline function specifier″ in XL C/C++ Language Reference for more

information.

Example

To compile myprogram.C so that no functions are inlined, enter:

xlc++ myprogram.C -O -qnoinline

To compile myprogram.c so that the compiler attempts to inline functions of fewer

than 12 lines, enter:

xlc myprogram.c -O -qinline=12

Related information

v “-O, -qoptimize” on page 148

v “-Q” on page 164

v “-g” on page 90

v Options for performance optimization: Options for function inlining

-qipa

Description

Turns on or customizes a class of optimizations known as interprocedural analysis

(IPA).

106 XL C/C++ Compiler Reference

Compile-time syntax

�� -qipa

object

=

noobject

 ��

where:

 -qipa

compile-time

options

Description

-qipa Activates interprocedural analysis with the following -qipa suboption

defaults:

v inline=auto

v level=1

v missing=unknown

v partition=medium

-qipa=object

-qipa=noobject

Specifies whether to include standard object code in the object files.

Specifying the noobject suboption can substantially reduce overall

compile time by not generating object code during the first IPA phase.

If the -S compiler option is specified with noobject, noobject is

ignored.

If compilation and linking are performed in the same step, and neither

the -S nor any listing option is specified, -qipa=noobject is implied by

default.

If any object file used in linking with -qipa was created with the

-qipa=noobject option, any file containing an entry point (the main

program for an executable program, or an exported function for a

library) must be compiled with -qipa.

Link-time syntax

Chapter 3. Compiler options reference 107

��

�

�

�

�

�

�

�

�

�

�

�

 noipa

-q

ipa

:

noclonearch

,

=

clonearch

=

arch

nocloneproc

,

cloneproc

=

name

,

exits

=

name

inline

auto

=

noauto

,

suboption

threshold=num

,

name

,

noinline

=

name

,

infrequentlabel

=

name

,

isolated

=

name

1

level

=

0

2

a.lst

short

list

=

name

long

,

lowfreq

=

name

unknown

missing

=

safe

isolated

pure

medium

partition

=

small

large

nopdfname

pdfname

=

filename

nothreads

threads

=N

,

pure

=

name

safe

unknown

filename

��

108 XL C/C++ Compiler Reference

where:

 Link-time

suboptions

Description

-qnoipa Deactivates interprocedural analysis.

-qipa Activates interprocedural analysis with the following -qipa suboption

defaults:

v inline=auto

v level=1

v missing=unknown

v partition=medium

Suboptions can also include one or more of the forms shown below.

 Link-time suboptions Description

clonearch=arch{,arch}

noclonearch

Specifies the architectures for which multiple versions of

the same instruction set are produced.

During the IPA link phase, the compiler generates a generic

version of a procedure targeted for the default architecture

setting and then if appropriate, produces another version

that is optimized for the specified architectures. At run

time, the compiler dynamically determines which

architecture the program is running on, and chooses the

particular version of the function that will be executed

accordingly. Using this option, your program can achieve

compatibility for different PowerPC architectures.

arch is a comma-separated list of architectures. The

supported clonearch values are pwr4, pwr5 and ppc970. If

you specify no value, an invalid value or a value equal to

the -qarch setting, no function versioning will be

performed for this option.

Notes:

1. To ensure compatibility across multiple platforms, the

-qarch value must be the subset of the architecture

specified by -qarch=clonearch.

2. When -qcompact is in effect, -qarch=clonearch is

disabled.

3. For information on allowed clonearch values on

different architectures, see Table 37 on page 112.

4. In the case that suboptions are specified for

-qipa=clonearch and -qarch that do not match the

target architecture, the compiler will generate

instructions based on the suboption that most closely

matches the system on which the application is

currently running.

cloneproc=name{,name}

nocloneproc=name{,name}

Specifies the name of the functions to clone for the

architectures specified by clonearch suboption. Where name

is a comma-separated list of function names.

Note: If you do not specify -qipa=clonearch or specify

-qipa=noclonearch, -qipa=cloneproc=name,{name} and

-qipa=nocloneproc=name,{name} have no effect.

Chapter 3. Compiler options reference 109

Link-time suboptions Description

exits=name{,name} Specifies names of functions which represent program exits.

Program exits are calls which can never return and can

never call any procedure which has been compiled with

IPA pass 1.

infrequentlabel=name{,name} Specifies a list of user-defined labels that are likely to be

called infrequently during a program run.

inline=auto

inline=noauto

Enables or disables automatic inlining only. The compiler

still accepts user-specified functions as candidates for

inlining.

inline[=suboption] Same as specifying the -qinline compiler option, with

suboption being any valid -qinline suboption.

inline=threshold=num Specifies an upper limit for the number of functions to be

inlined, where num is a non-negative integer. This

argument is implemented only when inline=auto is on.

inline=name{,name} Specifies a comma-separated list of functions to try to

inline, where functions are identified by name.

noinline=name{,name} Specifies a comma-separated list of functions that must not

be inlined, where functions are identified by name.

isolated=name,{name} Specifies a list of isolated functions that are not compiled

with IPA. Neither isolated functions nor functions within

their call chain can refer to global variables.

level=0

level=1

level=2

Specifies the optimization level for interprocedural analysis.

The default level is 1. Valid levels are as follows:

v Level 0 - Does only minimal interprocedural analysis and

optimization.

v Level 1 - Turns on inlining, limited alias analysis, and

limited call-site tailoring.

v Level 2 - Performs full interprocedural data flow and

alias analysis.

list

list=[name] [short|long]

Specifies that a listing file be generated during the link

phase. The listing file contains information about

transformations and analyses performed by IPA, as well as

an optional object listing generated by the back end for

each partition. This option can also be used to specify the

name of the listing file.

If listings have been requested (using either the -qlist or

-qipa=list options), and name is not specified, the listing file

name defaults to a.lst.

The long and short suboptions can be used to request more

or less information in the listing file. The short suboption,

which is the default, generates the Object File Map, Source

File Map and Global Symbols Map sections of the listing.

The long suboption causes the generation of all of the

sections generated through the short suboption, as well as

the Object Resolution Warnings, Object Reference Map,

Inliner Report and Partition Map sections.

lowfreq=name{,name} Specifies names of functions which are likely to be called

infrequently. These will typically be error handling, trace,

or initialization functions. The compiler may be able to

make other parts of the program run faster by doing less

optimization for calls to these functions.

110 XL C/C++ Compiler Reference

Link-time suboptions Description

missing=attribute Specifies the interprocedural behavior of procedures that

are not compiled with -qipa and are not explicitly named

in an unknown, safe, isolated, or pure suboption.

The following attributes may be used to refine this

information:

v safe - Functions which do not indirectly call a visible

(not missing) function either through direct call or

through a function pointer.

v isolated - Functions which do not directly reference

global variables accessible to visible functions. Functions

bound from shared libraries are assumed to be isolated.

v pure - Functions which are safe and isolated and which do

not indirectly alter storage accessible to visible functions.

pure functions also have no observable internal state.

v unknown - The default setting. This option greatly

restricts the amount of interprocedural optimization for

calls to unknown functions. Specifies that the missing

functions are not known to be safe, isolated, or pure.

partition=small

partition=medium

partition=large

Specifies the size of each program partition created by IPA

during pass 2.

nopdfname

pdfname

pdfname=filename

Specifies the name of the profile data file containing the

PDF profiling information. If you do not specify filename,

the default file name is ._pdf.

The profile is placed in the current working directory or in

the directory named by the PDFDIR environment variable.

This lets you do simultaneous runs of multiple executables

using the same PDFDIR, which can be useful when tuning

with PDF on dynamic libraries.

nothreads

threads

threads=N

Specifies the number of threads the compiler assigns to

code generation.

Specifying nothreads is equivalent to running one serial

process. This is the default.

Specifying threads allows the compiler to determine how

many threads to use, depending on the number of

processors available.

Specifying threads=N instructs the program to use N

threads. Though N can be any integer value in the range of

1 to MAXINT, N is effectively limited to the number of

processors available on your system.

pure=name{,name} Specifies a list of pure functions that are not compiled with

-qipa. Any function specified as pure must be isolated and

safe, and must not alter the internal state nor have

side-effects, defined as potentially altering any data visible

to the caller.

safe=name{,name} Specifies a list of safe functions that are not compiled with

-qipa and do not call any other part of the program. Safe

functions can modify global variables, but may not call

functions compiled with -qipa.

Chapter 3. Compiler options reference 111

Link-time suboptions Description

unknown=name{,name} Specifies a list of unknown functions that are not compiled

with -qipa. Any function specified as unknown can make

calls to other parts of the program compiled with -qipa,

and modify global variables and dummy arguments.

filename Gives the name of a file which contains suboption

information in a special format.

The file format is the following:

... comment

attribute{, attribute} = name{, name}

clonearch=arch,{arch}

cloneproc=name,{name}

missing = attribute{, attribute}

exits = name{, name}

lowfreq = name{, name}

inline [= auto | = noauto]

inline = name{, name} [from name{, name}]

inline-threshold = unsigned_int

inline-limit = unsigned_int

list [= file-name | short | long]

noinline

noinline = name{, name} [from name{, name}]

level = 0 | 1 | 2

prof [= file-name]

noprof

partition = small | medium | large | unsigned_int

where attribute is one of:

v clonearch

v cloneproc

v exits

v lowfreq

v unknown

v safe

v isolated

v pure

The following table shows the allowed clonearch values for different -qarch

settings.

 Table 37. Allowable clonearch values

-qarch setting Allowed clonearch value

ppc, pwr3, ppc64, ppcgr, ppc64gr, ppc64grsq pwr4, pwr5, ppc970

pwr4 pwr5, ppc970

ppc64v ppc970

pwr5, ppc970 N/A

Notes

The necessary steps to use IPA are:

1. Do preliminary performance analysis and tuning before compiling with the

-qipa option, because the IPA analysis uses a two-pass mechanism that

increases compile and link time. You can reduce some compile and link

overhead by using the -qipa=noobject option.

2. Specify the -qipa option on both the compile and the link steps of the entire

application, or as much of it as possible. Use suboptions to indicate

112 XL C/C++ Compiler Reference

assumptions to be made about parts of the program not compiled with -qipa.

During compilation, the compiler stores interprocedural analysis information in

the .o file. During linking, the -qipa option causes a complete recompilation of

the entire application.

Note: If a severe error occurs during compilation, -qipa returns RC=1 and

terminates. Performance analysis also terminates.

v IPA can significantly increase compilation time, even with the -qipa=noobject

option, so using IPA should be limited to the final performance tuning stage of

development.

v Specify the -qipa option on both the compile and link steps of the entire

application, or as much of it as possible. You should at least compile the file

containing main, or at least one of the entry points if compiling a library.

v While IPA’s interprocedural optimizations can significantly improve performance

of a program, they can also cause previously incorrect but functioning programs

to fail. Listed below are some programming practices that can work by accident

without aggressive optimization, but are exposed with IPA:

1. Relying on the allocation order or location of automatic variables. For

example, taking the address of an automatic variable and then later

comparing it with the address of another local to determine the growth

direction of a stack. The C language does not guarantee where an automatic

variable is allocated, or it’s position relative to other automatics. Do not

compile such a function with IPA(and expect it to work).

2. Accessing an either invalid pointer or beyond an array’s bounds. IPA can

reorganize global data structures. A wayward pointer which may have

previously modified unused memory may now trample upon user allocated

storage.
v Ensure you have sufficient resources to compile with IPA. IPA can generate

significantly larger object files than traditional compilations. As a result, the

temporary storage location used to hold these intermediate files (by convention

/tmp) is sometimes too small. If a large application is being compiled, consider

redirecting temporary storage with the TMPDIR environment variable.

v Ensure there is enough swap space to run IPA (at least 200Mb for large

programs). Otherwise the operating system might kill IPA with a signal 9 ,

which cannot be trapped, and IPA will be unable to clean up its temporary files.

v You can link objects created with different releases of the compiler, but you must

ensure that you use a linker that is at least at the same release level as the newer

of the compilers used to create the objects being linked.

v Some symbols which are clearly referenced or set in the source code may be

optimized away by IPA, and may be lost to debug, nm, or dump outputs. Using

IPA together with the -g compiler will usually result in non-steppable output.

Regular expression syntax can be used when specifying a name for the following

suboptions.

v cloneproc, nocloneproc

v exits

v inline, noinline

v isolated

v lowfreq

v pure

v safe

v unknown

Chapter 3. Compiler options reference 113

Syntax rules for specifying regular expressions are described below:

 Expression Description

string Matches any of the characters specified in string. For example, test

will match testimony, latest, and intestine.

^string Matches the pattern specified by string only if it occurs at the

beginning of a line.

string$ Matches the pattern specified by string only if it occurs at the end of

a line.

str.ing The period (.) matches any single character. For example, t.st will

match test, tast, tZst, and t1st.

string\special_char The backslash (\) can be used to escape special characters. For

example, assume that you want to find lines ending with a period.

Simply specifying the expression .$ would show all lines that had at

least one character of any kind in it. Specifying \.$ escapes the

period (.), and treats it as an ordinary character for matching

purposes.

[string] Matches any of the characters specified in string. For example,

t[a-g123]st matches tast and test, but not t-st or tAst.

[^string] Does not match any of the characters specified in string. For example,

t[^a-zA-Z]st matches t1st, t-st, and t,st but not test or tYst.

string* Matches zero or more occurrences of the pattern specified by string.

For example, te*st will match tst, test, and teeeeeest.

string+ Matches one or more occurrences of the pattern specified by string.

For example, t(es)+t matches test, tesest, but not tt.

string? Matches zero or one occurrences of the pattern specified by string.

For example, te?st matches either tst or test.

string{m,n} Matches between m and n occurrence(s) of the pattern specified by

string. For example, a{2} matches aa, and b{1,4} matches b, bb, bbb,

and bbbb.

string1 | string2 Matches the pattern specified by either string1 or string2. For

example, s | o matches both characters s and o.

Example

To compile a set of files with interprocedural analysis, enter:

xlc++ -c -O3 *.C -qipa

xlc++ -o product *.o -qipa

Here is how you might compile the same set of files, improving the optimization

of the second compilation, and the speed of the first compile step. Assume that

there exits two functions, trace_error and debug_dump, which are rarely executed.

xlc++ -c -O3 *.C -qipa=noobject

xlc++ -c *.o -qipa=lowfreq=trace_error,debug_dump

Related information

v “-qlibansi” on page 135

v “-qlist” on page 136

v “-S” on page 171

v Options for performance optimization: Options for whole-program analysis

v "Optimizing your applications"in the XL C/C++ Programming Guide

114 XL C/C++ Compiler Reference

-qisolated_call

Description

Specifies functions in the source file that have no side effects.

Syntax

��

�

 :

-q

isolated_call

=

function_name

��

where:

 function_name Is the name of a function that does not have side effects, except changing

the value of a variable pointed to by a pointer or reference parameter, or

does not rely on functions or processes that have side effects.

Side effects are any changes in the state of the runtime environment.

Examples of such changes are accessing a volatile object, modifying an

external object, modifying a file, or calling another function that does any of

these things. Functions with no side effects cause no changes to external

and static variables.

function_name can be a list of functions separated by colons (:).

See also “#pragma isolated_call” on page 238 and “#pragma options” on page 248.

Notes

Marking a function as isolated can improve the runtime performance of optimized

code by indicating the following to the optimizer:

v external and static variables are not changed by the called function

v calls to the function with loop-invariant parameters may be moved out of loops

v multiple calls to the function with the same parameter may be merged into one

call

v calls to the function may be discarded if the result value is not needed

The #pragma options isolated_call directive must be specified at the top of the file,

before the first C or C++ statement. You can use the #pragma isolated_call

directive at any point in your source file.

If a function is incorrectly identified as having no side effects, the resultant

program behavior might be unexpected or produce incorrect results.

Example

To compile myprogram.c, specifying that the functions myfunction(int) and

classfunction(double) do not have side effects, enter:

xlc myprogram.c -qisolated_call=myfunction:classfunction

Related information

v Options for performance optimization: Options for side effects

-qkeepinlines

Chapter 3. Compiler options reference 115

Description

Instructs the compiler to keep or discard definitions for unreferenced extern inline

functions.

Syntax

��
 nokeepinlines

-q

keepinlines

��

Notes

The default -qnokeepinlines setting instructs the compiler to discard the

definitions of unreferenced external inline functions. This can reduce the size of the

object files.

The -qkeepinlines setting keeps the definitions of unreferenced external inline

functions. This setting provides the same behavior as VisualAge C++ compilers

previous to the v5.0.2.1 update level, allowing compatibility with shared libraries

and object files built with the earlier releases of the compiler.

Related information

v “-qinline” on page 104

v Options for performance optimization: Options for code size reduction

-qkeepparm

Description

Ensures that function parameters are stored on the stack even if the application is

optimized.

Syntax

��
 nokeepparm

-q

keepparm

��

Notes

A function usually stores its incoming parameters on the stack at the entry point.

However, when you compile code with optimization options enabled, the compiler

may remove these parameters from the stack if it sees an optimizing advantage in

doing so.

Specifying -qkeepparm ensures that the parameters are stored on the stack even

when optimizing. This compiler option ensures that the values of incoming

parameters are available to tools, such as debuggers, by preserving those values on

the stack. However, doing so may negatively affect application performance.

Related information

v “-O, -qoptimize” on page 148

v Options for error checking and debugging: Other error checking and debugging

options

116 XL C/C++ Compiler Reference

-qkeyword

Description

This option controls whether the specified name is treated as a keyword or as an

identifier whenever it appears in your program source.

Syntax

�� -q keyword = keyword_name

nokeyword
 ��

Notes

By default all the built-in keywords defined in the C and C++ language standards

are reserved as keywords. You cannot add keywords to the language with this

option. However, you can use -qnokeyword=keyword_name to disable built-in

keywords, and use -qkeyword=keyword_name to reinstate those keywords.

This option can be used with all C++ built-in keywords.

This option can also be used with the following C keywords:

v asm

v inline

v restrict

v typeof

Note:

asm is not a keyword when the -qlanglvl option is set to ansi,

stdc89 or stdc99.

Example

You can reinstate bool with the following invocation:

xlc++ -qkeyword=bool

You can reinstate typeof with the following invocation:

xlc -qkeyword=typeof

Related information

v “-qasm” on page 52

v Options that control input: Options for language extensions

-L

Description

At link time, searches the path directory for library files specified by the -lkey

option.

Syntax

�� -L directory ��

Chapter 3. Compiler options reference 117

Default

The default is to search only the standard directories.

Notes

If the LIBPATH environment variable is set, the compiler will search for libraries

first in directory paths specified by LIBPATH, and then in directory paths specified

by the -L compiler option.

If the -Ldirectory option is specified both in the configuration file and on the

command line, search paths specified in the configuration file are the first to be

searched at link time.

Paths specified with the -L compiler option are not searched at run time.

Example

To compile myprogram.c so that the directory /usr/tmp/old and all other directories

specified by the -l option are searched for the library libspfiles.a, enter:

xlc myprogram.c -lspfiles -L/usr/tmp/old

Related information

v “-l”

v Appendix A, “Redistributable libraries,” on page 301

v Options that control linking: Options for linker input control

-l

Description

Searches the specified library file, libkey.so, and then libkey.a for dynamic linking,

or just libkey.a for static linking.

Syntax

�� -l key ��

Default

The compiler default is to search only some of the compiler runtime libraries. The

default configuration file specifies the default library names to search for with the

-l compiler option, and the default search path for libraries with the -L compiler

option.

Notes

You must also provide additional search path information for libraries not located

in the default search path. The search path can be modified with the -Ldirectory

option.

The C and C++ runtime libraries are automatically added.

The -l option is cumulative. Subsequent appearances of the -l option on the

command line do not replace, but add to, the list of libraries specified by earlier

occurrences of -l. Libraries are searched in the order in which they appear on the

command line, so the order in which you specify libraries can affect symbol

resolution in your application.

For more information, refer to the ld documentation for your operating system.

118 XL C/C++ Compiler Reference

Example

To compile myprogram.C and link it with library mylibrary (libmylibrary.a)

found in the /usr/mylibdir directory, enter:

xlc++ myprogram.C -lmylibrary -L/usr/mylibdir

Related information

v “-B” on page 55

v “-L” on page 117

v “Order of linking” on page 24

v “Specifying compiler options in a configuration file” on page 18

v Options that control linking: Options for linker input control

-qlanglvl

Description

Selects the language level and language options for the compilation.

Syntax

��

�

 :

-q

langlvl

=

suboption

��

where values for suboption are described below in the Notes section.

See also “#pragma langlvl” on page 239 and “#pragma options” on page 248.

Default

The default language level varies according to the command you use to invoke the

compiler:

Invocation Default language level

xlC/xlc++ extended

xlc extc89

cc extended

c89 stdc89

c99 stdc99

Notes

You can also use either of the following pragma directives to specify the

language level in your C language source program:

#pragma options langlvl=suboption

#pragma langlvl(suboption)

The pragma directive must appear before any noncommentary lines in the source

code.

For C programs, you can use the following -qlanglvl suboptions for

suboption:

 classic Allows the compilation of non-stdc89 programs, and conforms closely to

the K&R level preprocessor.

Chapter 3. Compiler options reference 119

extended Provides compatibility with the RT compiler and classic. This language

level is based on C89.

saa Compilation conforms to the current SAA® C CPI language definition.

This is currently SAA C Level 2.

saal2 Compilation conforms to the SAA C Level 2 CPI language definition, with

some exceptions.

stdc89 Compilation conforms to the ANSI C89 standard, also known as ISO C90.

stdc99 Compilation conforms to the ISO C99 standard.

extc89 Compilation conforms to the ANSI C89 standard, and accepts

implementation-specific language extensions.

extc99 Compilation conforms to the ISO C99 standard, and accepts

implementation-specific language extensions.

[no]ucs Under language levels stdc99 and extc99, the default is -qlanglvl=ucs

This option controls whether Unicode characters are allowed in identifiers,

string literals and character literals in program source code.

The Unicode character set is supported by the C standard. This character

set contains the full set of letters, digits and other characters used by a

wide range of languages, including all North American and Western

European languages. Unicode characters can be 16 or 32 bits. The ASCII

one-byte characters are a subset of the Unicode character set.

When this option is set to yes, you can insert Unicode characters in your

source files either directly or using a notation that is similar to escape

sequences. Because many Unicode characters cannot be displayed on the

screen or entered from the keyboard, the latter approach is usually

preferred. Notation forms for Unicode characters are \uhhhh for 16-bit

characters, or \Uhhhhhhhh for 32-bit characters, where h represents a

hexadecimal digit. Short identifiers of characters are specified by ISO/IEC

10646.

The following -qlanglvl suboptions are accepted but ignored by the C compiler.

Use -qlanglvl=extended, -qlanglvl=extc99, or -qlanglvl=extc89 to enable the

functions that these suboptions imply. For other values of -qlanglvl, the functions

implied by these suboptions are disabled.

 [no]gnu_assert GNU C portability option.

[no]gnu_explicitregvar GNU C portability option.

[no]gnu_include_next GNU C portability option.

[no]gnu_locallabel GNU C portability option.

[no]gnu_warning GNU C portability option.

For C++ programs, you can specify one or more of the following -qlanglvl

suboptions for suboption:

 extended Compilation is based on the ISO C++ Standard, with some

differences to accommodate extended language features.

120 XL C/C++ Compiler Reference

[no]anonstruct This suboption controls whether anonymous structs and

anonymous classes are allowed in your C++ source.

By default, the compiler allows anonymous structs. This is an

extension to the C++ standard and gives behavior that is

compatible with the C++ compilers provided by Microsoft®

Visual C++.

Anonymous structs typically are used in unions, as in the

following code fragment:

union U {

 struct {

 int i:16;

 int j:16;

 };

 int k;

} u;

// ...

u.j=3;

When this suboption is set, you receive a warning if your code

declares an anonymous struct and -qinfo=por is specified.

When you build with -qlanglvl=noanonstruct, an anonymous

struct is flagged as an error. Specify noanonstruct for

compliance with standard C++.

[no]anonunion This suboption controls what members are allowed in

anonymous unions.

When this suboption is set to anonunion, anonymous unions

can have members of all types that standard C++ allows in

non-anonymous unions. For example, non-data members, such

as structures, typedefs, and enumerations are allowed.

Member functions, virtual functions, or objects of classes that

have non-trivial default constructors, copy constructors, or

destructors cannot be members of a union, regardless of the

setting of this option.

By default, the compiler allows non-data members in

anonymous unions. This is an extension to standard C++ and

gives behavior that is compatible with the C++ compilers

provided by previous versions of VisualAge C++ and

predecessor products, and Microsoft Visual C++.

When this option is set to anonunion, you receive a warning if

your code uses the extension, unless you suppress the arning

message with the -qsuppress option.

Set noanonunion for compliance with standard C++.

Chapter 3. Compiler options reference 121

[no]ansifor This suboption controls whether scope rules defined in the C++

standard apply to names declared in for-init statements.

By default, standard C++ rules are used. For example the

following code causes a name lookup error:

{

 //...

 for (int i=1; i<5; i++) {

 cout << i * 2 << endl;

 }

 i = 10; // error

}

The reason for the error is that i, or any name declared within

a for-init-statement, is visible only within the for statement. To

correct the error, either declare i outside the loop or set

ansiForStatementScopes to no.

Set noansifor to allow old language behavior. You may need to

do this for code that was developed with other products, such

as the compilers provided by earlier versions of VisualAge C++

and predecessor products, and Microsoft Visual C++.

[no]ansisinit This option works in the same way as g++ -fuse-cxa-atexit and

is required for fully standards-compliant handling of static

destructors.

[no]c99__func__ This suboption instructs the compiler to recognize the C99

__func__ identifier. The __func__ identifier behaves as if there

is an implicit declaration like:

static const char __func__[] = function_name;

where function_name is the name of the function in which the

__func__ identifier appears.

The effect of the __func__ identifier can be seen in the

following code segment:

void this_function()

{

 printf("__func__ appears in %s", __func__);

}

which outputs the following when run:

__func__ appears in this_function

The c99__func__ suboption is enabled by default when

-qlanglvl=extended is in effect. It can be enabled for any

language level by specifying -qlanglvl=c99__func__, or

disabled by specifying -qlanglvl=noc99__func__.

The __C99__FUNC__ macro is defined to be 1 when

c99__func__ is in effect, and is undefined otherwise.

[no]c99complex This suboption instructs the compiler to recognize C99 complex

data types and related keywords.

Note: Support for complex data types may vary among

different C++ compilers, creating potential portability issues.

The compiler will issue a portability warning message if you

specify this compiler option together with -qinfo=por.

[no]c99compoundliteral This suboption instructs the compiler to support the C99

compound literal feature.

122 XL C/C++ Compiler Reference

[no]c99hexfloat This option enables support for C99-style hexadecimal floating

constants in C++ applications. This suboption is on by default

for -qlanglvl=extended. When it is in effect, the compiler

defines the macro __C99_HEX_FLOAT_CONST.

[no]c99vla When c99vla is in effect, the compiler will support the use of

C99-type variable length arrays in your C++ applications. The

macro __C99_VARIABLE_LENGTH_ARRAY is defined with a

value of 1.

Note: In C++ applications, storage allocated for use by variable

length arrays is not released until the function they reside in

completes execution.

[no]dependentbaselookup The default is -qlanglvl=dependentbaselookup.

This suboption provides the ability to specify compilation in

conformance with Issue 213 of TC1 of the C++ Standard.

The default setting retains the behavior of previous XL C/C++

compilers with regard to the name lookup for a template base

class of dependent type: a member of a base class that is a

dependent type hides a name declared within a template or

any name from within the enclosing scope of the template.

For compliance with TC1, specify

-qlanglvl=nodependentbaselookup.

[no]gnu_assert GNU C portability option to enable or disable support for the

following GNU C system identification assertions:

v #assert

v #unassert

v #cpu

v #machine

v #system

[no]gnu_complex This suboption instructs the compiler to recognize GNU

complex data types and related keywords.

Note: Support for complex data types may vary among

different C++ compilers, creating potential portability issues.

The compiler will issue a portability warning message if you

specify this compiler option together with -qinfo=por.

[no]gnu_computedgoto GNU C portability option to enable support for computed

gotos. This suboption is enabled for -qlanglvl=extended, and

defines the macro __IBM_COMPUTED_GOTO.

Chapter 3. Compiler options reference 123

[no]gnu_externtemplate This suboption enables or disables extern template

instantiations.

The default setting is gnu_externtemplate when compiling to

the extended language level.

If gnu_externtemplate is in effect, you can declare a template

instantiation to be extern by adding the keyword extern in

front of an explicit C++ template instantiation. The extern

keyword must be the first keyword in the declaration, and

there can be only one extern keyword.

This does not instantiate the class or function. For both classes

and functions, the extern template instantiation will prevent

instantiation of parts of the template, provided that

instantiation has not already been triggered by code prior to the

extern template instantiation, and it is not explicitly instantiated

nor explicitly specialized.

For classes, static data members and member functions will not

be instantiated, but a class itself will be instantiated if required

to map the class. Any required compiler generated functions

(for example, default copy constructor) will be instantiated. For

functions, the prototype will be instantiated but the body of the

template function will not.

See the following examples:

template < class T > class C {

 static int i;

 void f(T) { }

};

template < class U > int C<U>::i = 0;

extern template class C<int>; // extern explicit

 // template

 // instantiation

C<int> c; // does not cause instantiation of

 // C<int>::i or C<int>::f(int) in

 // this file but class is

 // instantiated for mapping

C<char> d; // normal instantiations

==========================

template < class C > C foo(C c) { return c; }

extern template int foo<int>(int); // extern explicit

 // template

 // instantiation

int i = foo(1); // does not cause instantiation

 // of body of foo<int>

[no]gnu_include_next GNU C portability option to enable or disable support for the

GNU C #include_next preprocessor directive.

[no]gnu_labelvalue GNU C portability option to enable or disable support for

labels as values. This suboption is on by default for

-qlanglvl=extended, and defines the macro

__IBM_LABEL_VALUE.

[no]gnu_locallabel GNU C portability option to enable or disable support for

locally-declared labels.

gnu_membernamereuse GNU C++ portability option to enable reusing a template name

in a member list as a typedef.

124 XL C/C++ Compiler Reference

[no]gnu_suffixij GNU C portability option to enable or disable support for

GNU-style complex numbers. If gnu_suffixij is specified, a

complex number can be ended with suffix i/I or j/J.

[no]gnu_varargmacros This option is similar to -qlanglvl=varargmacros. The main

differences are:

v An optional variable argument identifier may precede the

ellipsis, allowing that identifier to be used in place of the

macro __VA_ARGS__ . Whitespace may appear between the

identifier and the ellipsis.

v The variable argument can be omitted.

v If the token paste operator (##) appears between the comma

and the variable argument, the preprocessor removes the

dangling comma (,) if the variable argument is not provided.

v The macro __IBM_MACRO_WITH_VA_ARGS is defined to 1.

Example 1 - Simple substitution:

#define debug(format, args...) printf(format, args)

debug("Hello %s\n", "Chris");

preprocesses to:

printf("Hello %s\n", "Chris");

Example 2 - Omitting the variable argument:

#define debug(format, args...) printf(format, args)

debug("Hello\n");

preprocesses to the following, leaving a dangling comma:

printf("Hello\n",);

Example 3 - Using the token paste operator to remove a

dangling comma when the variable argument is omitted:

#define debug(format, args...) printf(format, ## args)

debug("Hello\n");

preprocesses to:

printf("Hello\n");

[no]gnu_warning GNU C portability option to enable or disable support for the

GNU C #warning preprocessor directive.

Chapter 3. Compiler options reference 125

[no]illptom This suboption controls what expressions can be used to form

pointers to members. The XL C++ compiler can accept some

forms that are in common use but do not conform to the C++

Standard.

By default, the compiler allows these forms. This is an

extension to standard C++ and gives behavior that is

compatible with the C++ compilers provided by earlier versions

of VisualAge C++, its predecessor products, and Microsoft

Visual C++.

When this suboption is set to illptom, you receive warnings if

your code uses the extension, unless you suppress the warning

messages with the -qsuppress option.

For example, the following code defines a pointer to a function

member, p, and initializes it to the address of C::foo, in the old

style:

struct C {

void foo(int);

};

void (C::*p) (int) = C::foo;

Set noillptom for compliance with the C++ standard. The

example code above must be modified to use the & operator.

struct C {

void foo(int);

};

void (C::*p) (int) = &C::foo;

126 XL C/C++ Compiler Reference

[no]implicitint This suboption controls whether the compiler will accept

missing or partially specified types as implicitly specifying int.

This is no longer accepted in the standard but may exist in

legacy code.

With the suboption set to noimplicitint, all types must be fully

specified.

With the suboption set to implicitint, a function declaration at

namespace scope or in a member list will implicitly be declared

to return int. Also, any declaration specifier sequence that does

not completely specify a type will implicitly specify an integer

type. Note that the effect is as if the int specifier were present.

This means that the specifier const, by itself, would specify a

constant integer.

The following specifiers do not completely specify a type:

v auto

v const

v extern

v extern “<literal>”

v inline

v mutable

v friend

v register

v static

v typedef

v virtual

v volatile

v platform specific types (for example, _cdecl)

Note that any situation where a type is specified is affected by

this suboption. This includes, for example, template and

parameter types, exception specifications, types in expressions

(eg, casts, dynamic_cast, new), and types for conversion

functions.

By default, the compiler sets -qlanglvl=implicitint. This is an

extension to the C++ standard and gives behavior that is

compatible with the C++ compilers provided by earlier versions

of VisualAge C++ and predecessor products, and Microsoft

Visual C++.

For example, the return type of function MyFunction is int

because it was omitted in the following code:

MyFunction()

{

 return 0;

}

Set -qlanglvl=noimplicitint for compliance with standard C++.

For example, the function declaration above must be modified

to:

int MyFunction()

{

 return 0;

}

Chapter 3. Compiler options reference 127

[no]offsetnonpod This suboption controls whether the offsetof macro can be

applied to classes that are not data-only. C++ programmers

often casually call data-only classes “Plain Old Data” (POD)

classes.

By default, the compiler allows offsetof to be used with

non-POD classes. This is an extension to the C++ standard, and

gives behavior that is compatible with the C++ compilers

provided by VisualAge C++ for OS/2® 3.0, VisualAge for C++

for Windows®, Version 3.5, and Microsoft Visual C++

When this option is set, you receive a warning if your code

uses the extension, unless you suppress the warning message

with the -qsuppress option.

Set -qlanglvl=nooffsetnonpod for compliance with standard

C++.

Set -qlanglvl=offsetnonpod if your code applies offsetof to a

class that contains one of the following:

v user-declared constructors or destructors

v user-declared assignment operators

v private or protected non-static data members

v base classes

v virtual functions

v non-static data members of type pointer to member

v a struct or union that has non-data members

v references

[no]olddigraph This option controls whether old-style digraphs are allowed in

your C++ source. It applies only when -qdigraph is also set.

By default, the compiler supports only the digraphs specified in

the C++ standard.

Set -qlanglvl=olddigraph if your code contains at least one of

following digraphs:

Digraph Resulting character

%% # (pound sign)

%%%% ## (double pound sign, used as the

preprocessor macro concatenation operator)

Set -qlanglvl=noolddigraph for compatibility with standard

C++ and the extended C++ language level supported by

previous versions of VisualAge C++ and predecessor products.

128 XL C/C++ Compiler Reference

[no]oldfriend This option controls whether friend declarations that name

classes without elaborated class names are treated as C++

errors.

By default, the compiler lets you declare a friend class without

elaborating the name of the class with the keyword class. This

is an extension to the C++ standard and gives behavior that is

compatible with the C++ compilers provided by earlier versions

of VisualAge C++ and predecessor products, and Microsoft

Visual C++.

For example, the statement below declares the class IFont to be

a friend class and is valid when the oldfriend suboption is set

specified.

friend IFont;

Set the nooldfriend suboption for compliance with standard

C++. The example declaration above causes a warning unless

you modify it to the statement as below, or suppress the

warning message with -qsuppress option.

friend class IFont;

[no]oldtempacc This suboption controls whether access to a copy constructor to

create a temporary object is always checked, even if creation of

the temporary object is avoided.

By default, the compiler suppresses the access checking. This is

an extension to the C++ standard and gives behavior that is

compatible with the C++ compilers provided by VisualAge C++

for OS/2 3.0, VisualAge for C++ for Windows, Version 3.5, and

Microsoft Visual C++.

When this suboption is set to yes, you receive a warning if

your code uses the extension, unless you disable the warning

message with the -qsuppress option.

Set -qlanglvl=nooldtempacc for compliance with standard C++.

For example, the throw statement in the following code causes

an error because the copy constructor is a protected member of

class C:

class C {

public:

 C(char *);

protected:

 C(const C&);

};

C foo() {return C(“test”);} // return copy of C object

void f()

{

// catch and throw both make implicit copies of

// the thrown object

 throw C(“error”); // throw a copy of a C object

 const C& r = foo(); // use the copy of a C object

// created by foo()

}

The example code above contains three ill formed uses of the

copy constructor C(const C&).

Chapter 3. Compiler options reference 129

[no]oldtmplalign This suboption specifies the alignment rules implemented in

versions of the compiler (xlC) prior to Version 5.0. These earlier

versions of the xlC compiler ignore alignment rules specified

for nested templates. By default, these alignment rules are not

ignored in VisualAge C++ 4.0 or later. For example, given the

following template the size of A<char>::B will be 5 with

-qlanglvl=nooldtmplalign, and 8 with -qlanglvl=oldtmplalign

:

template <class T>

struct A {

#pragma options align=packed

 struct B {

 T m;

 int m2;

 };

#pragma options align=reset

};

[no]oldtmplspec This suboption controls whether template specializations that

do not conform to the C++ standard are allowed.

By default, the compiler allows these old specializations

(-qlanglvl=nooldtmplspec). This is an extension to standard

C++ and gives behavior that is compatible with the C++

compilers provided by VisualAge C++ for OS/2 3.0, VisualAge

for C++ for Windows, Version 3.5, and Microsoft Visual C++.

When -qlanglvl=oldtmplspec is set, you receive a warning if

your code uses the extension, unless you suppress the warning

message with the -qsuppress option.

For example, you can explicitly specialize the template class

ribbon for type char with the following lines:

template<class T> class ribbon { /*...*/};

class ribbon<char> { /*...*/};

Set -qlanglvl=nooldtmplspec for compliance with standard

C++. In the example above, the template specialization must be

modified to:

template<class T> class ribbon { /*...*/};

template<> class ribbon<char> { /*...*/};

[no]redefmac Specifies whether a macro can be redefined without a prior

#undef or undefine() statement.

[no]trailenum This suboption controls whether trailing commas are allowed in

enum declarations.

By default, the compiler allows one or more trailing commas at

the end of the enumerator list. This is an extension to the C++

standard, and provides compatibility with Microsoft Visual

C++. The following enum declaration uses this extension:

enum grain { wheat, barley, rye,, };

Set -qlanglvl=notrailenum for compliance with standard C++

or with the stdc89 language level supported by previous

versions of VisualAge C++ and predecessor products.

130 XL C/C++ Compiler Reference

[no]typedefclass This suboption provides backwards compatibility with previous

versions of VisualAge C++ and predecessor products.

The current C++ standard does not allow a typedef name to be

specified where a class name is expected. This option relaxes

that restriction. Set -qlanglvl=typedefclass to allow the use of

typedef names in base specifiers and constructor initializer lists.

By default, a typedef name cannot be specified where a class

name is expected.

[no]ucs This suboption controls whether Unicode characters are

allowed in identifiers, string literals and character literals in

C++ sources. The default setting is -qlanglvl=noucs.

The Unicode character set is supported by the C++ standard.

This character set contains the full set of letters, digits and

other characters used by a wide range of languages, including

all North American and Western European languages. Unicode

characters can be 16 or 32 bits. The ASCII one-byte characters

are a subset of the Unicode character set.

When -qlanglvl=ucs is enabled, you can insert Unicode

characters in your source files either directly or using a notation

that is similar to escape sequences. Because many Unicode

characters cannot be displayed on the screen or entered from

the keyboard, the latter approach is usually preferred. Notation

forms for Unicode characters are \uhhhh for 16-bit characters,

or \Uhhhhhhhh for 32-bit characters, where h represents a

hexadecimal digit. Short identifiers of characters are specified

by ISO/IEC 10646.

[no]varargmacros This C99 feature allows the use of a variable argument list in

function-like macros in your C++ applications. The syntax is

similar to a variable argument function, and can be used as a

masking macro for printf.

For example:

#define debug(format, ...) printf(format, __VA_ARGS__)

debug("Hello %s\n", "Chris");

preprocesses to::

printf("Hello %s\n", "Chris");

The token __VA_ARGS__ in the replacement list corresponds to

the ellipsis in the parameter. The ellipsis represents the variable

arguments in a macro invocation.

Specifying varargmacros defines the macro

__C99_MACRO_WITH_VA_ARGS to a value of 1.

Chapter 3. Compiler options reference 131

[no]zeroextarray This suboption controls whether zero-extent arrays are allowed

as the last non-static data member in a class definition.

By default, the compiler allows arrays with zero elements. This

is an extension to the C++ standard, and provides compatibility

with Microsoft Visual C++. The example declarations below

define dimensionless arrays a and b.

struct S1 { char a[0]; };

struct S2 { char b[]; };

Set nozeroextarray for compliance with standard C++ or with

the ANSI language level supported by previous versions of

VisualAge C++ and predecessor products.

132 XL C/C++ Compiler Reference

Exceptions to the stdc89 mode addressed by classic are as follows:

 Tokenization Tokens introduced by macro expansion may be combined with adjacent

tokens in some cases. Historically, this was an artifact of the text-based

implementations of older preprocessors, and because, in older

implementations, the preprocessor was a separate program whose output

was passed on to the compiler.

For similar reasons, tokens separated only by a comment may also be

combined to form a single token. Here is a summary of how tokenization of

a program compiled in classic mode is performed:

1. At a given point in the source file, the next token is the longest

sequence of characters that can possibly form a token. For example,

i+++++j is tokenized as i ++ ++ + j even though i ++ + ++ j may have

resulted in a correct program.

2. If the token formed is an identifier and a macro name, the macro is

replaced by the text of the tokens specified on its #define directive.

Each parameter is replaced by the text of the corresponding argument.

Comments are removed from both the arguments and the macro text.

3. Scanning is resumed at the first step from the point at which the macro

was replaced, as if it were part of the original program.

4. When the entire program has been preprocessed, the result is scanned

again by the compiler as in the first step. The second and third steps do

not apply here since there will be no macros to replace. Constructs

generated by the first three steps that resemble preprocessing directives

are not processed as such.

It is in the third and fourth steps that the text of adjacent but previously

separate tokens may be combined to form new tokens.

The \ character for line continuation is accepted only in string and

character literals and on preprocessing directives.

Constructs such as:

#if 0

 “unterminated

#endif

#define US ”Unterminating string

char *s = US terminated now“

will not generate diagnostic messages, since the first is an unterminated

literal in a FALSE block, and the second is completed after macro

expansion. However:

char *s = US;

will generate a diagnostic message since the string literal in US is not

completed before the end of the line.

Empty character literals are allowed. The value of the literal is zero.

Chapter 3. Compiler options reference 133

Preprocessing

directives

The # token must appear in the first column of the line. The token

immediately following # is available for macro expansion. The line can be

continued with \ only if the name of the directive and, in the following

example, the (has been seen:

#define f(a,b) a+b

f\

(1,2) /* accepted */

#define f(a,b) a+b

f(\

1,2) /* not accepted */

The rules concerning \ apply whether or not the directive is valid. For

example,

#\

define M 1 /* not allowed */

#def\

ine M 1 /* not allowed */

#define\

M 1 /* allowed */

#dfine\

M 1 /* equivalent to #dfine M 1, even

 though #dfine is not valid */

Following are the preprocessor directive differences between classic mode

and stdc89 mode. Directives not listed here behave similarly in both modes.

#ifdef/#ifndef

When the first token is not an identifier, no diagnostic message is

generated, and the condition is FALSE.

#else When there are extra tokens, no diagnostic message is generated.

#endif When there are extra tokens, no diagnostic message is generated.

#include

The < and > are separate tokens. The header is formed by

combining the spelling of the < and > with the tokens between

them. Therefore /* and // are recognized as comments (and are

always stripped), and the ” and ’ do begin literals within the <

and >. (Remember that in C programs, C++-style comments // are

recognized when -qcpluscmt is specified.)

#line The spelling of all tokens which are not part of the line number

form the new file name. These tokens need not be string literals.

#error Not recognized in classic mode.

#define

A valid macro parameter list consists of zero or more identifiers

each separated by commas. The commas are ignored and the

parameter list is constructed as if they were not specified. The

parameter names need not be unique. If there is a conflict, the last

name specified is recognized.

 For an invalid parameter list, a warning is issued. If a macro name

is redefined with a new definition, a warning will be issued and

the new definition used.

#undef

When there are extra tokens, no diagnostic message is generated.

134 XL C/C++ Compiler Reference

Macro

expansion

v When the number of arguments on a macro invocation does not match

the number of parameters, a warning is issued.

v If the (token is present after the macro name of a function-like macro, it

is treated as too few arguments (as above) and a warning is issued.

v Parameters are replaced in string literals and character literals.

v Examples:

#define M() 1

#define N(a) (a)

#define O(a,b) ((a) + (b))

M(); /* no error */

N(); /* empty argument */

O(); /* empty first argument

 and too few arguments */

Text output No text is generated to replace comments.

Related information

v “-qsuppress” on page 185

v Summary of command line options: Standards compliance

v ″The IBM XL C language extensions″ and ″The IBM XL C++ language

extensions″ in XL C/C++ Language Reference

-qlib

Description

Instructs the compiler to use the standard system libraries at link time.

Syntax

��
 lib

-q

nolib

��

Notes

If the -qnolib compiler option is specified, the standard system libraries are not

used. Only those libraries explicitly specified on the command line will be used at

link time.

Related information

v “-qcrt” on page 68

v Options that control linking: Options for linker input control

-qlibansi

Description

Assumes that all functions with the name of an ANSI C library function are in fact

the system functions.

Syntax

��
 nolibansi

-q

libansi

��

Chapter 3. Compiler options reference 135

See also “#pragma options” on page 248.

Notes

This will allow the optimizer to generate better code because it will know about

the behavior of a given function, such as whether or not it has any side effects.

Related information

v Options for performance optimization: Options for ABI performance tuning

-qlinedebug

Description

Generates line number and source file name information for the debugger.

Syntax

��
 nolinedebug

-q

linedebug

��

Notes

This option produces minimal debugging information, so the resulting object size

is smaller than that produced if the -g debugging option is specified. You can use

the debugger to step through the source code, but you will not be able to see or

query variable information. The traceback table, if generated, will include line

numbers.

Avoid using this option with -O (optimization) option. The information produced

may be incomplete or misleading.

If you specify the -qlinedebug option, the inlining option defaults to -Q! (no

functions are inlined).

The -g option overrides the -qlinedebug option. If you specify -g -qnolinedebug

on the command line, -qnolinedebug is ignored and the following warning is

issued:

1506-... (W) Option -qnolinedebug is incompatible with option -g and is ignored

Example

To compile myprogram.c to produce an executable program testing so you can step

through it with a debugger, enter:

xlc myprogram.c -o testing -qlinedebug

Related information

v “#pragma options” on page 248

v “-g” on page 90

v “-O, -qoptimize” on page 148

v “-Q” on page 164

v Options for error checking and debugging: Options for debugging

-qlist

Description

Produces a compiler listing that includes an object listing. You can use the object

listing to help understand the performance characteristics of the generated code

and to diagnose execution problems.

136 XL C/C++ Compiler Reference

Syntax

��
 nolist

-q

list

=

offset

nooffset

��

Where specifying -qlist=offset changes the listing of the instructions in .lst file to

be offset from the start of the procedure.

Notes

The -qlist=offset is only relevant if there are multiple procedures in a compilation

unit.

If you specify -qlist=offset, the offset of the PDEF header is no longer 00000, but it

now contains the offset from the start of the text area. Specifying the option allows

any program reading the .lst file to add the value of the PDEF and the line in

question, and come up with the same value whether -qlist=offset or

-qlist=nooffset is specified.

Specifying -qlist implies -qlist=nooffset.

The -qnoprint compiler option overrides this option.

Example

To compile myprogram.C and produce an object listing, enter:

xlc++ myprogram.C -qlist

Related information

v “#pragma options” on page 248.

v “-qprint” on page 160

v Options that control listings and messages: Options for listing

-qlistopt

Description

Produces a compiler listing that displays all options in effect at time of compiler

invocation.

Syntax

��
 nolistopt

-q

listopt

��

Notes

The listing will show options in effect as set by the compiler defaults, default

configuration file, and command line settings. Option settings caused by pragma

statements in the program source are not shown in the compiler listing.

Specifying -qnoprint overrides this compiler option.

Example

To compile myprogram.C to produce a compiler listing that shows all options in

effect, enter:

Chapter 3. Compiler options reference 137

xlc++ myprogram.C -qlistopt

Related information

v “-qprint” on page 160

v “Resolving conflicting compiler options” on page 19

v Options that control listings and messages: Options for listing

-qlonglit

Description

Makes unsuffixed literals into the long type in 64-bit mode.

Syntax

��
 nolonglit

-q

longlit

��

Notes

 The following table shows the implicit types for constants in 64-bit mode when

compiling in the stdc89, extc89, or extended language level:

 default 64-bit mode 64-bit mode with qlonglit

unsuffixed decimal signed int

signed long

unsigned long

signed long

unsigned long

unsuffixed octal or hex signed int

unsigned int

signed long

unsigned long

signed long

unsigned long

suffixed by u/U unsigned int

unsigned long

unsigned long

suffixed by l/L signed long

unsigned long

signed long

unsigned long

suffixed by ul/UL unsigned long unsigned long

The following table shows the implicit types for constants in 64-bit mode when

compiling in the stdc99, extc99, or extended language level:

 Decimal constant -qlonglit effect on decimal

constant

unsuffixed int

long int

long int

u or U unsigned int

unsigned long int

unsigned long int

l or L long int long int

Both u or U, and l or

L

unsigned long int unsigned long int

ll or LL long long int long long int

138 XL C/C++ Compiler Reference

Decimal constant -qlonglit effect on decimal

constant

Both u or U, and ll or

LL

unsigned long long int unsigned long long int

 Octal or hexadecimal constant -qlonglit effect on octal or

hexadecimal constant

unsuffixed int

unsigned int

long int

unsigned long int

long int

unsigned long int

u or U unsigned int

unsigned long int

unsigned long int

l or L long int

unsigned long int

long int

unsigned long int

Both u or U, and l or

L

unsigned long int unsigned long int

ll or LL long long int

unsigned long long int

long long int

unsigned long long int

Both u or U, and ll or

LL

unsigned long long int unsigned long long int

Related information

v “-qlanglvl” on page 119

v Options that control integer and floating-point processing

-qlonglong

Description

Allows long long integer types in your program.

Syntax

��
 longlong

-q

nolonglong

��

Default

The default with xlc , xlC and cc is -qlonglong, which defines _LONG_LONG

(long long types will work in programs). The default with c89 is -qnolonglong

(long long types are not supported).

Notes

This option cannot be specified when the selected language level is stdc99

or extc99. It is used to control the long long support that is provided as an

extension to the C89 standard. This extension is slightly different from the long

long support that is part of the C99 standard.

Example

1. To compile myprogram.c so that long long integers are not allowed, enter:

xlc myprogram.c -qnolonglong

Related information

Chapter 3. Compiler options reference 139

v Options that control integer and floating-point processing

-M

Description

Creates an output file that contains targets suitable for inclusion in a description

file for the make command.

Syntax

�� -M ��

Notes

The -M option is functionally identical to the -qmakedep option.

.d files are not make files; .d files must be edited before they can be used with the

make command. For more information on this command, see your operating

system documentation.

The output file contains a line for the input file and an entry for each include file.

It has the general form:

file_name.o:file_name.c

file_name.o:include_file_name

Include files are listed according to the search order rules for the #include

preprocessor directive, described in “Directory search sequence for include files

using relative path names” on page 22. If the include file is not found, it is not

added to the .d file.

Files with no include statements produce output files containing one line that lists

only the input file name.

Examples

If you do not specify the -o option, the output file generated by the -M option is

created in the current directory. It has a .d suffix. For example, the command:

xlc -M person_years.c

produces the output file person_years.d.

A .d file is created for every input file with a .c, .C, .cpp, or .i suffix. Also, when

compiling C++ programs with the -+ compiler option in effect, any file suffix is

accepted and a .d file produced. Otherwise, output .d files are not created for any

other files.

For example, the command:

xlc -M conversion.c filter.c /lib/libm.a

produces two output files, conversion.d and filter.d, and an executable file as

well. No .d file is created for the library.

If the current directory is not writable, no .d file is created. If you specify -o

file_name along with -M, the .d file is placed in the directory implied by -o

file_name. For example, for the following invocation:

xlc -M -c t.c -o /tmp/t.o

140 XL C/C++ Compiler Reference

places the .d output file in /tmp/t.d.

Related information

v “-qmakedep” on page 142

v -MF

v “-+ (plus sign)” on page 42

v “-o” on page 151

v “-qsourcetype” on page 178

v “Directory search sequence for include files using relative path names” on page

22

v Options that control output: Options for file output

-ma

Description

Substitutes inline code for calls to built-in function alloca.

Syntax

�� -ma ��

Notes

If #pragma alloca is unspecified, or if you do not use -ma, alloca is treated as a

user-defined identifier rather than as a built-in function.

This option does not apply to C++ programs. In C++ programs, you must include

the header malloc.h to include the alloca function declaration.

Example

To compile myprogram.c so that calls to the function alloca are treated as inline,

enter:

xlc myprogram.c -ma

Related information

v “-qalloca” on page 48

v “#pragma alloca” on page 218

v Options that control output: Other output options

-MF

Description

Specifies the target for the output generated by the -qmakedep or -M option.

Syntax

�� -MF file ��

file is the target output path which can be a file or directory.

Chapter 3. Compiler options reference 141

Example

 Table 38.

Command line Generated dependency file

xlc -c -qmakedep mysource.c mysource.d

xlc -c -qmakedep foo_src.c -MF mysource.d mysource.d

xlc -c -qmakedep foo_src.c -MF

../deps/mysource.d

../deps/mysource.d

xlc -c -qmakedep foo_src.c -MF

/tmp/mysource.d

/tmp/mysource.d

xlc -c -qmakedep foo_src.c -o foo_obj.o foo_obj.d

xlc -c -qmakedep foo_src.c -o foo_obj.o -MF

mysource.d

mysource.d

xlc -c -qmakedep foo_src.c -MF mysource1.d

-MF mysource2.d

mysource2.d

xlc -c -qmakedep foo_src1.c foo_src2.c -MF

mysource.d

mysource.d (It contains rules for foo_src2.d

source file)

xlc -c -qmakedep foo_src1.c foo_src2.c -MF

/tmp

/tmp/foo_src1.d

/tmp/foo_src2.d

Notes

-MF has effect only if specified with either the -qmakedep or the -M option.

If file is the name of a directory, the dependency file generated by the compiler will

be placed into the specified directory, otherwise if you do not specify any path for

file , the dependency file will be stored in the current working directory.

If the file specified by -MF option already exists, it will be overwritten.

If you specify -MF option when compiling multiple source files, only a single

dependency file will be generated and it will contain the make rule for the last file

specified on the command line.

 Related information

v “-M” on page 140

v “-qmakedep”

v “-o” on page 151

v “Directory search sequence for include files using relative path names” on page

22

v Options that control output: Options for file output

-qmakedep

Description

Creates an output file that contains targets suitable for inclusion in a description

file for the make command to describe the dependencies of the main source file in

the compilation. If the gcc suboption is specified, the description file includes a

single target listing all dependencies. Otherwise, there is a separate rule for each

dependency in the description file.

142 XL C/C++ Compiler Reference

Syntax

�� -q makedep

=

gcc
 ��

The gcc suboption controls the format of the generated make rule to match the

GNU C/C++ format.

Notes

If you specify an invalid suboption , a warning message will be issued and the

option is ignored.

Specifying -qmakedep without any suboption is functionally equivalent to

specifying -M option.

.d files are not make files; .d files must be edited before they can be used with the

make command. For more information on this command, see your operating

system documentation.

If you do not specify the -o option, the output file generated by the -qmakedep

option is created in the current directory. It has a .d suffix. For example, the

command:

xlc++ -qmakedep person_years.C

produces the output file person_years.d.

A .d file is created for every input file with a .c, .C, .cpp, or .i suffix. Also, when

compiling C++ programs with the -+ compiler option in effect, any file suffix is

accepted and a .d file produced. Otherwise, output .d files are not created for any

other files.

For example, the command:

xlc++ -qmakedep conversion.C filter.C /lib/libm.a

produces two output files, conversion.d and filter.d (and an executable file as

well). No .d file is created for the library.

If the current directory is not writable, no .d file is created. If you specify -o

file_name along with -qmakedep, the .d file is placed in the directory implied by

-ofile_name. For example, the following invocation:

xlc++ -qmakedep -c t.C -o /tmp/t.o

places the .d output file in /tmp/t.d.

The output file contains a line for the input file and an entry for each include file.

It has the general form:

file_name.o:include_file_name

file_name.o:file_name.C

Include files are listed according to the search order rules for the #include

preprocessor directive, described in “Directory search sequence for include files

using relative path names” on page 22. If the include file is not found, it is not

added to the .d file.

Chapter 3. Compiler options reference 143

Files with no include statements produce output files containing one line that lists

only the input file name.

Related information

v “-M” on page 140

v “-MF” on page 141

v “-o” on page 151

v “Directory search sequence for include files using relative path names” on page

22

v Options that control output: Options for file output

-qmaxerr

Description

Instructs the compiler to halt compilation when num errors of a specified severity

level or higher is reached.

Syntax

��
 nomaxerr

-q

maxerr

=

num

s

:

i

w

e

��

where num must be an integer. Choices for severity level can be one of the

following:

 sev_level Description

i Informational

w Warning

e Error (C only)

s Severe error

Notes

If a severity level is not specified, the current value of the -qhalt option is used.

If the -qmaxerr option is specified more than once, the -qmaxerr option specified

last determines the action of the option. If both the -qmaxerr and -qhalt options

are specified, the -qmaxerr or -qhalt option specified last determines the severity

level used by the -qmaxerr option.

An unrecoverable error occurs when the number of errors reached the limit

specified. The error message issued is similar to:

1506-672 (U) The number of errors has reached the limit of ...

If -qnomaxerr is specified, the entire source file is compiled regardless of how

many errors are encountered.

Diagnostic messages may be controlled by the -qflag option.

144 XL C/C++ Compiler Reference

Examples

1. To stop compilation of myprogram.c when 10 warnings are encountered, enter

the command:

xlc myprogram.c -qmaxerr=10:w

2. To stop compilation of myprogram.c when 5 severe errors are encountered,

assuming that the current -qhalt option value is s (severe), enter the command:

xlc myprogram.c -qmaxerr=5

3. To stop compilation of myprogram.c when 3 informational messages are

encountered, enter the command:

xlc myprogram.c -qmaxerr=3:i

or:

xlc myprogram.c -qmaxerr=3 -qhalt=i

Related information

v “-qflag” on page 82

v “-qhalt” on page 93

v “Message severity levels and compiler response” on page 26

v Options for error checking and debugging: Options for error checking

-qmaxmem

Description

Limits the amount of memory used by the optimizer for local tables of specific,

memory-intensive optimizations. The memory size limit is specified in kilobytes.

Syntax

�� -q maxmem = size ��

Defaults

v With -O2 optimization in effect, maxmem=8192.

v With -O3 or greater optimization in effect, maxmem=-1.

Notes

v A size value of -1 permits each optimization to take as much memory as it needs

without checking for limits. Depending on the source file being compiled, the

size of subprograms in the source, the machine configuration, and the workload

on the system, this might exceed available system resources.

v The limit set by -qmaxmem is the amount of memory for specific optimizations,

and not for the compiler as a whole. Tables required during the entire

compilation process are not affected by or included in this limit.

v Setting a large limit has no negative effect on the compilation of source files

when the compiler needs less memory.

v Limiting the scope of optimization does not necessarily mean that the resulting

program will be slower, only that the compiler may finish before finding all

opportunities to increase performance.

v Increasing the limit does not necessarily mean that the resulting program will be

faster, only that the compiler is better able to find opportunities to increase

performance if they exist.

Chapter 3. Compiler options reference 145

Depending on the source file being compiled, the size of the subprograms in the

source, the machine configuration, and the workload on the system, setting the

limit too high might lead to page-space exhaustion. In particular, specifying

-qmaxmem=-1 allows the compiler to try and use an infinite amount of storage,

which in the worst case can exhaust the resources of even the most well-equipped

machine.

Example

To compile myprogram.C so that the memory specified for local table is 16384

kilobytes, enter:

xlc++ myprogram.C -qmaxmem=16384

Related information

v Options for customizing the compiler: Options for general customization

-qmbcs, -qdbcs

Description

Use the -qmbcs option if your program contains multibyte characters. The -qmbcs

option is equivalent to -qdbcs.

Syntax

��
 nombcs

-q

mbcs

nodbcs

dbcs

��

See also “#pragma options” on page 248.

Notes

Multibyte characters are used in certain languages such as Chinese, Japanese, and

Korean.

Multibyte characters are also permitted in comments, if you specify the -qmbcs or

-qdbcs compiler option.

If a source file contains multibyte character literals and the default -qnombcs or

-qnodbcs compiler option is in effect, the compiler will treat all literals as

single-byte literals.

Example

To compile myprogram.c if it contains multibyte characters, enter:

xlc myprogram.c -qmbcs

Related information

v Options that control input: Other input options

-qminimaltoc

Description

Avoids toc overflow conditions in 64-bit compilations by placing toc entries into a

separate data section for each object file.

146 XL C/C++ Compiler Reference

Syntax

��
 nominimaltoc

-q

minimaltoc

��

Notes

This compiler option applies to 64-bit compilations only.

Programs compiled in 64-bit mode have a limit of 8192 toc entries. As a result, you

may encounter ″relocation truncation″ error messages when linking large programs

in 64-bit mode. You can avoid such toc overflow errors by compiling with the

-qminimaltoc option.

Compiling with -qminimaltoc may create slightly slower and larger code for your

program. However, these effects may be minimized by specifying optimizing

options when compiling your program.

Related information

v Options for performance optimization: Options for ABI performance tuning

-qmkshrobj

Description

Creates a shared object from generated object files.

Syntax

�� -q mkshrobj ��

Notes

This option, together with the related options described below is used to create a

shared object. The advantage of using this option is that the compiler automatically

includes and compiles template instantiations in the tempinc directory.

Specifying -qmkshrobj implies -qpic.

Also, the following related options can be used with the -qmkshrobj compiler

option:

 -o shared_file Is the name of the file that will hold the shared file information. The

default is a.out.

-e name Sets the entry name for the shared executable to name. The default is

-enoentry.

If you use -qmkshrobj to create a shared library, the compiler and linkage editor

are called with the appropriate options to build a shared object.

Example

To construct the shared library big_lib.o from three smaller object files, type:

xlc -qmkshrobj -o big_lib.o lib_a.o lib_b.o lib_c.o

Related information

v “-qpriority” on page 161

v “#pragma priority” on page 255

Chapter 3. Compiler options reference 147

v “-qpic” on page 159

v Options that control linking: Options for linker output control

v "Constructing a library" in the XL C/C++ Programming Guide

-O, -qoptimize

Description

Specifies whether to optimize code during compilation, and if so, specifies the

optimization level.

Syntax

��
 nooptimize

-q

optimize

=

0

2

3

4

5

-O0

-O

-O2

-O3

-O4

-O5

��

where optimization settings are:

 -O0
-qnooptimize
-qoptimize=0

Performs only quick local optimizations such as constant folding and

elimination of local common subexpressions.

This setting implies -qstrict_induction unless -qnostrict_induction is

explicitly specified.

-O
-qoptimize

Performs optimizations that the compiler developers considered the

best combination for compilation speed and runtime performance. The

optimizations may change from product release to release. If you need

a specific level of optimization, specify the appropriate numeric value.

This setting implies -qstrict and -qnostrict_induction, unless explicitly

negated by -qstrict_induction or -qnostrict.

-O2
-qoptimize=2

Same as -O.

-O3
-qoptimize=3

Performs additional optimizations that are memory intensive,

compile-time intensive, or both. They are recommended when the

desire for runtime improvement outweighs the concern for minimizing

compilation resources.

-O3 applies the -O2 level of optimization, but with unbounded time

and memory limits. -O3 also performs higher and more aggressive

optimizations that have the potential to slightly alter the semantics of

your program. The compiler guards against these optimizations at -O2.

148 XL C/C++ Compiler Reference

-O3
-qoptimize=3

(continued)

The aggressive optimizations performed when you specify -O3 are:

1. Aggressive code motion, and scheduling on computations that have

the potential to raise an exception, are allowed.

Loads and floating-point computations fall into this category. This

optimization is aggressive because it may place such instructions

onto execution paths where they will be executed when they may

not have been according to the actual semantics of the program.

For example, a loop-invariant floating-point computation that is

found on some, but not all, paths through a loop will not be moved

at -O2 because the computation may cause an exception. At -O3,

the compiler will move it because it is not certain to cause an

exception. The same is true for motion of loads. Although a load

through a pointer is never moved, loads off the static or stack base

register are considered movable at -O3. Loads in general are not

considered to be absolutely safe at -O2 because a program can

contain a declaration of a static array a of 10 elements and load

a[60000000003], which could cause a segmentation violation.

The same concepts apply to scheduling.

Example:

In the following example, at -O2, the computation of b+c is not

moved out of the loop for two reasons:

v It is considered dangerous because it is a floating-point operation

v t does not occur on every path through the loop

At -O3, the code is moved.

 ...

 int i ;

 float a[100], b, c ;

 for (i = 0 ; i < 100 ; i++)

 {

 if (a[i] < a[i+1])

 a[i] = b + c ;

 }

 ...

2. Conformance to IEEE rules are relaxed.

With -O2 certain optimizations are not performed because they may

produce an incorrect sign in cases with a zero result, and because

they remove an arithmetic operation that may cause some type of

floating-point exception.

For example, X + 0.0 is not folded to X because, under IEEE rules,

-0.0 + 0.0 = 0.0, which is -X. In some other cases, some

optimizations may perform optimizations that yield a zero result

with the wrong sign. For example, X - Y * Z may result in a -0.0

where the original computation would produce 0.0.

In most cases the difference in the results is not important to an

application and -O3 allows these optimizations.

3. Floating-point expressions may be rewritten.

Computations such as a*b*c may be rewritten as a*c*b if, for

example, an opportunity exists to get a common subexpression by

such rearrangement. Replacing a divide with a multiply by the

reciprocal is another example of reassociating floating-point

computations.

4. Starting from version 8.0 of XL C/C++, specifying -O3 implies

-qhot=level=0, unless you explicitly specify -qhot or -qhot=level=1

option.

Chapter 3. Compiler options reference 149

-O3, -qoptimize=3

(continued)

Notes

v -qfloat=rsqrt is set by default with -O3.

v -qmaxmem=1 is set by default with -O3, allowing the compiler to

use as much memory as necessary when performing optimizations.

v Built-in functions do not change errno at -O3.

v Integer divide instructions are considered too dangerous to optimize

even at -O3.

v The default -qmaxmem value is -1 at -O3.

v Refer to “-qflttrap” on page 86 to see the behavior of the compiler

when you specify optimize options with the -qflttrap option.

v You can use the -qstrict and -qstrict_induction compiler options to

turn off effects of -O3 that might change the semantics of a program.

Specifying -qstrict together with -O3 invokes all the optimizations

performed at -O2 as well as further loop optimizations. Reference to

the -qstrict compiler option can appear before or after the -O3

option.

v The -O3 compiler option followed by the -O option leaves

-qignerrno on.

v When -O3 and -qhot=level=1 are in effect, the compiler replaces any

calls in the source code to standard math library functions with calls

to the equivalent MASS library functions, and if possible, the vector

versions.

-O4
-qoptimize=4

This option is the same as -O3, except that it also:

v Sets the -qarch and -qtune options to the architecture of the

compiling machine

v Sets the -qcache option most appropriate to the characteristics of the

compiling machine

v Sets the -qhot option

v Sets the -qipa option

Note: Later settings of -O, -qcache, -qhot, -qipa, -qarch, and -qtune

options will override the settings implied by the -O4 option.

-O5
-qoptimize=5

This option is the same as -O4, except that it:

v Sets the -qipa=level=2 option to perform full interprocedural data

flow and alias analysis.

Note: Later settings of -O, -qcache, -qipa, -qarch, and -qtune options

will override the settings implied by the -O5 option.

Notes

You can abbreviate -qoptimize... to -qopt.... For example, -qnoopt is equivalent to

-qnooptimize.

Increasing the level of optimization may or may not result in additional

performance improvements, depending on whether additional analysis detects

further opportunities for optimization.

Compilations with optimizations may require more time and machine resources

than other compilations.

Optimization can cause statements to be moved or deleted, and generally should

not be specified along with the -g flag for debugging programs. The debugging

information produced may not be accurate.

150 XL C/C++ Compiler Reference

Example

To compile and optimize myprogram.C, enter:

xlc++ myprogram.C -O3

Related information

v Options for performance optimization: Options for defined optimization levels

v ″Optimizing your applications″ in the XL C/C++ Programming Guide.

-o

Description

Specifies an output location for the object, assembler, or executable files created by

the compiler. When the -o option is used during compiler invocation, filespec can

be the name of either a file or a directory. When the -o option is used during direct

linkage-editor invocation, filespec can only be the name of a file.

Syntax

�� -o filespec ��

Notes

When -o is specified as part of a compiler invocation, filespec can be the relative or

absolute path name of either a directory or a file.

1. If filespec is the name of a directory, files created by the compiler are placed into

that directory.

2. If a directory with the name filespec does not exist, the -o option specifies that

the name of the file produced by the compiler will be filespec. For example, the

compiler invocation:

xlc test.c -c -o new.o

produces the object file new.o instead of test.o , and

xlc test.c -o new

produces the object file new instead of a.out, provided there is no directory also

named new. Otherwise, the default object name a.out is used and placed in the

new directory.

A filespec with a C or C++ source file suffix (.C, .c, .cpp, or .i), such as myprog.c

or myprog.i, results in an error and neither the compiler nor the linkage editor

is invoked.

If you use -c and -o together and the filespec does not specify a directory, you

can only compile one source file at a time. In this case, if more than one source

file name is listed in the compiler invocation, the compiler issues a warning

message and ignores -o.

The -E, -P, and -qsyntaxonly options override the -ofilename option.

Example

To compile myprogram.c so that the resulting file is called myaccount, assuming that

no directory with name myaccount exists, enter:

xlc myprogram.c -o myaccount

If the directory myaccount does exist, the compiler produces the executable file

a.out and places it in the myaccount directory.

Chapter 3. Compiler options reference 151

Related information

v “-c” on page 57

v “-E” on page 75

v “-P”

v “-qsyntaxonly” on page 186

v Options that control output: Options for file output

-P

Description

Preprocesses the C or C++ source files named in the compiler invocation and

creates an output preprocessed source file, file_name.i for each input source file

file_name.c, file_name.C, or file_name.cpp. The default is to compile and link-edit C

or C++ source files to produce an executable file.

Syntax

�� -P ��

Notes

The -P option calls the preprocessor directly.

The -P option retains all white space including line-feed characters, with the

following exceptions:

v All comments are reduced to a single space (unless -C is specified).

v Line feeds at the end of preprocessing directives are not retained.

v White space surrounding arguments to function-style macros is not retained.

#line directives are not issued.

The -P option cannot accept a preprocessed source file, such as file_name.i as input.

The compiler will issue an error message.

Source files with unrecognized file name suffixes are treated and preprocessed as C

files, and no error message is generated.

In extended mode, the preprocessor interprets the backslash character when it is

followed by a new-line character as line-continuation in:

v macro replacement text

v macro arguments

v comments that are on the same line as a preprocessor directive.

Line continuations elsewhere are processed in ANSI mode only.

The -P option is overridden by the -E option. The -P option overrides the -c, -o,

and -qsyntaxonly option. The -C option may used in conjunction with both the -E

and -P options.

Related information

v “-C” on page 56

v “-c” on page 57

v “-E” on page 75

v “-o” on page 151

152 XL C/C++ Compiler Reference

v “-qsyntaxonly” on page 186

v Options that control output: Options for file output

-p

Description

Sets up the object files produced by the compiler for profiling.

Syntax

�� -p ��

Notes

If the -qtbtable option is not set, the -p option will generate full traceback tables.

When compiling and linking in separate steps, the -p option must be specified in

both steps.

Example

To compile myprogram.c so that it can be used with your operating system’s gprof

command, enter:

xlc++ myprogram.C -p

Related information

v “-qtbtable” on page 188

v Options for error checking and debugging: Options for profiling

-qpath

Description

Constructs alternate program names for compiler components. The program and

directory path specified by this option is used in place of the regular compiler

component or program.

Syntax

�� -q path = c : path

b

p

a

I

L

l

 ��

where the available compiler component and program names are:

 Program Description

c Compiler front end

b Compiler back end

p Compiler preprocessor

a Assembler

I Interprocedural analysis - compile phase

L Interprocedural analysis - link phase

l Linkage editor

Chapter 3. Compiler options reference 153

Notes

The -qpath option overrides the -Fconfig_file, -t, and -B options.

Examples

To compile myprogram.C using a substitute xlc++ compiler in /lib/tmp/mine/ enter:

xlc++ myprogram.C -qpath=c:/lib/tmp/mine/

To compile myprogram.C using a substitute linker in /lib/tmp/mine/, enter:

xlc++ myprogram.C -qpath=l:/lib/tmp/mine/

Related information

v “-B” on page 55

v “-F” on page 82

v “-t” on page 187

v Options for customizing the compiler: Options for general customization

-qpdf1, -qpdf2

Description

Tunes optimizations through profile-directed feedback (PDF), where results from

sample program execution are used to improve optimization near conditional

branches and in frequently executed code sections.

Syntax

��

 nopdf2

nopdf1

-q

pdf1

pdf2

��

Notes

To use PDF, follow these steps:

1. Compile some or all of the source files in a program with the -qpdf1 option.

You need to specify at least the -O2 optimizing option and you also need to

link with at least -O2 in effect. Pay special attention to the compiler options

that you use to compile the files, because you will need to use the same options

later.

In a large application, concentrate on those areas of the code that can benefit

most from optimization. You do not need to compile all of the application’s

code with the -qpdf1 option.

2. Run the program all the way through using a typical data set. The program

records profiling information when it finishes. You can run the program

multiple times with different data sets, and the profiling information is

accumulated to provide an accurate count of how often branches are taken and

blocks of code are executed.

Important: Use data that is representative of the data that will be used during

a normal run of your finished program.

3. Relink your program using the same compiler options as before, but change

-qpdf1 to -qpdf2. Remember that -L, -l, and some others are linker options, and

you can change them at this point. In this second compilation, the accumulated

profiling information is used to fine-tune the optimizations. The resulting

program contains no profiling overhead and runs at full speed.

154 XL C/C++ Compiler Reference

As an intermediate step, you can use -qpdf2 to link the object files created by the

-qpdf1 pass without recompiling the source on the -qpdf2 pass. This can save

considerable time and help fine tune large applications for optimization. You can

create and test different flavors of PDF optimized binaries by using different

options on the -qpdf2 pass.

For best performance, use the -O3, -O4, or -O5 option with all compilations when

you use PDF.

The profile is placed in the current working directory or in the directory that the

PDFDIR environment variable names, if that variable is set.

To avoid wasting compilation and execution time, make sure that the PDFDIR

environment variable is set to an absolute path. Otherwise, you might run the

application from the wrong directory, and it will not be able to locate the profile

data files. When that happens, the program may not be optimized correctly or may

be stopped by a segmentation fault. A segmentation fault might also happen if you

change the value of the PDFDIR variable and execute the application before

finishing the PDF process.

Because this option requires compiling the entire application twice, it is intended

to be used after other debugging and tuning is finished, as one of the last steps

before putting the application into production.

Restrictions

v PDF optimizations require at least the -O2 optimization level.

v You must compile the main program with PDF for profiling information to be

collected at run time.

v Do not compile or run two different applications that use the same PDFDIR

directory at the same time, unless you have used the -qipa=pdfname suboption

to distinguish the sets of profiling information.

v You must use the same set of compiler options at all compilation steps for a

particular program. Otherwise, PDF cannot optimize your program correctly and

may even slow it down. All compiler settings must be the same, including any

supplied by configuration files.

v Avoid mixing PDF files created by the current version level of XL C/C++ with

PDF files created by other version levels of the compiler.

v If -qipa is not invoked either directly or through other options, -qpdf1 and

-qpdf2 will invoke the -qipa=level=0 option.

v If you compile a program with -qpdf1, remember that it will generate profiling

information when it runs, which involves some performance overhead. This

overhead goes away when you recompile with -qpdf2 or with no PDF at all.

The following utility programs, found in /opt/ibmcmp/vacpp/8.0/bin/, are

available for managing the PDFDIR directory:

Chapter 3. Compiler options reference 155

cleanpdf

�� cleanpdf

pathname
 ��

Removes all profiling information from the pathname directory; or if pathname is

not specified, from the PDFDIR directory; or if PDFDIR is not set, from the

current directory. Removing profiling information reduces runtime overhead if

you change the program and then go through the PDF process again.

Run cleanpdf only when you are finished with the PDF process for a particular

application. Otherwise, if you want to resume using PDF with that application,

you will need to recompile all of the files again with -qpdf1.

mergepdf

��

�

mergepdf

input

-o

output

-r

scaling

-n

-v

��

Merges two or more PDF records into a single PDF output record.

-r scaling Specifies the scaling ratio for the PDF record file. This value

must be greater than zero and can be either an integer or

floating point value. If not specified, a ratio of 1.0 is assumed.

input Specifies the name of a PDF input record file, or a directory

that contains PDF record files.

-o output Specifies the name of the PDF output record file, or a directory

to which the merged output will be written.

-n If specified, PDF record files are not normalized. If not

specified, mergepdf normalizes records based on an

internally-calculated ratio before applying any user-defined

scaling factor.

-v Specifies verbose mode, and causes internal and user-specified

scaling ratios to be displayed to the screen.

resetpdf

�� resetpdf

pathname
 ��

Same as cleanpdf, described above.

showpdf

�� showpdf ��

Displays the call and block counts for all procedures executed in a program run.

To use this command, you must first compile your application specifying both

-qpdf1 and -qshowpdf compiler options on the command line.

Examples

Here is a simple example:

/* Set the PDFDIR variable. */

export PDFDIR=$HOME/project_dir

/* Compile all files with -qpdf1. */

xlc++ -qpdf1 -O3 file1.C file2.C file3.C

/* Run with one set of input data. */

a.out <sample.data

156 XL C/C++ Compiler Reference

/* Recompile all files with -qpdf2. */

xlc++ -qpdf2 -O3 file1.C file2.C file3.C

/* The program should now run faster than

 without PDF if the sample data is typical. */

Here is a more elaborate example.

/* Set the PDFDIR variable. */

export PDFDIR=$HOME/project_dir

/* Compile most of the files with -qpdf1. */

xlc++ -qpdf1 -O3 -c file1.C file2.C file3.C

/* This file is not so important to optimize.

xlc++ -c file4.C

/* Non-PDF object files such as file4.o can be linked in. */

xlc++ -qpdf1 -O3 file1.o file2.o file3.o file4.o

/* Run several times with different input data. */

a.out <polar_orbit.data

a.out <elliptical_orbit.data

a.out <geosynchronous_orbit.data

/* No need to recompile the source of non-PDF object files (file4.C). */

xlc++ -qpdf2 -O3 file1.C file2.C file3.C

/* Link all the object files into the final application. */

xlc++ -qpdf2 -O3 file1.o file2.o file3.o file4.o

Here is an example of using -qpdf1 and -qpdf2 objects.

/* Set the PDFDIR variable. */

export PDFDIR=$HOME/project_dir

/* Compile source with -qpdf1. */

xlc++ -c -qpdf1 -O3 file1.C file2.C

/* Link in object files. */

xlc++ -qpdf1 -O3 file1.o file2.o

/* Run with one set of input data. */

 a.out < sample.data

/* Link in the mix of pdf1 and pdf2 objects. */

xlc++ -qpdf2 -O3 file1.o file2.o

Related information

v “-qshowpdf” on page 174

v “-qipa” on page 106

v Options for performance optimization: Options for performance data allocation

-pg

Description

Sets up the object files for profiling.

If the -qtbtable option is not set, the -pg option will generate full traceback tables.

Chapter 3. Compiler options reference 157

Syntax

�� -pg ��

Example

To compile myprogram.c for use with your operating system’s gprof command,

enter:

xlc myprogram.c -pg

Remember to compile and link with the -pg option. For example:

xlc myprogram.c -pg -c

xlc myprogram.o -pg -o program

Related information

v “-qtbtable” on page 188

v Options for error checking and debugging: Options for profiling

-qphsinfo

Description

Reports the time taken in each compilation phase. Phase information is sent to

standard output.

Syntax

��
 nophsinfo

-q

phsinfo

��

Notes

The output takes the form number1/number2 for each phase where number1

represents the CPU time used by the compiler and number2 represents the total of

the compiler time and the time that the CPU spends handling system calls.

Example

To compile myprogram.C and report the time taken for each phase of the

compilation, enter:

xlc++ myprogram.C -qphsinfo

The output will look similar to:

Front End - Phase Ends; 0.004/ 0.005

W-TRANS - Phase Ends; 0.010/ 0.010

OPTIMIZ - Phase Ends; 0.000/ 0.000

REGALLO - Phase Ends; 0.000/ 0.000

AS - Phase Ends; 0.000/ 0.000

Compiling the same program with -O4 gives:

Front End - Phase Ends; 0.004/ 0.006

IPA - Phase Ends; 0.040/ 0.040

IPA - Phase Ends; 0.220/ 0.280

W-TRANS - Phase Ends; 0.030/ 0.110

OPTIMIZ - Phase Ends; 0.030/ 0.030

REGALLO - Phase Ends; 0.010/ 0.050

AS - Phase Ends; 0.000/ 0.000

Related information

158 XL C/C++ Compiler Reference

v Options that control listings and messages: Options for messages

-qpic

Description

Instructs the compiler to generate Position-Independent Code suitable for use in

shared libraries.

Syntax

��

 nopic

=

small

-q

pic

=

large

��

where

 nopic Instructs the compiler to not generate Position Independant Code.

pic Instructs the compiler to generate Position Independant Code.

small Instructs the compiler to assume that the size of the Global Offset Table is no

larger than 64 Kb.

large Allows the Global Offset Table to be larger than 64 Kb in size, allowing more

addresses to be stored in the table. Code generated with this option is usually

larger than that generated with -qpic=small.

Notes

If -qpic is specified without any suboptions, -qpic=small is assumed.

The -qpic option is implied if the -qmkshrobj compiler option is specified.

Specifying -q64 automatically implies -qpic.

Example

To compile a shared library libmylib.so, use the following command:

xlc mylib.c -qpic -Wl, -shared, -soname="libmylib.so.1" -o libmylib.so.1

Refer to the ld command in your operating system documentation for more

information about the -shared and -soname options.

Related information

v “-q32, -q64” on page 44

v “-qmkshrobj” on page 147

v Options that control output: Options that control the characteristics of the object

code

-qppline

Description

Enables generation of #line directives in the preprocessed output.

Syntax

Chapter 3. Compiler options reference 159

��
 ppline

-q

noppline

��

Notes

If the -P option is used, the default is -qnoppline

This option overrides the behavior of the -E and -P option.

Example

To compile myprogram.C using -qppline option, enter:

xlc++ myprogram.C -qppline

Related information

v Options that control output: Options for file output

-qprefetch

Description

Enables generation of prefetching instructions such as dcbt and dcbz in compiled

code.

Syntax

��
 prefetch

-q

noprefetch

��

Notes

By default, the compiler may insert prefetch instructions in compiled code. The

-qnoprefetch option lets you disable this feature.

The -qnoprefetch option will not prevent built-in functions such as

__prefetch_by_stream() from generating prefetch instructions.

Related information

v Options for performance optimization: Options that restrict optimization

-qprint

Description

Enables or suppresses listings. Specifying -qnoprint overrides all listing-producing

options, regardless of where they are specified, to suppress listings.

Syntax

��
 print

-q

noprint

��

Notes

The default of -qprint enables listings if they are requested by other compiler

options. These options are:

v -qattr

v -qlist

160 XL C/C++ Compiler Reference

v -qlistopt

v -qsource

v -qxref

Example

To compile myprogram.C and suppress all listings, even if some files have #pragma

options source and similar directives, enter:

xlc myprogram.c -qnoprint

Related information

v Options that control listings and messages: Options for listing

-qpriority

Description

Specifies the priority level for the initialization of static objects.

Syntax

�� -q priority = number ��

where

 number Is the initialization priority level assigned to the static objects within a file, or

the priority level of a shared or non-shared file or library.

You can specify a priority level from 101 (highest priority) to 65535 (lowest

priority).

If not specified, the default priority level is 65535.

See also “#pragma priority” on page 255 and “#pragma options” on page 248.

Example

To compile the file myprogram.C to produce an object file myprogram.o so that

objects within that file have an initialization priority of 2000, enter:

 xlc++ myprogram.C -c -qpriority=2000

All objects in the resulting object file will be given an initialization priority of 2000,

provided that the source file contains no #pragma priority(number) directives

specifying a different priority level.

Related information

v Options that control linking: Other linker options

-qproclocal, -qprocimported, -qprocunknown

Description

Marks functions as local, imported, or unknown in 64-bit compilations.

Chapter 3. Compiler options reference 161

Syntax

��

�

�

-q

proclocal

noproclocal

:

procimported

noprocimported

=

function_name

procunknown

noprocunknown

��

See also “#pragma options” on page 248.

Default

The default is to assume that all functions whose definition is in the current

compilation unit are local proclocal, and that all other functions are unknown

procunknown. If any functions that are marked as local resolve to shared library

functions, the linkage editor will detect the error and issue warnings.

Notes

This compiler option applies to 64-bit compilations only.

Available suboptions are:

 Local

functions

Local functions are statically bound with the functions that call them.

Specifying -qproclocal changes the default to assume that all functions are

local. -qproclocal=names marks the named functions as local, where names is

a list of function identifiers separated by colons (:). The default is not

changed.

Smaller, faster code is generated for calls to functions marked as local.

Imported

functions

Imported functions are dynamically bound with a shared portion of a library.

-qprocimported changes the default to assume that all functions are

imported. Specifying -qprocimported=names marks the named functions as

imported, where names is a list of function identifiers separated by colons (:).

The default is not changed.

Code generated for calls to functions marked as imported may be larger, but

is faster than the default code sequence generated for functions marked as

unknown. If marked functions resolve to statically bound objects, the

generated code may be larger and run more slowly than the default code

sequence generated for unknown functions.

Unknown

functions

Unknown functions are resolved to either statically or dynamically bound

objects during link-editing. Specifying -qprocunknown changes the default to

assume that all functions are unknown. -qprocunknown=names marks the

named functions as unknown, where names is a list of function identifiers

separated by colons (:). The default is not changed.

In C++ programs, function names must be specified using their mangled

names.

Conflicts among the procedure-marking options are resolved in the following

manner:

162 XL C/C++ Compiler Reference

Options that list function

names

The last explicit specification for a particular function name

is used.

Options that change the

default

This form does not specify a name list. The last option

specified is the default for functions not explicitly listed in

the name-list form.

Examples

1. To compile myprogram.c along with the archive library oldprogs.a so that:

v functions fun and sun are specified as local,

v functions moon and stars are specified as imported, and,

v function venus is specified as unknown,

enter:

xlc++ myprogram.c oldprogs.a -qprolocal=fun(int):sun()

 -qprocimported=moon():stars(float) -qprocunknown=venus()

2. The following example shows typical error messages that result when a

function marked as local instead resolves to a shared library function.

int main(void)

{

 printf("Just in function foo1()\n");

 printf("Just in function foo1()\n");

}

Compiling this source code with xlc -q64 -qproclocal -O -qlist t.c gives

results similar to the following:

/usr/lib64: t.o(.text+0x10): unresolvable relocation \

 against symbol `.printf@@GLIBC_2.2.5’

 t.o: In function .main’:

 t.o(.text+0x10): relocation truncated to fit: R_PPC64_REL24 .printf@@GLIBC_2.2.5

/usr/lib64: t.o(.text+0x18): unresolvable relocation \

 against symbol `.printf@@GLIBC_2.2.5’

 t.o(.text+0x18): relocation truncated to fit: R_PPC64_REL24 .printf@@GLIBC_2.2.5

An executable file is produced, but it will not run. The error message indicates

that a call to printf in object file t.o caused the problem. When you have

confirmed that the called routine should be imported from a shared object,

recompile the source file that caused the warning and explicitly mark printf as

imported. For example:

xlc -c -qprocimported=printf t.c

Related information

v Options for performance optimization: Options for ABI performance tuning

-qproto

Description

If this option is set, the compiler assumes that all functions are prototyped.

Syntax

��
 noproto

-q

proto

��

Notes

This option asserts that procedure call points agree with their declarations even if

the procedure has not been prototyped.

Chapter 3. Compiler options reference 163

Callers can pass floating-point arguments in floating-point registers only and not in

General-Purpose Registers (GPRs). The compiler assumes that the arguments on

procedure calls are the same types as the corresponding parameters of the

procedure definition.

The compiler will issue warnings for functions that do not have prototypes.

Example

To compile my_c_program.c to assume that all functions are prototyped, enter:

xlc my_c_program.c -qproto

Related information

v Options for error checking and debugging: Other error checking and debugging

options

-Q

Description

In C++ language applications, this option instructs the compiler to try to inline

functions. Inlining is performed if possible but, depending on which optimizations

are performed, some functions might not be inlined.

In C language applications, this option specifies which specific functions the

compiler should attempt to inline.

Syntax

��

�

 -Q

!

:

(1)

-

names

+

(1)

=

threshold

 ��

Notes:

1 C only

In the C++ language, the following -Q options apply:

 -Q Compiler inlines all functions that it can.

-Q! Compiler does not inline any functions.

In the C language, the following -Q options apply:

 -Q Attempts to inline all appropriate functions with 20 executable source

statements or fewer, subject to the setting of any of the suboptions to the

-Q option. If -Q is specified last, all functions are inlined.

-Q! Does not inline any functions. If -Q! is specified last, no functions are

inlined.

164 XL C/C++ Compiler Reference

-Q-names Does not inline functions listed by names. Separate each function name in

names with a colon (:). All other appropriate functions are inlined. The

option implies -Q.

For example:

-Q-salary:taxes:expenses:benefits

causes all functions except those named salary, taxes, expenses, or

benefits to be inlined if possible.

A warning message is issued for functions that are not defined in the

source file.

-Q+names Attempts to inline the functions listed by names and any other appropriate

functions. Each function name in names must be separated by a colon (:).

The option implies -Q.

For example,

 -Q+food:clothes:vacation

causes all functions namedfood , clothes, or vacation to be inlined if

possible, along with any other functions eligible for inlining.

A warning message is issued for functions that are not defined in the

source file or that are defined but cannot be inlined.

This suboption overrides any setting of the threshold value. You can use a

threshold value of zero along with -Q+names to inline specific functions.

For example:

-Q=0

followed by:

-Q+salary:taxes:benefits

causes only the functions named salary, taxes, or benefits to be inlined, if

possible, and no others.

-Q=threshold Sets a size limit on the functions to be inlined. The number of executable

statements must be less than or equal to threshold for the function to be

inlined. threshold must be a positive integer. The default value is 20.

Specifying a threshold value of 0 causes no functions to be inlined except

those functions marked with supported forms of the inline function

specifier.

The threshold value applies to logical C statements. Declarations are not

counted, as you can see in the example below:

increment()

{

 int a, b, i;

 for (i=0; i<10; i++) /* statement 1 */

 {

 a=i; /* statement 2 */

 b=i; /* statement 3 */

 }

}

Default

The default is to treat inline specifications as a hint to the compiler. Whether or not

inlining occurs may also be dependent on other options that you select:

v If you optimize your programs, (specify the -O option) the compiler attempts to

inline the functions declared as inline.

Chapter 3. Compiler options reference 165

Notes

The -Q option is functionally equivalent to the -qinline option.

If you specify the -g option (to generate debug information), inlining may be

affected. See the information for the “-g” on page 90 compiler option.

Because inlining does not always improve runtime performance, you should test

the effects of this option on your code.

Do not attempt to inline recursive or mutually recursive functions.

Normally, application performance is optimized if you request optimization (-O

option), and compiler performance is optimized if you do not request optimization.

The inline, _inline, _Inline, __inline__ and __inline language keywords

override all -Q options except -Q!. The compiler will try to inline functions marked

with these keywords regardless of other -Q option settings.

To maximize inlining:

v for C programs, specify optimization (-O) and also specify the appropriate -Q

options for the C language.

v for C++ programs, specify optimization (-O) but do not specify the -Q option.

Examples

To compile the program myprogram.c so that no functions are inlined, enter:

xlc myprogram.c -O -Q!

To compile the program my_c_program.c so that the compiler attempts to inline

functions of fewer than 12 lines, enter:

xlc my_c_program.c -O -Q=12

Related information

v “-g” on page 90

v Options for performance optimization: Options for function inlining

-R

Description

At run time, searches the path directory for shared libraries.

Syntax

�� -R directory ��

Notes

If the -Rdirectory option is specified both in the configuration file and on the

command line, the paths specified in the configuration file are searched first at run

time.

The -R compiler option is cumulative. Subsequent occurrences of -R on the

command line do not replace, but add to, any directory paths specified by earlier

occurrences of -R.

166 XL C/C++ Compiler Reference

Default

The default is to search only the standard directories.

Example

To compile myprogram.c so that the directory /usr/tmp/old is searched at run time

along with standard directories for the dynamic library libspfiles.so, enter:

xlc++ myprogram.C -lspfiles -R/usr/tmp/old

Related information

v Options that control linking: Options for linker input control

-r

Description

Produces a relocatable object. This permits the output file to be produced even

though it contains unresolved symbols.

Syntax

�� -r ��

Notes

A file produced with this flag is expected to be used as a file parameter in another

call to xlc++.

Example

To compile myprogram.c and myprog2.c into a single object file mytest.o, enter:

xlc myprogram.c myprog2.c -r -o mytest.o

Related information

v Options that control linking: Options for linker output control

-qreport

Description

Instructs the compiler to produce transformation reports that show how program

loops are parallelized and/or optimized and also on the procedures that are cloned

for the architectures specified by -qipa=clonearch compiler option. The

transformation reports are included as part of the compiler listing.

Syntax

��
 noreport

-q

report

��

Notes

This option has no effect unless -qhot ,-qsmp or -qipa=clonearch are also in effect.

Specifying -qreport together with -qhot instructs the compiler to produce a

pseudo-C code listing and summary showing how loops are transformed. You can

use this information to tune the performance of loops in your program.

Chapter 3. Compiler options reference 167

Specifying -qreport together with -qsmp instructs the compiler to also produce a

report showing how the program deals with data and automatic parallelization of

loops in your program. You can use this information to determine how loops in

your program are or are not parallelized.

The pseudo-C code listing is not intended to be compilable. Do not include any of

the pseudo-C code in your program, and do not explicitly call any of the internal

routines whose names may appear in the pseudo-C code listing.

Example

To compile myprogram.C so the compiler listing includes a report showing how

loops are optimized, enter:

xlc++_r -qhot -O3 -qreport myprogram.C

To compile myprogram.C so the compiler listing also includes a report showing how

parallelized loops are transformed, enter:

xlc++_r -qsmp -O3 -qreport myprogram.C

Related information

v “-qhot” on page 94

v “-qsmp” on page 175

v Options that control listings and messages: Options for messages

-qreserved_reg

Description

Indicates that the given list of registers cannot be used during the compilation

except as a stack pointer, frame pointer or in some other fixed role. You should use

this option in modules that are required to work with other modules that use

global register variables or hand written assembler code.

Syntax

��

�

 :

-q

reserved_reg

=

register_list

��

Notes

You must use valid register names on the target platform; otherwise the compiler

issues a warning message. Duplicate register names are ignored silently.

-qreserved_reg is cumulative, for example, specifying -qreserved_reg=r14 and

-qreserved_reg=r15 is equivalent to specifying -qreserved_reg=r14:r15. The valid

register names are as follows:

v r0-r31

v f0-f31

v v0-v31

Example

xlc myprogram.c -qreserved_reg=r3:r4

indicates that r3 and r4 cannot be used in the generated code other than in their

fixed role to pass parameters to a function and receive the return value.

168 XL C/C++ Compiler Reference

Related information

v Options that control output: Options that control the characteristics of the object

code

v ″Global variables in specified registers″ in the XL C/C++ Language Reference

-qro

Description

Specifies the storage type for string literals.

Syntax

��
 ro

-q

noro

��

See also “#pragma options” on page 248.

Default

The default for all compiler invocations except cc and its derivatives is -qro. The

default for the cc compiler invocation is -qnoro.

Notes

If -qro is specified, the compiler places string literals in read-only storage. If -qnoro

is specified, string literals are placed in read/write storage.

You can also specify the storage type in your source program using:

#pragma strings storage_type

where storage_type is read-only or writable.

Placing string literals in read-only memory can improve runtime performance and

save storage, but code that attempts to modify a read-only string literal may

generate a memory error.

Example

To compile myprogram.c so that the storage type is writable, enter:

xlc myprogram.c -qnoro

Related information

v “#pragma strings” on page 261

v “-qroconst”

v Options that control output: Options that control the placement of strings and

constant data

-qroconst

Description

Specifies the storage location for constant values.

Syntax

��
 roconst

-q

noroconst

��

Chapter 3. Compiler options reference 169

See also “#pragma options” on page 248.

Default

The default with xlc, xlC, and c89 is -qroconst. The default with cc is -qnoroconst.

Notes

If -qroconst is specified, the compiler places constants in read-only storage. If

-qnoroconst is specified, constant values are placed in read/write storage.

Placing constant values in read-only memory can improve runtime performance,

save storage, and provide shared access. Code that attempts to modify a read-only

constant value generates a memory error.

Constant value in the context of the -qroconst option refers to variables that are

qualified by const (including const-qualified characters, integers, floats,

enumerations, structures, unions, and arrays). The following variables do not apply

to this option:

v variables qualified with volatile and aggregates (such as a structure or a union)

that contain volatile variables

v pointers and complex aggregates containing pointer members

v automatic and static types with block scope

v uninitialized types

v regular structures with all members qualified by const

v initializers that are addresses, or initializers that are cast to non-address values

The -qroconst option does not imply the -qro option. Both options must be

specified if you wish to specify storage characteristics of both string literals (-qro)

and constant values (-qroconst).

Related information

v “-qro” on page 169

v Options that control output: Options that control the placement of strings and

constant data

-qrtti

Description

Use this option to generate runtime type identification (RTTI) information for

exception handling and for use by the typeid and dynamic_cast operators.

Syntax

��
 rtti

-q

nortti

��

where available suboptions are:

 rtti The compiler generates the information needed for the RTTI typeid and

dynamic_cast operators.

nortti The compiler does not generate RTTI information.

170 XL C/C++ Compiler Reference

Notes

For best runtime performance, suppress RTTI information generation with the

default -qnortti setting.

The C++ language offers a (RTTI) mechanism for determining the class of an object

at run time. It consists of two operators:

v one for determining the runtime type of an object (typeid), and,

v one for doing type conversions that are checked at run time (dynamic_cast).

A type_info class describes the RTTI available and defines the type returned by the

typeid operator.

You should be aware of the following effects when specifying the -qrtti compiler

option:

v Contents of the virtual function table will be different when -qrtti is specified.

v When linking objects together, all corresponding source files must be compiled

with the correct -qrtti option specified.

v If you compile a library with mixed objects (-qrtti specified for some objects,

-qnortti specified for others), you may get an undefined symbol error.

Related information

v “-qeh” on page 77

v Options that control output: Other output options

-S

Description

Generates an assembler language file (.s) for each source file. The resulting .s files

can be assembled to produce object .o files or an executable file (a.out).

Syntax

�� -S ��

Notes

You can invoke the assembler with any XL C/C++ invocation command. For

example,

xlc++ myprogram.s

will invoke the assembler, and if successful, the loader to create an executable file,

a.out.

If you specify -S with -E or -P, -E or -P takes precedence. Order of precedence

holds regardless of the order in which they were specified on the command line.

You can use the -o option to specify the name of the file produced only if no more

than one source file is supplied. For example, the following is not valid:

xlc++ myprogram1.C myprogram2.C -o -S

Examples

1. To compile myprogram.C to produce an assembler language file myprogram.s,

enter:

xlc++ myprogram.C -S

Chapter 3. Compiler options reference 171

2. To assemble this program to produce an object file myprogram.o, enter:

xlc++ myprogram.s -c

3. To compile myprogram.C to produce an assembler language file asmprogram.s,

enter:

xlc++ myprogram.C -S -o asmprogram.s

Related information

v “-E” on page 75

v “-g” on page 90

v “-qipa” on page 106

v “-o” on page 151

v “-P” on page 152

v “-qtbtable” on page 188

v Options that control output: Options for file output

-s

Description

This option strips the symbol table, line number information, and relocation

information from the output file. Specifying -s saves space, but limits the

usefulness of traditional debug programs when you are generating debug

information using options such as -g.

Syntax

�� -s ��

Notes

Using the strip command has the same effect.

Related information

v “-g” on page 90

v Options that control output: Options for file output

-qsaveopt

Description

Saves the compiler options into an object file.

Syntax

��
 nosaveopt

-q

saveopt

��

Notes

This option lets you save the compiler options into the object file you are

compiling. The option has effect only when compiling to an object (.o) file.

The string is saved in the following format:

�� @(#)opt B f B stanza B options

c

C

 ��

172 XL C/C++ Compiler Reference

where:

B Indicates a space.

f Signifies a Fortran language compilation.

c Signifies a C language compilation.

C Signifies a C++ language compilation.

stanza Specifies the driver used for the compilation, for example, c89 or xlc++.

options The list of command line options specified on the command line, with

individual options separated by spaces.

Related information

v Options that control output: Other output options

-qshowinc

Description

Used with -qsource to selectively show user header files (includes using ″ ″) or

system header files (includes using < >) in the program source listing.

Syntax

��

�

 noshowinc

-q

showinc

:

=

all

usr

no

sys

no

��

where options are:

 noshowinc Do not show user or system include files in the program source listing. This is

the same as specifying -qshowinc=nousr:nosys.

showinc Show both user and system include files in the program source listing. This is

the same as specifying -qshowinc=usr:sys or -qshowinc=all.

all Show both user and system include files in the program source listing. This is

the same as specifying -qshowinc or -qshowinc=usr:sys.

usr Show user include files in the program source listing.

sys Show system include files in the program source listing.

See also “#pragma options” on page 248.

Notes

This option has effect only when the -qlist or -qsource compiler options are in

effect.

Example

To compile myprogram.C so that all included files appear in the source listing, enter:

xlc++ myprogram.C -qsource -qshowinc

Related information

v “-qsource” on page 177

v Options that control listings and messages: Options for listing

Chapter 3. Compiler options reference 173

-qshowpdf

Description

Used with -qpdf1 and a minimum optimization level of -O to add additional call

and block count profiling information to an executable.

Syntax

��
 noshowpdf

-q

showpdf

��

Notes

This option has effect only when specified together with the -qpdf1 compiler

option.

When specified with -qpdf1 and a minimum optimization level of -O, the compiler

inserts additional profiling information into the compiled application to collect call

and block counts for all procedures in the application. Running the compiled

application will record the call and block counts to the file ._pdf .

After you run your application with training data, you can retrieve the contents of

the ._pdf file with the showpdf utility. This utility is described in the -qpdf pages.

Example

The example assumes the following source for program file hello.c:

#include <stdio.h>

void HelloWorld()

{

 printf("Hello World");

}

main()

{

 HelloWorld();

}

Compile the source with:

xlc -qpdf1 -O -qshowpdf hello.c

Run the resulting program executable:

a.out

Run the showpdf utility to display the call and block counts for the executable:

showpdf

Something similar to the following will be returned by the showpdf utility:

HelloWorld(4): 1 (hello.c)

Call Counters:

 5 | 1 printf(6)

Call coverage = 100% (1/1)

Block Counters:

 3-5 | 1

 6 |

 6 | 1

174 XL C/C++ Compiler Reference

Block coverage = 100% (2/2)

main(5): 1 (hello.c)

Call Counters:

 10 | 1 HelloWorld(4)

Call coverage = 100% (1/1)

Block Counters:

 8-11 | 1

 11 |

Block coverage = 100% (1/1)

Total Call coverage = 100% (2/2)

Total Block coverage = 100% (3/3)

Related information

v “-qpdf1, -qpdf2” on page 154

v Options for performance optimization: Options for performance data allocation

-qsmallstack

Description

Instructs the compiler to reduce the size of the stack frame.

Syntax

��
 nosmallstack

-q

smallstack

��

Notes

Programs that allocate large amounts of data to the stack, such as threaded

programs, may result in stack overflows. This option can reduce the size of the

stack frame to help avoid overflows.

This option is only valid when used together with IPA (-qipa, -O4, -O5 compiler

options).

Specifying this option may adversely affect program performance.

Example

To compile myprogram.c to use a small stack frame, enter:

xlc myprogram.c -qipa -qsmallstack

Related information

v “-g” on page 90

v “-qipa” on page 106

v Options for performance optimization: Options that restrict optimization

-qsmp

Description

Enables parallelization of program code.

Chapter 3. Compiler options reference 175

Syntax

��

�

 nosmp

-q

smp

:

norec_locks

nonested_par

explicit

noomp

opt

auto

=

noauto

noopt

omp

noexplicit

nested_par

rec_locks

runtime

schedule

=

dynamic

guided

=

n

static

affinity

��

where:

 auto Enables automatic parallelization and optimization of program

code.

noauto Disables automatic parallelization of program code. Program

code explicitly parallelized with OpenMP pragma statements is

optimized.

opt Enables automatic parallelization and optimization of program

code.

noopt Enables automatic parallelization, but disables optimization of

parallelized program code. Use this setting when debugging

parallelized program code.

omp Enables strict compliance to the OpenMP standard. Automatic

parallelization is disabled. Parallelized program code is

optimized. Only OpenMP parallelization pragmas are

recognized.

noomp Enables automatic parallelization and optimization of program

code.

explicit Enables pragmas controlling explicit parallelization of loops.

noexplicit Disables pragmas controlling explicit parallelization of loops.

nested_par If specified, nested parallel constructs are not serialized.

nested_par does not provide true nested parallelism because it

does not cause new team of threads to be created for nested

parallel regions. Instead, threads that are currently available are

re-used.

This option should be used with caution. Depending on the

number of threads available and the amount of work in an

outer loop, inner loops could be executed sequentially even if

this option is in effect. Parallelization overhead may not

necessarily be offset by program performance gains.

nonested_par Disables parallization of nested parallel constructs.

rec_locks If specified, recursive locks are used, and nested critical

sections will not cause a deadlock.

norec_locks If specified, recursive locks are not used.

176 XL C/C++ Compiler Reference

schedule=sched_type[=n] Specifies what kind of scheduling algorithms and chunk size

(n) are used for loops to which no other scheduling algorithm

has been explicitly assigned in the source code. If sched_type is

not specified, schedule=runtime is assumed for the default

setting.

Notes

v -qsmp must be used only with thread-safe compiler mode invocations such as

xlc_r. These invocations ensure that the Pthreads, xlsmp, and thread-safe

versions of all default runtime libraries are linked to the resulting executable.

v The -qnosmp default option setting specifies that no code should be generated

for parallelization directives, though syntax checking will still be performed. Use

-qignprag=omp to completely ignore parallelization directives.

v Specifying -qsmp without suboptions is equivalent to specifying

-qsmp=auto:explicit:noomp:norec_locks:nonested_par:schedule=runtime or

-qsmp=opt:explicit:noomp:norec_locks:nonested_par:schedule=runtime.

v Specifying -qsmp implicitly sets -O2. The -qsmp option overrides -qnooptimize,

but does not override -O3, -O4, or -O5. When debugging parallelized program

code, you can disable optimization in parallelized program code by specifying

qsmp=noopt.

v Specifying -qsmp implies -qhot=level=1 is in effect.

Related information

v “-O, -qoptimize” on page 148

v “-qthreaded” on page 192

v “Pragma directives for parallel processing” on page 266

v “Built-in functions for parallel processing” on page 298

v Summary of command line options: Optimization flags

v “Summary of OpenMP pragma directives” on page 216

-qsource

Description

Produces a compiler listing and includes source code.

Syntax

��
 nosource

-q

source

��

See also “#pragma options” on page 248.

Notes

The -qnoprint option overrides this option.

Parts of the source can be selectively printed by using pairs of #pragma options

source and #pragma options nosource preprocessor directives throughout your

source program. The source following #pragma options source and preceding

#pragma options nosource is printed.

Examples

To compile myprogram.C to produce a compiler listing that includes the source for

myprogram.C, enter:

Chapter 3. Compiler options reference 177

xlc++ myprogram.C -qsource

Do not use the -qsource compiler option if you want the compiler listing to show

only selected parts of your program source. The following code causes the source

found between the #pragma options source and #pragma options nosource

directives to be included in the compiler listing:

#pragma options source

 . . .

/* Source code to be included in the compiler listing

 is bracketed by #pragma options directives.

*/

 . . .

#pragma options nosource

Related information

v “-qprint” on page 160

v Options that control listings and messages: Options for listing

-qsourcetype

Description

Instructs the compiler to treat all recognized source files as if they are the source

type specified by this option, regardless of actual source file name suffix.

Syntax

��
 default

-q

sourcetype

=

c

c++

assembler

assembler-with-cpp

��

where:

 Source type Suffix Behavior

default - The compiler assumes that the

programming language of a source file

will be implied by its file name suffix.

c v .c

v .i

(for preprocessed files)

The compiler compiles all source files

following this option as if they are C

language source files.

c++ v .C, .cc, .cpp, .cxx

v .cp, .c++

The compiler compiles all source files

following this option as if they are C++

language source files.

assembler v .s

The compiler compiles all source files

following this option as if they are

assembler language source files.

assembler-with-
cpp

v .S

The compiler compiles all source files

following this option as if they are

Assembler language source files that

needs preprocessing.

178 XL C/C++ Compiler Reference

Notes

Ordinarily, the compiler uses the file name suffix of source files specified on the

command line to determine the type of the source file. For example, a .c suffix

normally implies C source code, a .C suffix normally implies C++ source code, and

the compiler will treat them as follows:

hello.c The file is compiled as a C file.

hello.C The file is compiled as a C++ file.

The -qsourcetype option instructs the compiler to not rely on the file name suffix,

and to instead assume a source type as specified by the option. This applies

whether the file system is case-sensitive or not. However, in a case-insensitive file

system, the above two compilations refer to the same physical file. That is, the

compiler still recognizes the case difference of the file name argument on the

command line and determines the source type accordingly, but will ignore the case

when retrieving the file from the file system.

Note that the option only affects files that are specified on the command line

following the option, but not those that precede the option. Therefore, in the

following example:

xlc goodbye.C -qsourcetype=c hello.C

hello.C is compiled as a C source file, but goodbye.C is compiled as a C++ file.

The -qsourcetype option should not be used together with the -+ option.

Examples

To treat the source file hello.C as being a C language source file, enter:

xlc -qsourcetype=c hello.C

Related information

v “-+ (plus sign)” on page 42

v Options that control input: Other input options

-qspill

Description

Specifies the register allocation spill area as being size bytes.

Syntax

��
 512

-q

spill

=

size

��

See also “#pragma options” on page 248.

Notes

If your program is very complex, or if there are too many computations to hold in

registers at one time and your program needs temporary storage, you might need

to increase this area. Do not enlarge the spill area unless the compiler issues a

message requesting a larger spill area. In case of a conflict, the largest spill area

specified is used.

Chapter 3. Compiler options reference 179

Example

If you received a warning message when compiling myprogram.c and want to

compile it specifying a spill area of 900 entries, enter:

xlc myprogram.c -qspill=900

Related information

v Options for performance optimization: Options that restrict optimization

-qsrcmsg

Description

Adds the corresponding source code lines to the diagnostic messages in the stderr

file.

Syntax

��
 nosrcmsg

-q

srcmsg

��

See also “#pragma options” on page 248.

Notes

The compiler reconstructs the source line or partial source line to which the

diagnostic message refers and displays it before the diagnostic message. A pointer

to the column position of the error may also be displayed. Specifying -qnosrcmsg

suppresses the generation of both the source line and the finger line, and the error

message simply shows the file, line and column where the error occurred.

The reconstructed source line represents the line as it appears after macro

expansion. At times, the line may be only partially reconstructed. The characters

“....” at the start or end of the displayed line indicate that some of the source line

has not been displayed.

The default (-qnosrcmsg) displays concise messages that can be parsed. Instead of

giving the source line and pointers for each error, a single line is displayed,

showing the name of the source file with the error, the line and character column

position of the error, and the message itself.

Example

To compile myprogram.c so that the source line is displayed along with the

diagnostic message when an error occurs, enter:

xlc myprogram.c -qsrcmsg

Related information

v Options that control listings and messages: Options for messages

-qstaticinline

Description

This option controls whether inline functions are treated as static or extern. By

default, XL C/C++ treats inline functions as extern. Only one function body is

180 XL C/C++ Compiler Reference

generated for a function marked with the inline function specifier, regardless of

how many definitions of the function appear in different source files.

Syntax

��
 nostaticinline

-q

staticinline

��

Example

Using the -qstaticinline option causes function f in the following declaration to be

treated as static, even though it is not explicitly declared as such. A separate

function body is created for each definition of the function. Note that this can lead

to a substantial increase in code size

inline void f() {/*...*/};

Using the default, -qnostaticinline, gives f external linkage.

Related information

v Options that control output: Options that control the characteristics of the object

code

-qstaticlink

Description

The -qstaticlink compiler option controls how shared and non-shared runtime

libraries are linked into an application. This option provides the ability to specify

linking rules that are equivalent to those implied by the GNU options -static,

-static-libgcc, and -shared-libgcc, used singly and in combination.

Syntax

��
 nostaticlink

-q

staticlink

=

libgcc

��

where

 nostaticlink Instructs the compiler not to link statically with libgcc.a

staticlink Objects generated with this compiler option in effect will link only with

static libraries.

libgcc When this suboption is specified together with nostaticlink, the compiler

links to the shared version of libgcc.

When specified together with staticlink, the compiler links to the static

version of libgcc.

Notes

GNU support for shared and non-shared libraries is controlled by the options

shown in the following table.

 Table 39. Option mappings: control of the Linux linker

GNU option Meaning XL C/C++ option

-shared Build a shared object. -qmkshrobj

Chapter 3. Compiler options reference 181

Table 39. Option mappings: control of the Linux linker (continued)

GNU option Meaning XL C/C++ option

-static Build a static object and prevent

linking with shared libraries. Every

library linked to must be a static

library. Ignore when specified with

-shared.

-qstaticlink

-shared-libgcc Use the shared version of libgcc.

Ignore when specified with -static.

-qnostaticlink=libgcc

-static-libgcc Use the static version of libgcc. -qstaticlink=libgcc

Related information

v Options that control linking: Options for linker output control

-qstatsym

Description

Adds user-defined, nonexternal names that have a persistent storage class, such as

initialized and uninitialized static variables, to the name list (the symbol table of

objects).

Syntax

��
 nostatsym

-q

statsym

��

Default

The default is to not add static variables to the symbol table. However, static

functions are added to the symbol table.

Example

To compile myprogram.C so that static symbols are added to the symbol table, enter:

xlc++ myprogram.C -qstatsym

Related information

v Options that control output: Options that control the characteristics of the object

code

-qstdinc

Description

Specifies which directories are used for files included by the #include <file_name>

and #include “file_name” directives. The -qnostdinc option excludes the standard

include directories from the search path.

Syntax

��
 stdinc

-q

nostdinc

��

See also “#pragma options” on page 248.

182 XL C/C++ Compiler Reference

Notes

If you specify -qnostdinc, the compiler will not search the default search path

directories unless you explicitly add them with the -Idirectory option.

If a full (absolute) path name is specified, this option has no effect on that path

name. It will still have an effect on all relative path names.

-qnostdinc is independent of -qidirfirst. (-qidirfirst searches the directory specified

with -I directory before searching the directory where the current source file resides.

The search order for files is described in “Directory search sequence for include

files using relative path names” on page 22.

The last valid #pragma options [NO]STDINC remains in effect until replaced by a

subsequent #pragma options [NO]STDINC.

Example

To compile myprogram.c so that the directory /tmp/myfiles is searched for a file

included in myprogram.c with the #include “myinc.h” directive, enter:

xlc myprogram.c -qnostdinc -I/tmp/myfiles

Related information

v “-I” on page 97

v “-qidirfirst” on page 97

v “Directory search sequence for include files using relative path names” on page

22

v Options that control input: Options for search paths

-qstrict

Description

Turns off the aggressive optimizations that have the potential to alter the semantics

of your program.

Syntax

�� -q nostrict

strict
 ��

See also “#pragma options” on page 248.

Default

v -qnostrict with optimization levels of -O3 or higher.

v -qstrict otherwise.

Notes

-qstrict turns off the following optimizations:

v Performing code motion and scheduling on computations such as loads and

floating-point computations that may trigger an exception.

v Relaxing conformance to IEEE rules.

v Reassociating floating-point expressions.

This option is only valid with -O2 or higher optimization levels.

Chapter 3. Compiler options reference 183

-qstrict sets -qfloat=norsqrt.

-qnostrict sets -qfloat=rsqrt.

You can use -qfloat=rsqrt to override the -qstrict settings.

For example:

v Using -O3 -qnostrict -qfloat=norsqrt means that the compiler performs all

aggressive optimizations except -qfloat=rsqrt.

If there is a conflict between the options set with -qnostrict and -qfloat=options, the

last option specified is recognized.

Example

To compile myprogram.C so that the aggressive optimizations of -O3 are turned off,

and division by the result of a square root is replaced by multiplying by the

reciprocal (-qfloat=rsqrt), enter:

xlc++ myprogram.C -O3 -qstrict -qfloat=rsqrt

Related information

v “-qfloat” on page 83

v “-O, -qoptimize” on page 148

v Options for performance optimization: Options that restrict optimization

-qstrict_induction

Description

Disables loop induction variable optimizations that have the potential to alter the

semantics of your program. Such optimizations can change the result of a program

if truncation or sign extension of a loop induction variable should occur as a result

of variable overflow or wrap-around.

Syntax

�� -q nostrict_induction

strict_induction
 ��

Default

v -qnostrict_induction with optimization levels 2 or higher.

v -qstrict_induction otherwise.

Notes

Specifying -O2 implies -qnostrict_induction. Specifying both is unnecessary.

Use of -qstrict_induction is generally not recommended because it can cause

considerable performance degradation.

 Related information

v “-O, -qoptimize” on page 148

v Options for performance optimization: Options for loop optimization

184 XL C/C++ Compiler Reference

-qsuppress

Description

Prevents the specified compiler or driver informational or warning messages from

being displayed or added to the listings.

Syntax

��

�

�

 -q suppress

:

=

msg_num

(1)

nosuppress

:

(2)

nosuppress

=

msg_num

 ��

Notes:

1 C only

2 C++ only

Notes

This option suppresses compiler messages only, and has no effect on linker or

operating system messages.

To suppress IPA messages, enter -qsuppress before -qipa on the command line.

Compiler messages that cause compilation to stop, such as (S) and (U) level

messages cannot be suppressed.

The -qnosuppress compiler option cancels previous settings of -qsuppress.

Example

If your program normally results in the following output:

“myprogram.C”, line 1.1:1506-224 (I) Incorrect #pragma ignored

you can suppress the message by compiling with:

xlc++ myprogram.C -qsuppress=1506-224

Related information

v “-qhalt” on page 93

v “-qipa” on page 106

v Options that control listings and messages: Options for messages

-qsymtab

Description

Settings for this option determine what information appears in the symbol table.

Syntax

Chapter 3. Compiler options reference 185

�� -q symtab = unref

static
 ��

where:

unref Specifies that all typedef declarations, struct, union, and enum type definitions are

included for processing by the GNU GDB Debugger.

Use this option with the -g option to produce additional debugging information

for use with the debugger.

When you specify the -g option, debugging information is included in the object

file. To minimize the size of object and executable files, the compiler only includes

information for symbols that are referenced. Debugging information is not

produced for unreferenced arrays, pointers, or file-scope variables unless

-qsymtab=unref is specified.

Using -qsymtab=unref may make your object and executable files larger.

static Adds user-defined, nonexternal names that have a persistent storage class, such as

initialized and uninitialized static variables, to the name list.

The default is to not add static variables to the symbol table.

Examples

To compile myprogram.c so that static symbols are added to the symbol table, enter:

xlc myprogram.c -qsymtab=static

To include all symbols in myprogram.c in the symbols table for use with a

debugger, enter:

xlc myprogram.c -g -qsymtab=unref

Related information

v “-g” on page 90

v Options for error checking and debugging: Options for debugging

-qsyntaxonly

Description

Causes the compiler to perform syntax checking without generating an object file.

Syntax

�� -q syntaxonly ��

Notes

The -P, -E, and -C options override the -qsyntaxonly option, which in turn

overrides the -c and -o options.

The -qsyntaxonly option suppresses only the generation of an object file. All other

files, such as listing files, are still produced if their corresponding options are set.

186 XL C/C++ Compiler Reference

Examples

To check the syntax of myprogram.c without generating an object file, enter:

xlc myprogram.c -qsyntaxonly

or

xlc myprogram.c -o testing -qsyntaxonly

Note that in the second example, the -qsyntaxonly option overrides the -o option

so no object file is produced.

Related information

v “-C” on page 56

v “-c” on page 57

v “-E” on page 75

v “-o” on page 151

v “-P” on page 152

v Options that control input: Other input options

-t

Description

Adds the prefix specified by the -B option to the designated programs.

Syntax

��

�

-t

c

b

p

a

I

L

l

��

where programs are:

 Program Description

c Compiler front end

b Compiler back end

p Compiler preprocessor

a Assembler

I Interprocedural analysis - compile phase

L Interprocedural analysis - link phase

l Linkage editor

Default

If -B is specified but prefix is not, the default prefix is /lib/o. If -Bprefix is not

specified at all, the prefix of the standard program names is /lib/n.

If -B is specified but -tprograms is not, the default is to construct path names for all

the standard program names.

Chapter 3. Compiler options reference 187

Example

To compile myprogram.c so that the name /u/newones/compilers/ is prefixed to the

compiler and assembler program names, enter:

xlc myprogram.c -B/u/newones/compilers/ -tca

Related information

v “-B” on page 55

v Options for customizing the compiler: Options for general customization

-qtabsize

Description

Changes the length of tabs as perceived by the compiler.

Syntax

��
 8

-q

tabsize

=

n

��

where n is the number of character spaces representing a tab in your source

program.

Notes

This option only affects error messages that specify the column number at which

an error occurred. For example, the compiler will consider tabs as having a width

of one character if you specify -qtabsize=1. In this case, you can consider one

character position (where each character and each tab equals one position,

regardless of tab length) as being equivalent to one character column.

Related information

v Options that control listings and messages: Options for listing

-qtbtable

Description

Generates a traceback table that contains information about each function,

including the type of function as well as stack frame and register information. The

traceback table is placed in the text segment at the end of its code.

Syntax

�� -q tbtable = none

full

small

 ��

where suboptions are:

 none No traceback table is generated. The stack frame cannot be unwound so

exception handling is disabled.

full A full traceback table is generated, complete with name and parameter

information. This is the default if -qnoopt or -g are specified.

small The traceback table generated has no name or parameter information, but

otherwise has full traceback capability. This is the default if you have specified

optimization and have not specified -g.

188 XL C/C++ Compiler Reference

See also “#pragma options” on page 248.

Notes

This option applies only to 64-bit compilations, and is ignored if specified for a

32-bit compilation.

The #pragma options directive must be specified before the first statement in the

compilation unit.

Many performance measurement tools require a full traceback table to properly

analyze optimized code. The compiler configuration file contains entries to

accomodate this requirement. If you do not require full traceback tables for your

optimized code, you can save file space by making the following changes to your

compiler configuration file:

1. Remove the -qtbtable=full option from the options lines of the C or C++

compilation stanzas.

2. Remove the -qtbtable=full option from the xlCopt line of the DFLT stanza.

With these changes, the defaults for the tbtable option are:

v When compiling with optimization options set, -qtbtable=small

v When compiling with no optimization options set, -qtbtable=full

Related information

v “-g” on page 90

v Summary of command line options: Other error checking and debugging options

-qtempinc

Description

Generates separate template include files for template functions and class

declarations, and places these files in a directory which can be optionally specified.

Syntax

��
 notempinc

-q

tempinc

=

directory

��

Notes

The -qtempinc and -qtemplateregistry compiler options are mutually exclusive.

Specifying -qtempinc implies -qnotemplateregistry. Similarly, specifying

-qtemplateregistry implies -qnotempinc. However, specifying -qnotempinc does

not imply -qtemplateregistry.

Specifying either -qtempinc or -qtemplateregistry implies -qtmplinst=auto.

When you specify -qtempinc, the compiler assigns a value of 1 to the

__TEMPINC__ macro. This assignment will not occur if -qnotempinc has been

specified.

Example

To compile the file myprogram.c and place the generated include files for the

template functions in the /tmp/mytemplates directory, enter:

Chapter 3. Compiler options reference 189

xlc++ myprogram.C -qtempinc=/tmp/mytemplates

Related information

v “-qtmplinst” on page 193

v “-qtemplateregistry”

v “-qtemplaterecompile”

v Options for customizing the compiler: Template-related options

v ″Using C++ templates″ in the XL C/C++ Programming Guide.

-qtemplaterecompile

Description

Helps manage dependencies between compilation units that have been compiled

using the -qtemplateregistry compiler option.

Syntax

��
 templaterecompile

-q

notemplaterecompile

��

Notes

The -qtemplaterecompile option is intended to be used with the

-qtemplateregistry option. Given a program in which multiple compilation units

reference the same template instantiation, the -qtemplateregistry option specifies a

single compilation unit to contain the instantiation. No other compilation units will

contain this instantiation, and duplication of object code is avoided.

If a source file that has been compiled previously is compiled again, the

-qtemplaterecompile option consults the template registry to determine whether

changes to this source file require the recompile of other compilation units. This

can occur when the source file has changed in such a way that it no longer

references a given instantiation and the corresponding object file previously

contained the instantiation. If so, affected compilation units will be recompiled

automatically.

The -qtemplaterecompile option requires that object files generated by the

compiler remain in the subdirectory to which they were originally written. If your

automated build process moves object files from their original subdirectory, use the

-qnotemplaterecompile option whenever -qtemplateregistry is enabled.

Related information

v “-qtmplinst” on page 193

v “-qtempinc” on page 189

v “-qtemplateregistry”

v Options for customizing the compiler: Template-related options

v ″Using C++ templates″ in the XL C/C++ Programming Guide.

-qtemplateregistry

Description

Maintains records of all templates as they are encountered in the source and

ensures that only one instantiation of each template is made.

190 XL C/C++ Compiler Reference

Syntax

��
 notemplateregistry

-q

templateregistry

=

registry_file

��

Notes

The first time that the compiler encounters a reference to a template instantiation,

that instantiation is generated and the related object code is placed in the current

object file. Any further references to identical instantiations of the same template in

different compilation units are recorded but the redundant instantiations are not

generated. No special file organization is required to use the -qtemplateregistry

option.

If you do not specify a location, the compiler will save all template registry

information to the file templateregistry stored in the current working directory.

Template registry files must not be shared between different programs. If there are

two or more programs whose source is in the same directory, relying on the

default template registry file stored in the current working directory will result in

this situation, and may lead to incorrect results.

The -qtempinc and -qtemplateregistry compiler options are mutually exclusive.

Specifying -qtempinc implies -qnotemplateregistry. Similarly, specifying

-qtemplateregistry implies -qnotempinc. However, specifying -qnotempinc does

not imply -qtemplateregistry.

Specifying either -qtempinc or -qtemplateregistry implies -qtmplinst=auto.

Example

To compile the file myprogram.C and place the template registry information into

the /tmp/mytemplateregistry file, enter:

 xlc++ myprogram.C -qtemplateregistry=/tmp/mytemplateregistry

Related information

v “-qtmplinst” on page 193

v “-qtempinc” on page 189

v “-qtemplaterecompile” on page 190

v Options for customizing the compiler: Template-related options

v ″Using C++ templates″ in the XL C/C++ Programming Guide.

-qtempmax

Description

Specifies the maximum number of template include files to be generated by the

-qtempinc option for each header file.

Syntax

��
 1

-q

tempmax

=

number

��

Chapter 3. Compiler options reference 191

Notes

Specify the maximum number of template files by giving number a value between

1 and 99999.

Instantiations are spread among the template include files.

This option should be used when the size of files generated by the -qtempinc

option become very large and take a significant amount of time to recompile when

a new instance is created.

Related information

v “-qtempinc” on page 189

v Options for customizing the compiler: Template-related options

v ″Using C++ templates″ in the XL C/C++ Programming Guide.

-qthreaded

Description

Indicates to the compiler that the program uses multiple threads. Always use this

option when compiling or linking multi-threaded applications. This option ensures

that all optimizations are thread-safe.

Syntax

�� -q nothreaded

threaded
 ��

Default

The default is -qthreaded when compiling with _r invocation modes, and

-qnothreaded when compiling with other invocation modes.

Notes

This option applies to both compile and linker operations.

To maintain thread safety, a file compiled with the -qthreaded option, whether

explicitly by option selection or implicitly by choice of _r compiler invocation

mode, must also be linked with the -qthreaded option.

This option does not make code thread-safe, but it will ensure that code already

thread-safe will remain so after compile and linking.

Related information

v “-qsmp” on page 175

v Options that control output: Other output options

-qtls

Description

Specifies the thread-local storage model to be used by the application.

Syntax

192 XL C/C++ Compiler Reference

�� -q tls

(2)

global-dynamic

(1)

initial-exec

=

local-exec

local-dynamic

notls

 ��

Notes:

1 Default if the -qnopic compiler option is in effect.

2 Default if the -qpic compiler option is in effect.

Notes

This option selects the model used to access thread-local storage.

On systems that support the GNU __thread keyword, the vac_configure tool adds

-qtls to the set of default options in the compiler configuration file.

If -qtls is specified without suboptions, the compiler assumes the following

settings:

v -qtls=initial-exec if -qnopic is in effect.

v -qtls=global-dynamic if -qpic is in effect.

Related information

v “-qpic” on page 159

v Options for customizing the compiler: Options for general customization

-qtmplinst

Description

Manages the implicit instantiation of templates.

Syntax

�� -q tmplinst = always

noinline

none

 ��

where the suboptions are:

 auto Manages the implicit instantiations according to the -qtempinc and

-qtemplateregistry options. If both -qtempinc and -qtemplateregistry are

disabled, implicit instantiation will always be performed, otherwise if both

or any of the options are enabled, the compiler manages the implicit

instantiation using either option which is enabled.

always Instruct the compiler to always perform implicit instantiation. If specified,

-qtempinc and -qtemplateregistry compiler options are ignored.

noinline Instructs the compiler to do not perform any implicit instantiations. If

specified, -qtempinc and -qtemplateregistry compiler options are ignored.

none Instruct the compiler to instantiate only inline functions. No other implicit

instantiation is performed. If specified, -qtempinc and -qtemplateregistry

compiler options are ignored.

Chapter 3. Compiler options reference 193

Notes

v The -qtempinc or -qtemplateregistry options imply -qtmplinst=auto.

v If you specify both -qtempinc and -qtemplateregistry options along with

-qtmplinst , then the last one takes precedence. For example, if you specify

-qtmplinst and then -qtemplateregistry, the end result will be -qtmplinst=auto

and -qtemplateregistry.

v If -qtmplinst=auto is specified, it doesn’t matter which order it is seen relative

to the -qtempinc and -qtemplateregistry options.

Related information

v “-qtemplateregistry” on page 190

v “-qtempinc” on page 189

v “-qtemplaterecompile” on page 190

v Options for customizing the compiler: Template-related options

-qtmplparse

Description

This option controls whether parsing and semantic checking are applied to

template definitions (class template definitions, function bodies, member function

bodies, and static data member initializers) or only to template instantiations. The

compiler can check function bodies and variable initializers in template definitions

and produce error or warning messages.

Syntax

��
 no

-q

tmplparse

=

warn

error

��

where suboptions are:

 no Do not parse the template definitions. This reduces the number of errors issued

in code written for previous versions of VisualAge C++ and predecessor

products. This is the default.

warn Parses template definitions and issues warning messages for semantic errors.

error Treats problems in template definitions as errors, even if the template is not

instantiated.

Notes

This option applies to template definitions, not their instantiations. Regardless of

the setting of this option, error messages are produced for problems that appear

outside definitions. For example, errors found during the parsing or semantic

checking of constructs such as the following, always cause error messages:

v return type of a function template

v parameter list of a function template

Example

Example 1:

In the following example the template class is not instantiated, therefore it is never

parsed by the compile and if you do not use -qtmplparse=error option, the

194 XL C/C++ Compiler Reference

compiler do not find any syntax error. However; if you use -qtmplparse=error the

template class is parsed and the compiler flags the error message.

template <class A> struct container

{

 A a1;

 A foo1() //syntax error

 int _data;

};

xlC -c -qtmplparse=error myprogram.cpp

Example 2:

In the following example a containing class is not instantiated, therefore its

out-of-line member definition is not parsed. If you do not use -qtmplparse=error

the compiler does not issue an error message for the mismatch between the

out-of-line definition and the original definition.

template <class A> struct container

{

 void member(A a);

};

// error - this member is not declared in the struct container

template <class B> void container::member() {

}

xlC -c -qtmplparse=error myprogram.cpp

Note: Whether you use -qtmplparse=error or not , if you try to instantiate the

class compiler will issue an error message.

Related information

v Options for customizing the compiler: Template-related options

v ″Using C++ templates″ in the XL C/C++ Programming Guide.

-qtocdata

Description

Marks data as local.

Syntax

��
 notocdata

-q

tocdata

��

Notes

This option applies only to 64-bit compilations, and is ignored if specified for a

32-bit compilation.

Local variables are statically bound to the functions that use them. -qtocdata

instructs the compiler to assume that all variables are local.

If an imported variable is assumed to be local, incorrect code may be generated

and performance may decrease. Imported variables are dynamically bound to a

shared portion of a library. -qnotocdata instructs the compiler to assume that all

variables are imported.

Chapter 3. Compiler options reference 195

Conflicts among the data-marking options are resolved in the following manner:

 Options that list

variable names

The last explicit specification for a particular variable name is used.

Options that

change the

default

This form does not specify a name list. The last option specified is the

default for variables not explicitly listed in the name-list form.

Related information

v Options for performance optimization: Options for ABI performance tuning

-qtrigraph

Description

Instructs the compiler to recognize trigraph key combinations used to represent

characters not found on some keyboards.

Syntax

��
 trigraph

-q

notrigraph

��

Notes

A trigraph is a combination of three-key character combinations that let you

produce a character that is not available on all keyboards.

The trigraph key combinations are:

 Key combination Character produced

??= #

??([

??)]

??/ \

??’ ^

??< {

??> }

??! |

??- ~

The default -qtrigraph setting can be overridden by explicitly setting the

-qnotrigraph option on the command line.

An explicit -qnotrigraph specification on the command line takes precedence over

the -qtrigraph setting normally associated with a given -qlanglvl compiler option,

regardless of where the -qnotrigraph specification appears on the command line.

The same is true for C++ programs.

Examples

To disable trigraph character sequences when compiling your C program, enter:

xlc myprogram.c -qnotrigraph

1. To disable trigraph character sequences when compiling your C++ program,

enter:

196 XL C/C++ Compiler Reference

xlc++ myprogram.C -qnotrigraph

Related information

v “-qdigraph” on page 72

v “-qlanglvl” on page 119

v Options that control input: Options for language extensions

-qtune

Description

Specifies the architecture system for which the executable program is optimized.

Syntax

��
 pwr4

-q

tune

=

auto

ppc970

pwr3

pwr5

rs64b

rs64c

��

where architecture suboptions are:

 auto Produces object code optimized for the platform on which it is compiled.

ppc970 Produces object code optimized for the PowerPC 970 processor.

pwr3 Produces object code optimized for the POWER3 hardware platforms.

pwr4 Produces object code optimized for the POWER4 hardware platforms.

pwr5 Produces object code optimized for the POWER5 hardware platforms.

rs64b Produces object code optimized for the RS64II processor.

rs64c Produces object code optimized for the RS64III processor.

 See also “#pragma options” on page 248.

Default

The default setting of the -qtune option depends on the setting of the -qarch

option.

v If -qtune is specified without -qarch, the compiler uses -qarch setting to specify

the appropriate default based on the compilation mode.

v If -qarch is specified without -qtune, the compiler uses the default tuning option

for the specified architecture.

Default -qtune settings for specific -qarch settings are described in “Acceptable

compiler mode and processor architecture combinations” on page 208.

Notes

You can use -qtune=suboption with -qarch=suboption.

v -qarch=suboption specifies the architecture for which the instructions are to be

generated.

v -qtune=suboption specifies the target platform for which the code is optimized.

v Specifying an invalid -qtune option for the effective -qarch option issues a

warning message with the -qtune being set to the default for the effective -qarch

option.

Chapter 3. Compiler options reference 197

Example

To specify that the executable program testing compiled from myprogram.C is to be

optimized for a POWER3 hardware platform, enter:

xlc++ -o testing myprogram.C -qtune=pwr3

Related information

v “-qarch” on page 49

v “Specifying compiler options for architecture-specific, 32-bit or 64-bit

compilation” on page 20

v Options for performance optimization: Options for processor and architectural

optimization

v "Optimizing your applications"in the XL C/C++ Programming Guide

-U

Description

Undefines the identifier name defined by the compiler or by the -Dname option.

Syntax

�� -U name ��

Notes

The -Uname option is not equivalent to the #undef preprocessor directive. It cannot

undefine names defined in the source by the #define preprocessor directive. It can

only undefine names defined by the compiler or by the -Dname option.

The identifier name can also be undefined in your source program using the

#undef preprocessor directive.

The -Uname option has a higher precedence than the -Dname option.

Example

Assume that your operating system defines the name __unix, but you do not want

your compilation to enter code segments conditional on that name being defined.

Compile myprogram.c so that the definition of the name __unix is nullified by

entering:

xlc myprogram.c -U__unix

Related information

v “-D” on page 69

v Summary of command line options: Other input options

-qunroll

Description

Unrolls inner loops in the program. This can help improve program performance.

198 XL C/C++ Compiler Reference

Syntax

��
 unroll = auto

-q

unroll

yes

=

auto

no

nounroll

��

where:

 -qunroll=auto Leaves the decision to unroll loops to the compiler. This is

the compiler default.

-qunroll or -qunroll=yes Suggests to the compiler that it unroll loops.

-qnounroll or -qunroll=no Instructs the compiler to not unroll loops.

See also “#pragma unroll” on page 261 and “#pragma options” on page 248.

Notes

The compiler default for this option, unless explicitly specified otherwise on the

command line, is -qunroll=auto.

Specifying -qunroll without any suboptions is equivalent to specifying

-qunroll=yes.

When -qunroll, -qunroll=yes, or -qunroll=auto is specified, the bodies of inner

loops will be unrolled, or duplicated, by the optimizer. The optimizer determines

and applies the best unrolling factor for each loop. In some cases, the loop control

may be modified to avoid unnecessary branching.

To see if the unroll option improves performance of a particular application, you

should first compile the program with usual options, then run it with a

representative workload. You should then recompile with command line -qunroll

option and/or the unroll pragmas enabled, then rerun the program under the

same conditions to see if performance improves.

You can use the #pragma unroll directive to gain more control over unrolling.

Setting this pragma overrides the -qunroll compiler option setting.

Examples

1. In the following examples, unrolling is disabled:

xlc++ -qnounroll file.C

xlc++ -qunroll=no file.C

2. In the following examples, unrolling is enabled:

xlc++ -qunroll file.C

xlc++ -qunroll=yes file.C

xlc++ -qunroll=auto file.C

3. See “#pragma unroll” on page 261 for examples of how program code is

unrolled by the compiler.

Related information

Chapter 3. Compiler options reference 199

v Options for performance optimization: Options for loop optimization

-qunwind

Description

Informs the compiler that the stack can be unwound while a routine in the

compilation is active.

Syntax

��
 unwind

-q

nounwind

��

Notes

Specifying -qnounwind can improve optimization of non-volatile register saves

and restores.

For C++ programs, specifying -qnounwind also implies -qnoeh.

Related information

v “-qeh” on page 77

v Options for performance optimization: Options for ABI performance tuning

-qupconv

Description

Preserves the unsigned specification when performing integral promotions.

Syntax

��
 noupconv

-q

upconv

��

See also “#pragma options” on page 248.

Notes

The -qupconv option promotes any unsigned type smaller than an int to an

unsigned int instead of to an int.

Sign preservation is provided for compatibility with older dialects of C. The ANSI

C standard requires value preservation as opposed to sign preservation.

Default

The default is -qnoupconv, except when -qlanglvl is set to classic or extended, in

which case the default is -qupconv. The compiler does not preserve the unsigned

specification.

The default compiler action is for integral promotions to convert a char, short int,

int bit field or their signed orunsigned types, or an enum type to an int. Otherwise,

the type is converted to an unsigned int.

200 XL C/C++ Compiler Reference

Example

To compile myprogram.c so that all unsigned types smaller than int are converted

to unsigned int, enter:

xlc myprogram.c -qupconv

The following short listing demonstrates the effect of -qupconv:

#include <stdio.h>

int main(void) {

 unsigned char zero = 0;

 if (-1 <zero)

 printf(“Value-preserving rules in effect\n”);

 else

 printf(“Unsignedness-preserving rules in effect\n”);

 return 0;

}

Related information

v “-qlanglvl” on page 119

v Summary of command line options: Options for signedness

-qutf

Description

Enables recognition of UTF literal syntax.

Syntax

��
 noutf

-q

utf

��

Notes

The compiler uses iconv to convert the source file to Unicode. If the source file

cannot be converted, the compiler will ignore the -qutf option and issue a

warning.

Related information

v Options that control input: Options for language extensions

v "UTF literals"in the XL C/C++ Language Reference

-V

Description

Instructs the compiler to report information on the progress of the compilation,

names the programs being invoked within the compiler and the options being

specified to each program. Information is displayed in a space-separated list.

Syntax

�� -V ��

Notes

The -V option is overridden by the -# option.

Chapter 3. Compiler options reference 201

Example

To compile myprogram.C so you can watch the progress of the compilation and see

messages that describe the progress of the compilation, the programs being

invoked, and the options being specified, enter:

xlc++ myprogram.C -V

Related information

v “-# (pound sign)” on page 43

v “-v”

v Options that control listings and messages: Options for messages

-v

Description

Instructs the compiler to report information on the progress of the compilation,

names the programs being invoked within the compiler and the options being

specified to each program. Information is displayed in a comma-separated list.

Syntax

�� -v ��

Notes

The -v option is overridden by the -# option.

Example

To compile myprogram.c so you can watch the progress of the compilation and see

messages that describe the progress of the compilation, the programs being

invoked, and the options being specified, enter:

xlc myprogram.c -v

Related information

v “-# (pound sign)” on page 43

v “-V” on page 201

v Options that control listings and messages: Options for messages

-qversion

Description

Displays the version of the compiler being invoked. The output is the official

product name and the compiler version found on the system.

Syntax

�� -q version ��

Notes

Specify this option on its own with the compiler command. For example:

 xlC -qversion

Related information

v Options that control listings and messages: Options for messages

202 XL C/C++ Compiler Reference

-qvftable

Description

Controls the generation of virtual function tables.

Syntax

��
 vftable

-q

novftable

��

Default

The default is to define the virtual function table for a class if the current

compilation unit contains the body of the first non-inline virtual member function

declared in the class member list.

Notes

Specifying -qvftable generates virtual function tables for all classes with virtual

functions that are defined in the current compilation unit.

If you specify -qnovftable, no virtual function tables are generated in the current

compilation unit.

Example

To compile the file myprogram.C so that no virtual function tables are generated,

enter:

 xlc++ myprogram.C -qnovftable

Related information

v Options that control output: Options that control the characteristics of the object

code

-qvrsave

Description

Enables code in function prologs and epilogs to maintain the VRSAVE register.

Syntax

��
 vrsave

-q

novrsave

��

where:

 vrsave Prologs and epilogs of functions in the compilation unit include code

needed to maintain the VRSAVE register.

novrsave Prologs and epilogs of functions in the compilation unit do not include

code needed to maintain the VRSAVE register.

Notes

Use #pragma altivec_vrsave to override the current setting of this compiler option

for individual functions within your program source.

Chapter 3. Compiler options reference 203

Related information

v “#pragma altivec_vrsave” on page 219

v Options that control output: Options that control the characteristics of the object

code

-W

Description

Passes the listed option to a designated compiler component.

Syntax

��

�

-W

a

,

option

b

c

I

L

l

m

p

��

where programs are:

 Program Description

a Assembler

b Compiler back end

c Compiler front end

I Interprocedural analysis - compile phase

L Interprocedural analysis - link phase

l linkage editor

p compiler preprocessor

Notes

When used in the configuration file, the -W option accepts the escape sequence

backslash comma (\,) to represent a comma in the parameter string.

Examples

1. To compile myprogram.c so that the option -pg is passed to the linkage editor (l)

and the assembler (a), enter:

xlc myprogram.c -Wl,-pg -Wa,-pg

2. In a configuration file, use the \, sequence to represent the comma (,).

-Wl\,-pg,-Wa\,-pg

Related information

v “Invoking the compiler” on page 11

v Options for customizing the compiler: Options for general customization

204 XL C/C++ Compiler Reference

-w

Description

Requests that warnings and lower-level messages be suppressed. Specifying this

option is equivalent to specifying -qflag=e:e.

Syntax

�� -w ��

Notes

Informational and warning messages that supply additional information to a

severe error are not disabled by this option. For example, a severe error caused by

problems with overload resolution will also produce information messages. These

informational messages are not disabled with -w option:

void func(int a){}

void func(int a, int b){}

int main(void)

{

func(1,2,3);

return 0;

}

"x.cpp", line 6.4: 1540-0218 (S) The call does not match any parameter list for "func".

"x.cpp", line 1.6: 1540-1283 (I) "func(int)" is not a viable candidate.

"x.cpp", line 6.4: 1540-0215 (I) The wrong number of arguments have been specified for "func(int)".

"x.cpp", line 2.6: 1540-1283 (I) "func(int, int)" is not a viable candidate.

"x.cpp", line 6.4: 1540-0215 (I) The wrong number of arguments have been specified for "func(int, int)".

Example

To compile myprogram.c so that no warning messages are displayed, enter:

xlc++ myprogram.C -w

Related information

v “-qflag” on page 82

v Options that control listings and messages: Options for messages

-qwarn64

Description

Enables checking for possible data conversion problems between 32-bit and 64-bit

compiler modes.

Syntax

��
 nowarn64

-q

warn64

��

Notes

All generated messages have level Informational.

The -qwarn64 option functions in either 32-bit or 64-bit compiler modes. In 32-bit

mode, it functions as a preview aid to discover possible 32-bit to 64-bit migration

problems.

Chapter 3. Compiler options reference 205

Informational messages are displayed where data conversion may cause problems

in 64-bit compilation mode, such as:

v Truncation due to explicit or implicit conversion of long types into int types

v Unexpected results due to explicit or implicit conversion of int types into long

types

v Invalid memory references due to explicit conversion by cast operations of

pointer types into int types

v Invalid memory references due to explicit conversion by cast operations of int

types into pointer types

v Problems due to explicit or implicit conversion of constants into long types

v Problems due to explicit or implicit conversion by cast operations of constants

into pointer types

v Conflicts with pragma options arch in source files and on the command line

Related information

v -q32, -q64

v “Compiler messages” on page 25

v Options for error checking and debugging: Options for error checking

-qxcall

Description

Generates code to treat static functions within a compilation unit as if they were

external functions.

Syntax

��
 noxcall

-q

xcall

��

Notes

-qxcall generates slower code than -qnoxcall.

Example

To compile myprogram.c so that all static functions are compiled as external

functions, enter:

xlc myprogram.c -qxcall

Related information

v Options that control output: Options that control the characteristics of the object

code

-qxref

Description

Produces a compiler listing that includes a cross-reference listing of all identifiers.

Syntax

��
 noxref

-q

xref

=full

��

206 XL C/C++ Compiler Reference

where:

 noxref Do not report identifiers in the program.

xref Reports only those identifiers that are used.

xref=full Reports all identifiers in the program.

See also “#pragma options” on page 248.

Notes

The -qnoprint option overrides this option.

Any function defined with the #pragma mc_func function_name directive is listed

as being defined on the line of the #pragma directive.

Example

To compile myprogram.C and produce a cross-reference listing of all identifiers

whether they are used or not, enter:

xlc++ myprogram.C -qxref=full -qattr

A typical cross-reference listing has the form:

Related information

v “-qattr” on page 54

v “#pragma mc_func” on page 245

v Options that control listings and messages: Options for listing

-y

Description

Specifies the compile-time rounding mode of constant floating-point expressions.

Syntax

��
 n

-y

m

p

z

��

where suboptions are:

 n Round to the nearest representable number. This is the default.

m Round toward minus infinity.

p Round toward plus infinity.

z Round toward zero.

Chapter 3. Compiler options reference 207

Example

To compile myprogram.c so that constant floating-point expressions are rounded

toward zero at compile time, enter:

xlc myprogram.c -yz

Related information

v Options that control integer and floating-point processing

Acceptable compiler mode and processor architecture combinations

You can use the -q32, -q64, -qarch, and -qtune compiler options to optimize the

output of the compiler to suit:

v the broadest possible selection of target processors,

v a range of processors within a given processor architecture family,

v a single specific processor.

Generally speaking, the options do the following:

v -q32 selects 32-bit execution mode.

v -q64 selects 64-bit execution mode.

v -qarch selects the general family processor architecture for which instruction

code should be generated. Certain -qarch settings produce code that will run

only on systems that support all of the instructions generated by the compiler in

response to a chosen -qarch setting.

v -qtune selects the specific processor for which compiler output is optimized.

Some -qtune settings can also be specified as -qarch options, in which case they

do not also need to be specified as a -qtune option. The -qtune option influences

only the performance of the code when running on a particular system but does

not determine where the code will run.

All PowerPC machines share a common set of instructions, but may also include

additional instructions unique to a given processor or processor family.

The table below shows some selected processors, and the various features they

may or may not support:

 Architecture graphics

support

sqrt support 64-bit support VMX

support

rs64b yes yes yes no

rs64c yes yes yes no

pwr3 yes yes yes no

pwr4 yes yes yes no

pwr5 yes yes yes no

pwr5x yes yes yes no

ppc no no no no

ppc64 no no yes no

ppc64gr yes no yes no

ppc64grsq yes yes yes no

ppc64v yes yes yes yes

ppc970 yes yes yes yes

If you want to generate code that will run across a variety of processors, use the

following guidelines to select the appropriate -qarch and/or -qtune compiler

options. Code compiled with:

208 XL C/C++ Compiler Reference

v -qarch=pwr3 will run on any POWER3, POWER4, POWER5, POWER5+, and

PowerPC 970 machines.

v -qarch=pwr4 will run on any POWER4, POWER5, POWER5+, and PowerPC 970

machines.

v -qarch=pwr5 will run on POWER5, POWER5+, PowerPC 970 machines.

v -qarch=pwr5x will run on POWER5+ machines.

v -qarch=ppc will run on any PowerPC system.

v -qarch=ppcgr will run on any PowerPC system with graphics support.

v -qarch=ppc64 will run on any 64-bit PowerPC system.

v -qarch=ppc64gr will run on any 64-bit PowerPC system with graphics support.

v -qarch=ppc64grsq will run on any 64-bit PowerPC system with graphics and

square root support.

v -qarch=ppc64v will run on any 64-bit PowerPC system with VMX support.

v -q64 will run only on PowerPC machines with 64-bit support

v Other -qarch options that refer to specific processors will run on any

functionally equivalent PowerPC machine. For example, the table that follows

shows that code compiled with -qarch=pwr3 will also run on a rs64c.

If you want to generate code optimized specifically for a particular processor,

acceptable combinations of -q32, -q64, -qarch, and -qtune compiler options are

shown in the following table.

 Table 40. Acceptable -qarch /-qtune combinations

-qarch

option Predefined macros

Default -qtune

setting

Available -qtune

settings

ppc _ARCH_PPC pwr4 auto pwr3 pwr4 pwr5

ppc970 rs64b rs64c

ppcgr _ARCH_PPC _ARCH_PPCGR pwr4 auto pwr3 pwr4 pwr5

ppc970 rs64b rs64c

ppc64 _ARCH_PPC _ARCH_PPC64 pwr4 auto pwr3 pwr4 pwr5

ppc970 rs64b rs64c

ppc64v _ARCH_PPC _ARCH_PPCGR

_ARCH_PPC64 _ARCH_PPC64GR

_ARCH_PPC64GRSQ _ARCH_PPC64V

ppc970 auto ppc970

ppc64gr _ARCH_PPC _ARCH_PPCGR

_ARCH_PPC64 _ARCH_PPC64GR

pwr4 auto pwr3 pwr4 pwr5

ppc970 rs64b rs64c

ppc64grsq _ARCH_PPC _ARCH_PPCGR

_ARCH_PPC64 _ARCH_PPC64GR

_ARCH_PPC64GRSQ

pwr4 auto pwr3 pwr4 pwr5

ppc970 rs64b rs64c

ppc970 _ARCH_PPC _ARCH_PPCGR

_ARCH_PPC64 _ARCH_PWR3

_ARCH_PWR4 _ARCH_PPC970

_ARCH_PPC64GR _ARCH_PPC64GRSQ

ppc970 auto ppc970

rs64b _ARCH_PPC _ARCH_PPCGR

_ARCH_PPC64 _ARCH_RS64B

_ARCH_PPC64GR _ARCH_PPC64GRSQ

rs64b auto rs64b

rs64c _ARCH_PPC _ARCH_PPCGR

_ARCH_PPC64 _ARCH_RS64C

_ARCH_PPC64GR _ARCH_PPC64GRSQ

rs64c auto rs64c

pwr3 _ARCH_PPC _ARCH_PPCGR

_ARCH_PPC64 _ARCH_PWR3

_ARCH_PPC64GR _ARCH_PPC64GRSQ

pwr3 auto pwr3 pwr4 pwr5

ppc970

Chapter 3. Compiler options reference 209

Table 40. Acceptable -qarch /-qtune combinations (continued)

-qarch

option Predefined macros

Default -qtune

setting

Available -qtune

settings

pwr4 _ARCH_PPC _ARCH_PPCGR

_ARCH_PPC64 _ARCH_PWR3

_ARCH_PWR4 _ARCH_PPC64GR

_ARCH_PPC64GRSQ

pwr4 auto pwr4 pwr5 ppc970

pwr5 _ARCH_PPC _ARCH_PPCGR

_ARCH_PPC64 _ARCH_PWR3

_ARCH_PWR4 _ARCH_PWR5

_ARCH_PPC64GR _ARCH_PPC64GRSQ

pwr5 auto pwr5

pwr5x _ARCH_PPC _ARCH_PPCGR

_ARCH_PPC64 _ARCH_PWR3

_ARCH_PWR4 _ARCH_PWR5

_ARCH_PWR5X _ARCH_PPC64GR

_ARCH_PPC64GRSQ

pwr5 auto pwr5

Related information

v “Specifying compiler options for architecture-specific, 32-bit or 64-bit

compilation” on page 20

v “-q32, -q64” on page 44

v “-qarch” on page 49

v “-qtune” on page 197

210 XL C/C++ Compiler Reference

Chapter 4. Reusing GNU C/C++ compiler options with glxc

and glxc++

This chapter describes how to reuse GNU compiler options with the XL C/C++

compiler through the use of the compiler invocation utility gxlc and gxlc++.

Each of the gxlc and gxlc++ utilities accepts GNU C or C++ compiler options and

translates them into comparable XL C/C++ options. Both utilities use the XL

C/C++ options to create an xlc or xlC invocation command, which they then use

to invoke the compiler. These utilities are provided to facilitate the reuse of make

files created for applications previously developed with GNU C/C++. However, to

fully exploit the capabilities of XL C/C++, it is recommended that you use the XL

C/C++ invocation commands and their associated options.

The actions of gxlc and gxlc++ are controlled by the configuration file gxlc.cfg.

The GNU C/C++ options that have an XL C or XL C++ counterpart are shown in

this file. Not every GNU option has a corresponding XL C/C++ option. gxlc and

gxlc++ return warnings for input options that were not translated.

 The gxlc and gxlc++ option mappings are modifiable. For information on adding

to or editing the gxlc and gxlc++ configuration file, see “Configuring the option

mapping” on page 212.

Example

To use the GCC -ansi option to compile the C version of the Hello World

program, you can use:

gxlc -ansi hello.c

which translates into:

xlc -F:c89 hello.c

This command is then used to invoke the XL C compiler.

gxlc and gxlc++ return codes

Like other invocation commands, gxlc and gxlc++ return output, such as listings,

diagnostic messages related to the compilation, warnings related to unsuccessful

translation of GNU options, and return codes. If gxlc or gxlc++ cannot successfully

call the compiler, it sets the return code to one of the following values:

40 A gcc or g++ option error or unrecoverable error has been detected.

255 An error has been detected while the process was running.

glxc and glxc++ syntax

The following diagram shows the gxlc and gxlc++ syntax:

�� gxlc filename

gxlc++

-v

-Wx,

xlc_or_xlc++_options

gcc_or_g++_options

-vv

 ��

where:

© Copyright IBM Corp. 1995, 2005 211

filename

Is the name of the file to be compiled.

-v Allows you to verify the command that will be used to invoke XL C/C++.

gxlc or gxlc++ displays the XL C/C++ invocation command that it has

created, before using it to invoke the compiler.

-vv Allows you to run a simulation. gxlc or gxlc++ displays the XL C/C++

invocation command that it has created, but does not invoke the compiler.

-Wx,xlc_or_xlc++_options

Sends the given XL C/C++ options directly to the or xlc++ invocation

command. gxlc or gxlc++ adds the given options to the XL invocation it is

creating, without attempting to translate them. Use this option with known

XL C/C++ options to improve the performance of the utility. Multiple

xlc_or_xlc++_options use a comma delimiter.

gcc_or_g++_options

Are the gxlc or gxlc++ options that are to be translated to xlc or xlc++

options. The utility emits a warning for any option it cannot translate. The

gcc and g++ options that are currently recognized by gxlc or gxlc++ are

listed in the configuration file gxlc.cfg. Multiple gcc_or_g++_options are

delimited by the space character.

Related information

v “Configuring the option mapping”

Configuring the option mapping

The gxlc and gxlc++ utilities use the configuration file gxlc.cfg to translate GNU

C and C++ options to XL C/C++ options. Each entry in gxlc.cfg describes how

the utility should map a GNU C or C++ option to an XL C/C++ option and how

to process it.

 An entry consists of a string of flags for the processing instructions, a string for the

GNU C option, and a string for the XL C/C++ option. The three fields must be

separated by white space. If an entry contains only the first two fields and the XL

C/C++ option string is omitted, the GNU C option in the second field will be

recognized by gxlc and silently ignored.

The # character is used to insert comments in the configuration file. A comment

can be placed on its own line, or at the end of an entry.

The following syntax is used for an entry in gxlc.cfg:

abcd "gcc_or_g++_option" "xlc_or_xlc++_option"

where:

a Lets you disable the option by adding no- as a prefix. The value is either y

for yes, or n for no. For example, if the flag is set to y, then finline can be

disabled as fno-inline, and the entry is:

ynn* "-finline" "-qinline"

If given -fno-inline, then gxlc will translate it to -qnoinline.

b Informs the utility that the XL C/C++ option has an associated value. The

value is either y for yes, or n for no. For example, if option -fmyvalue=n

maps to -qmyvalue=n, then the flag is set to y, and the entry is:

212 XL C/C++ Compiler Reference

nyn* "-fmyvalue" "-qmyvalue"

gxlc and gxlc++ will then expect a value for these options.

c Controls the processing of the options. The value can be:

v n, which tells the utility to process the option listed in the gcc-option field

v i, which tells the utility to ignore the option listed in the gcc-option field.

gxlc and gxlc++ will generate a message that this has been done, and

continue processing the given options.

v e, which tells the utility to halt processing if the option listed in the

gcc-option field is encountered. gxlc and gxlc++ will also generate an

error message.

For example, the gcc option -I- is not supported and must be ignored by

gxlc and gxlc++. In this case, the flag is set to i, and the entry is:

nni* "-I-"

If gxlc and gxlc++ encounters this option as input, it will not process it

and will generate a warning.

d Lets gxlc and gxlc++ include or ignore an option based on the type of

compiler. The value can be:

v c, which tells gxlc and gxlc++ to translate the option only for C.

v x, which tells gxlc and gxlc++ to translate the option only for C++.

v *, which tells gxlc and gxlc++ to translate the option for C and C++.

For example, -fwritable-strings is supported by both compilers, and

maps to -qnoro. The entry is:

nnn* "-fwritable-strings" "-qnoro"

″gcc_or_g++_option″

Is a string representing a gcc or g++ option.

″xlc_or_xlc++_option″

Is a string representing an XL C/C++ option. This field is optional, and, if

present, must appear in double quotation marks. If left blank, gxlc and

gxlc++ ignores the gcc_or_g++_option in that entry.

It is possible to create an entry that will map a range of options. This is

accomplished by using the asterisk (*) as a wildcard. For example, the gcc -D

option requires a user-defined name and can take an optional value. It is possible

to have the following series of options:

-DCOUNT1=100

-DCOUNT2=200

-DCOUNT3=300

-DCOUNT4=400

Instead of creating an entry for each version of this option, the single entry is:

nnn* "-D*" "-D*"

where the asterisk will be replaced by any string following the -D option.

Conversely, you can use the asterisk to exclude a range of options. For example, if

you want gxlc or gxlc++ to ignore all the -std options, then the entry would be:

nni* "-std*"

Chapter 4. Reusing GNU C/C++ compiler options with glxc and glxc++ 213

When the asterisk is used in an option definition, option flags a and b are not

applicable to these entries.

The character % is used with a GNU C or GNU C++ option to signify that the

option has associated parameters. This is used to insure that gxlc or gxlc++ will

ignore the parameters associated with an option that is ignored. For example, the

-isystem option is not supported and uses a parameter. Both must be ignored by

the application. In this case, the entry is:

nni* "-isystem %"

For a complete list of GNU C and C++ and XL C/C++ option mapping, refer to:

http://www.ibm.com/support/search.wss?q=gxlcppoptionmaptabl&tc=SSJT9L&

rs=2030&apar=include

 Related information

v The GNU Compiler Collection online documentation at

http://gcc.gnu.org/onlinedocs/

214 XL C/C++ Compiler Reference

http://www.ibm.com/support/search.wss?q=gxlcppoptionmaptabl&tc=SSJT9L&rs=2030&apar=include
http://www.ibm.com/support/search.wss?q=gxlcppoptionmaptabl&tc=SSJT9L&rs=2030&apar=include
http://gcc.gnu.org/onlinedocs

Chapter 5. Compiler pragmas reference

The following sections describe the pragmas available in XL C/C++ for the Linux

platform:

v “Summary of XL C/C++ pragmas”

v “Summary of OpenMP pragma directives” on page 216

v “Individual pragma descriptions” on page 217

Summary of XL C/C++ pragmas

The pragmas listed below are available for general programming use.

 Pragma Description

#pragma align Aligns data items within structures.

#pragma alloca Provides an inline version of the function alloca(size_t

size).

#pragma altivec_vrsave Adds code to function prologs and epilogs to maintain the

VRSAVE register.

#pragma block_loop Instructs the compiler to create a blocking loop for a specific

loop in a loop nest.

#pragma chars Sets the sign type of character data.

#pragma comment Places a comment into the object file.

#pragma complexgcc Instructs the compiler how to pass and return parameters of

complex type when calling functions.

#pragma STDC

cx_limited_range

Instructs the compiler that within the scope it controls,

complex division and absolute value are only invoked with

values such that intermediate calculation will not overflow

or lose significance.

#pragma define Forces the definition of a template class without actually

defining an object of the class.

#pragma disjoint Lists the identifiers that are not aliased to each other within

the scope of their use.

#pragma

do_not_instantiate

Suppresses instantiation of a specified template declaration.

#pragma enum Specifies the size of enum variables that follow.

#pragma

execution_frequency

Lets you mark program source code that you expect will be

either very frequently or very infrequently executed.

#pragma hashome Informs the compiler that the specified class has a home

module that will be specified by the IsHome pragma.

#pragma ibm snapshot Allows the user to specify a location at which a breakpoint

can be set and to define a list of variables that can be

examined when program execution reaches that location.

#pragma

implementation

Tells the compiler the name of the file containing the

function-template definitions that correspond to the template

declarations in the include file which contains the pragma.

#pragma info Controls the diagnostic messages generated by the info(...)

compiler options.

© Copyright IBM Corp. 1995, 2005 215

Pragma Description

#pragma instantiate Causes immediate instantiation of a specified template

declaration.

#pragma ishome Informs the compiler that the specified class’s home module

is the current compilation unit.

#pragma isolated_call Marks a function that does not have or rely on side effects,

other than those implied by its parameters.

#pragma langlvl Selects the C or C++ language level for compilation.

#pragma leaves Takes a function name and specifies that the function never

returns to the instruction after the function call.

#pragma loop_id Marks a block with a scope-unique identifier.

#pragma map Tells the compiler that all references to an identifier are to be

converted to a new name.

#pragma mc_func Lets you define a function containing a short sequence of

machine instructions.

#pragma nosimd instructs the compiler to not generate VMX (Vector

Multimedia Extension) instructions in the loop immediately

following this directive.

#pragma novector Instructs the compiler to not auto-vectorize the next loop.

#pragma options Specifies options to the compiler in your source program.

#pragma option_override Specifies alternate optimization options for specific functions.

#pragma pack Modifies the current alignment rule for members of

structures that follow this pragma.

#pragma priority Specifies the order in which static objects are to be

initialized.

#pragma reachable Declares that the point after the call to a routine marked

reachable can be the target of a branch from some unknown

location.

#pragma reg_killed_by Specifies those registers which value will be corrupted by the

specified function. It must be used together with #pragma

mc_func.

#pragma report Controls the generation of specific messages.

#pragma stream_unroll Breaks a stream contained in a loop into multiple streams.

#pragma strings Sets storage type for strings.

#pragma unroll Unrolls innermost and outermost loops in the program. This

can help improve program performance.

#pragma unrollandfuse Instructs the compiler to attempt an unroll and fuse

operation on nested for loops. This can help improve

program performance.

#pragma weak Prevents the link editor from issuing error messages if it

does not find a definition for a symbol, or if it encounters a

symbol multiply-defined during linking.

Summary of OpenMP pragma directives

The pragma directives summarized on this page give you control over how the

compiler handles parallel processing in your program.

216 XL C/C++ Compiler Reference

Directives apply only to the statement or statement block immediately following

the directive.

 OpenMP pragma directives Description

#pragma omp atomic Identifies a specific memory location that must be

updated atomically and not be exposed to multiple,

simultaneous writing threads.

#pragma omp parallel Defines a parallel region to be run by multiple threads

in parallel. With specific exceptions, all other OpenMP

directives work within parallelized regions defined by

this directive.

#pragma omp for Work-sharing construct identifying an iterative for-loop

whose iterations should be run in parallel.

#pragma omp parallel for Shortcut combination of omp parallel and omp for

pragma directives, used to define a parallel region

containing a single for directive.

#pragma omp ordered Work-sharing construct identifying a structured block of

code that must be executed in sequential order.

#pragma omp section, #pragma

omp sections

Work-sharing construct identifying a non-iterative

section of code containing one or more subsections of

code that should be run in parallel.

#pragma omp parallel sections Shortcut combination of omp parallel and omp sections

pragma directives, used to define a parallel region

containing a single sections directive.

#pragma omp single Work-sharing construct identifying a section of code that

must be run by a single available thread.

#pragma omp master Synchronization construct identifying a section of code

that must be run only by the master thread.

#pragma omp critical Synchronization construct identifying a statement block

that must be executed by a single thread at a time.

#pragma omp barrier Synchronizes all the threads in a parallel region.

#pragma omp flush Synchronization construct identifying a point at which

the compiler ensures that all threads in a parallel region

have the same view of specified objects in memory.

#pragma omp threadprivate Defines the scope of selected file-scope data variables as

being private to a thread, but file-scope visible within

that thread.

Individual pragma descriptions

This section contains descriptions of individual pragmas available in XL C/C++.

#pragma align

Description

The #pragma align directive specifies how the compiler should align data items

within structures.

Chapter 5. Compiler pragmas reference 217

Syntax

�� # pragma align (linuxppc)

bit_packed

reset

 ��

See also “#pragma options” on page 248.

Notes

The #pragma align(suboption) directive overrides the -qalign compiler option

setting for a specified section of program source code.

The compiler stacks alignment directives, so you can go back to using a previous

alignment directive without knowing what it is by specifying the #pragma

align(reset) directive.

For example, you can use this option if you have a class declaration within an

include file and you do not want the alignment rule specified for the class to apply

to the file in which the class is included. You can code #pragma align(reset) in a

source file to change the alignment option to what it was before the last alignment

option was specified. If no previous alignment rule appears in the file, the

alignment rule specified in the invocation command is used.

Specifying #pragma align has the same effect as specifying #pragma options align

in your source file. For more information and examples of #pragma align and

#pragma options align usage, see “-qalign” on page 47.

 Related information

v in XL C/C++ Programming Guide

v and "The packed variable attribute" in XL C/C++ Language Reference

#pragma alloca

Description

The #pragma alloca directive specifies that the compiler should provide an inline

version of the function alloca(size_tsize). The function alloca(size_tsize) can

be used to allocate space for an object. The amount of space allocated is

determined by the value of size, which is measured in bytes. The allocated space is

put on the stack.

Syntax

�� # pragma alloca ��

Notes

You must specify the #pragma alloca directive or the -qalloca compiler option to

have the compiler provide an inline version of alloca.

Once specified, #pragma alloca applies to the rest of the file and cannot be turned

off. If a source file contains any functions that you want compiled without

#pragma alloca, place these functions in a different file.

 Related information

218 XL C/C++ Compiler Reference

v “-qalloca” on page 48

#pragma altivec_vrsave

Descripton

When the #pragma altivec_vrsave directive is enabled, function prologs and

epilogs include code to maintain the VRSAVE register.

Syntax

��
 on

#

pragma

altivec_vrsave

off

allon

��

where pragma settings do the following:

 on Function prologs and epilogs include code to maintain the VRSAVE register.

off Function prologs and epilogs do not include code to maintain the VRSAVE

register.

allon The function containing the altivec_vrsave pragma sets all bits of the VRSAVE

register to 1, indicating that all vectors are used and should be saved if a context

switch occurs.

Notes

v #pragma altivec_vrsave is supported only when -qaltivec option is in effect.

v Each bit in the VRSAVE register corresponds to a vector register, and if set to 1

indicates that the corresponding vector register contains data to be saved when a

context switch occurs. The default behavior is to always maintain the vrsave

register.

v This pragma can be used only within a function, and its effects apply only to the

function in which it appears. Specifying this pragma with different settings

within the same function will create an error condition.

Related information

v “-qaltivec” on page 49

v “-qvrsave” on page 203

#pragma block_loop

Description

Marks a block with a scope-unique identifier.

Syntax

��

�

 ,

#

pragma

block_loop

(

n

,

name_list

)

��

where:

 n Is an integer expression the size of the iteration group.

Chapter 5. Compiler pragmas reference 219

name_list Is a unique identifier you can create using the #pragma loopid directive. If you

do not specify name_list, blocking occurs on the first for loop or block_loop

following the #pragma block_loop directive.

name is an identifier that is unique within the scoping unit.

Notes

For loop blocking to occur, a #pragma block_loop directive must precede a for

loop.

If you specify unroll, unroll_and_fuse or stream_unroll directive for a blocking

loop, the blocking loop is unrolled, unrolled and fused or steam unrolled

respectively, if the blocking loop is actually created. Otherwise, this directive has

no effect.

If you specify unroll_and_fuse or stream_unroll directive for a blocked loop, the

directive is applied to the blocked loop after the blocking loop is created. If the

blocking loop is not created, this directive is applied to the loop intended for

blocking, as if the corresponding block_loop directive was not specified.

You must not specify #pragma block_loop more than once, or combine the

directive with the nounroll, unroll, nounrollandfuse, unrollandfuse, or

stream_unroll pragma directives for the same for loop. Also, You should not apply

more than one unroll directive to a single block loop directive.

Processing of all block_loop directives is always completed before performing any

unrolling indicated by any of the unroll directives

Examples of accurate use of the directive

Example 1 - Loop tiling

#pragma block_loop(50, mymainloop)

#pragma block_loop(20, myfirstloop, mysecondloop)

#pragma loopid(mymainloop)

 for (i=0; i < n; i++)

 {

#pragma loopid(myfirstloop)

 for (j=0; j < m; j++)

 {

#pragma loopid(mysecondloop)

 for (k=0; k < m; k++)

 {

 ...

 }

 }

 }

Example 2 - Loop tiling

#pragma block_loop(50, mymainloop)

#pragma block_loop(20, myfirstloop, mysecondloop)

#pragma loopid(mymainloop)

 for (i=0; i < n; n++)

 {

#pragma loopid(myfirdstloop)

 for (j=0; j < m; j++)

 {

#pragma loopid(mysecondloop)

 for (k=0; k < m; k++)

 {

 ...

220 XL C/C++ Compiler Reference

}

 }

 }

Example 3 - Loop interchange

 for (i=0; i < n; i++)

 {

 for (j=0; j < n; j++)

 {

#pragma block_loop(1,myloop1)

 for (k=0; k < m; k++)

 {

#pragma loopid(myloop1)

 for (l=0; l < m; l++)

 {

 ...

 }

 }

 }

 }

Example 4 - Loop tiling for multi-level memory hierarchy

 #pragma block_loop(l3factor, first_level_blocking)

 for (i=0; i < n; i++)

 {

 #pragma loopid(first_level_blocking)

 #pragma block_loop(l2factor, inner_space)

 for (j=0; j < n; j++)

 {

 #pragma loopid(inner_space)

 for (k=0; k < m; k++)

 {

 for (l=0; l < m; l++)

 {

 ...

 }

 }

 }

 }

Example 5 - Unroll-and-fuse of a blocking loop

#pragma unrollandfuse

#pragma block_loop(10)

 for (i = 0; i < N; ++i) {

 }

In this case, if the block loop directive is ignored, the unroll directives have no

effect.

Example 6 -Unroll of a blocked loop

 #pragma block_loop(10)

 #pragma unroll(2)

 for (i = 0; i < N; ++i) {

 }

In this case, if the block loop directive is ignored, the unblocked loop is still

subjected to unrolling. If blocking does happen, and after happens, the unroll

directive is applied to the blocked loop.

Chapter 5. Compiler pragmas reference 221

Examples of inaccurate use of the directive

Example 1- Block_loop of an undefined loop identifier

 #pragma block_loop(50, myloop)

 for (i=0; i < n; i++)

 {

 }

Referencing myloop is not allowed, since it is not in the nest

and may not be defined.

Example 2- Block_loop of a loop identifer not within the same loop nest

 for (i=0; i < n; i++)

 {

 #pragma loopid(myLoop)

 for (j=0; j < i; j++)

 {

 ...

 }

 }

 #pragma block_loop(myLoop)

 for (i=0; i < n; i++)

 {

 ...

 }

 Referencing myloop is not allowed, since it is defined in a different

loop nest (nesting structure).

Example 3- Conflicting unroll directives specified for a blocking loop

 #pragma unrollandfuse(5)

 #pragma unroll(2)

 #pragma block_loop(10)

 for (i = 0; i < N; ++i) {

 }

This is not allowed since the unroll directives are conflicting

with each other.

Example 4- Conflicting unroll directives specified for a blocked loop

 #pragma block_loop(10)

 #pragma unroll(5)

 #pragma unroll(10)

 for (i = 0; i < N; ++i) {

 }

This is not allowed since there are two different unrolling factors

specified for the same loop, and therefore the diretives are conflicting.

Related information

v “#pragma loop_id” on page 241

v “-qunroll” on page 198

v “#pragma unroll” on page 261

v “#pragma unrollandfuse” on page 262

v “#pragma stream_unroll” on page 259

#pragma chars

Descripton

The #pragma chars directive sets the sign type of char objects to be either signed

or unsigned.

222 XL C/C++ Compiler Reference

Syntax

��
 unsigned

#

pragma

chars

(

signed

)

��

Notes

In order to have effect, this pragma must appear before any source statements.

Once specified, the pragma applies to the entire file and cannot be turned off. If a

source file contains any functions that you want to be compiled without #pragma

chars, place these functions in a different file. If the pragma is specified more than

once in the source file, the first one will take precedence.

Note: The default character type behaves like an unsigned char.

 Related information

v “-qchars” on page 60

#pragma comment

Description

The #pragma comment directive places a comment string into the target or object

file.

Syntax

��
 compiler

#

pragma

comment

(

date

)

timestamp

copyright

user

,

″token_sequence″

��

where suboptions do the following:

 compiler The name and version of the compiler is appended to the end of the generated

object module.

date The date and time of compilation is appended to the end of the generated

object module.

timestamp The date and time of the last modification of the source is appended to the

end of the generated object module.

copyright The text specified by the token_sequence is placed by the compiler into the

generated object module and is loaded into memory when the program is run.

user The text specified by the token_sequence is placed by the compiler into the

generated object but is not loaded into memory when the program is run.

Example

Assume that following program code is compiled to produce output file a.out:

#pragma comment(date)

#pragma comment(compiler)

#pragma comment(timestamp)

#pragma comment(copyright,"My copyright")

int main() {

return 0;

}

Chapter 5. Compiler pragmas reference 223

You can use the operating system strings command to look for these and other

strings in an object or binary file. Issuing the command:

strings a.out

will cause the comment information embedded in a.out to be displayed, along

with any other strings that may be found in a.out. For example, assuming the

program code shown above:

Mon Mar 1 10:28:09 2005

XL C/C++ for Linux Compiler Version 8.0

Mon Mar 1 10:28:13 2005

My copyright

Note:

If the string literal specified in the token_sequence exceeds 32767 bytes, an

information message is emitted and the pragma is ignored.

#pragma complexgcc

Description

The #pragma complexgcc directive instructs the compiler how to pass and return

parameters of complex type.

Syntax

�� # pragma complexgcc (on)

off

pop

 ��

where suboptions do the following:

 on Pushes -qfloat=complexgcc onto the stack. This instructs the compiler to use the

GCC conventions for passing and returning parameters of complex type, by using

general purpose registers.

off Pushes -qfloat=nocomplexgcc onto the stack. This instructs the compiler to use

AIX conventions for passing and returning parameters of complex type, by using

floating-point registers.

pop Removes the current setting from the stack, and restores the previous setting. If the

stack is empty, the compiler will assume the -qfloat=[no]complexgcc setting

specified on the command line, or if not specified, the compiler default for

-qfloat=[no]complexgcc.

Notes

The current setting of this pragma affects only functions declared or defined while

the setting is in effect. It does not affect other functions.

Calling functions through pointers to functions will always use the convention set

by the -qfloat=[no]complexgcc compiler option. If this option is not explicitly set

on the command line when invoking the compiler, the compiler default for this

option is used. An error will result if you mix and match functions that pass

complex values by value or return complex values.

For example, assume the following code is compiled with -qfloat=nocomplexgcc:

#pragma complexgcc(on)

void p (_Complex double x) {}

#pragma complexgcc(pop)

224 XL C/C++ Compiler Reference

typedef void (*fcnptr) (_Complex double);

int main() {

 fcnptr ptr = p; /* error: function pointer is -qfloat=nocomplexgcc;

 function is -qfloat=complexgcc */

}

Related information

v “-qcomplexgccincl” on page 64

v “-qfloat” on page 83

#pragma define

Description

The #pragma define directive forces the definition of a template class without

actually defining an object of the class. This pragma is only provided for backward

compatibility purposes.

Syntax

�� # pragma define (template_classname) ��

where the template_classname is the name of the template to be defined.

Notes

A user can explicitly instantiate a class, function or member template specialization

by using a construct of the form:

template declaration

For example:

#pragma define(Array<char>)

is equivalent to:

template class Array<char>;

This pragma must be defined in namespace scope (i.e. it cannot be enclosed inside

a function/class body). It is used when organizing your program for the efficient

or automatic generation of template functions.

 Related information

v “#pragma do_not_instantiate” on page 226

v “#pragma instantiate” on page 236

#pragma disjoint

Description

The #pragma disjoint directive lists the identifiers that are not aliased to each

other within the scope of their use.

Chapter 5. Compiler pragmas reference 225

Syntax

��

�

#

pragma

disjoint

(

identifier

,

identifier

)

*

*

��

Notes

The directive informs the compiler that none of the identifiers listed shares the

same physical storage, which provides more opportunity for optimizations. If any

identifiers actually share physical storage, the pragma may cause the program to

give incorrect results.

An identifier in the directive must be visible at the point in the program where the

pragma appears. The identifiers in the disjoint name list cannot refer to any of the

following:

v a member of a structure, or union

v a structure, union, or enumeration tag

v an enumeration constant

v a typedef name

v a label

This pragma can be disabled with the -qignprag compiler option.

Example

int a, b, *ptr_a, *ptr_b;

#pragma disjoint(*ptr_a, b) // *ptr_a never points to b

#pragma disjoint(*ptr_b, a) // *ptr_b never points to a

void one_function()

{

 b = 6;

 *ptr_a = 7; // Assignment does not alter the value of b

 another_function(b); // Argument “b” has the value 6

}

Because external pointer ptr_a does not share storage with and never points to the

external variable b, the assignment of 7 to the object that ptr_a points to will not

change the value of b. Likewise, external pointer ptr_b does not share storage with

and never points to the external variable a. The compiler can assume that the

argument of another_function has the value 6 and will not reload the variable

from memory.

 Related information

v “-qignprag” on page 99

v “-qalias” on page 46

#pragma do_not_instantiate

Description

The #pragma do_not_instantiate directive instructs the compiler to not instantiate

the specified template declaration.

226 XL C/C++ Compiler Reference

Syntax

�� # pragma do_not_instantiate template ��

where template is a class template-id. For example:

#pragma do_not_instantiate Stack < int >

Notes

Use this pragma to suppress the implicit instantiation of a template for which a

definition is supplied.

If you are handling template instantiations manually (that is, -qnotempinc and

-qnotemplateregistry are specified), and the specified template instantiation

already exists in another compilation unit, using #pragma do_not_instantiate

ensures that you do not get multiple symbol definitions during link-edit step.

 Related information

v “#pragma define” on page 225

v “#pragma instantiate” on page 236

v “-qtempinc” on page 189

v “-qtemplateregistry” on page 190

#pragma enum

Description

The #pragma enum directive specifies the size of enum variables that follow. The

size at the left brace of a declaration is the one that affects that declaration,

regardless of whether further enum directives occur within the declaration. This

pragma pushes a value on a stack each time it is used, with a reset option

available to return to the previously pushed value.

Syntax

�� # pragma enum (suboption)

=

suboption
 ��

where suboption is any of the following:

 1 The enumeration type is one byte in length, of type char if the range of

enumeration values falls within the limits of signed char, and unsigned

char otherwise.

2 The enumeration type is two bytes in length, of type short if the range

of enumeration values falls within the limits of signed short, and

unsigned short otherwise.

4 The enumeration type is four bytes in length, of type int if the range of

enumeration values falls within the limits of signed int, and unsigned

int otherwise.

8 The enumeration type is eight bytes in length.

In 32-bit compilation mode, the enumeration is of type long long if the

range of enumeration values falls within the limits of signed long long,

and unsigned long long otherwise.

In 64-bit compilation mode, the enumeration is of type long if the range

of enumeration values falls within the limits of signed long , and

unsigned long otherwise.

int Same as #pragma enum=4.

Chapter 5. Compiler pragmas reference 227

intlong Specifies that enumeration will occupy 8 bytes of storage if the range of

values in the enumeration exceeds the limit for int. See the description

for “#pragma enum” on page 227.

If the range of values in the enumeration does not exceed the limit for

int, the enumeration will occupy 4 bytes of storage and is represented

by int.

small The enumeration type is the smallest integral type that can contain all

variables.

If an 8-byte enumeration results, the actual enumeration type used is

dependent on compilation mode. See the description for “#pragma

enum” on page 227.

pop This suboption resets the enumeration size setting to its previous

#pragma enum setting. If there is no previous setting, the command line

setting for -qenum is used.

reset Same as pop. This option is provided for backwards compatibility.

Notes

Popping on an empty stack generates a warning message and the enum value

remains unchanged.

The #pragma enum directive overrides the -qenum compiler option.

For each #pragma enum directive that you put in a source file, it is good practice

to have a corresponding #pragma enum=reset before the end of that file. This is

the only way to prevent one file from potentially changing the enum setting of

another file that #includes it.

The #pragma options enum directive can be used instead of #pragma enum. The

two pragmas are interchangeable.

A -qenum=reset option corresponding to the #pragma enum=reset directive does

not exist. Attempting to use -qenum=reset generates a warning message and the

option is ignored.

Examples

1. Usage of the pop and reset suboptions are shown in the following code

segment.

#pragma enum(1)

#pragma enum(2)

#pragma enum(4)

#pragma enum(pop) /* will reset enum size to 2 */

#pragma enum(reset) /* will reset enum size to 1 */

#pragma enum(pop) /* will reset enum size to the -qenum setting,

 assuming -qenum was specified on the command

 line. If -qenum was not specified on the

 command line, the compiler default is used. */

2. One typical use for the reset suboption is to reset the enumeration size set at

the end of an include file that specifies an enumeration storage different from

the default in the main file. For example, the following include file,

small_enum.h, declares various minimum-sized enumerations, then resets the

specification at the end of the include file to the last value on the option stack:

#ifndef small_enum_h

#define small_enum_h 1

/*

 * File small_enum.h

 * This enum must fit within an unsigned char type

 */

228 XL C/C++ Compiler Reference

#pragma options enum=small

enum e_tag {a, b=255};

enum e_tag u_char_e_var; /* occupies 1 byte of storage */

/* Reset the enumeration size to whatever it was before */

#pragma options enum=reset

#endif

The following source file, int_file.c, includes small_enum.h:

/*

 * File int_file.c

 * Defines 4 byte enums

 */

#pragma options enum=int

enum testing {ONE, TWO, THREE};

enum testing test_enum;

/* various minimum-sized enums are declared */

#include “small_enum.h”

/* return to int-sized enums. small_enum.h has reset the

 * enum size

 */

enum sushi {CALIF_ROLL, SALMON_ROLL, TUNA, SQUID, UNI};

enum sushi first_order = UNI;

The enumerations test_enum and first_order both occupy 4 bytes of storage

and are of type int. The variable u_char_e_var defined in small_enum.h

occupies 1 byte of storage and is represented by an unsigned char data type.

3. If the following C fragment is compiled with the enum=small option:

enum e_tag {a, b, c} e_var;

the range of enumeration constants is 0 through 2. This range falls within all of

the ranges described in the table above. Based on priority, the compiler uses

predefined type unsigned char.

4. If the following C code fragment is compiled with the enum=small option:

enum e_tag {a=-129, b, c} e_var;

the range of enumeration constants is -129 through -127. This range only falls

within the ranges of short (signed short) and int (signed int). Because

short (signed short) is smaller, it will be used to represent the enum.

5. If you compile a file myprogram.C using the command:

xlc++ myprogram.C -qenum=small

assuming file myprogram.C does not contain #pragma options=int statements,

all enum variables within your source file will occupy the minimum amount of

storage.

6. If you compile a file yourfile.C that contains the following lines:

enum testing {ONE, TWO, THREE};

enum testing test_enum;

#pragma options enum=small

enum sushi {CALIF_ROLL, SALMON_ROLL, TUNA, SQUID, UNI};

enum sushi first_order = UNI;

#pragma options enum=int

enum music {ROCK, JAZZ, NEW_WAVE, CLASSICAL};

enum music listening_type;

using the command:

Chapter 5. Compiler pragmas reference 229

xlc++ yourfile.C

only the enum variable first_order will be minimum-sized (that is, enum

variable first_order will only occupy 1 byte of storage). The other two enum

variables test_enum and listening_type will be of type int and occupy 4 bytes

of storage.

The following examples show invalid enumerations or usage of #pragma enum:

v You cannot change the storage allocation of an enum using a #pragma enum

within the declaration of an enum. The following code segment generates a

warning and the second occurrence of the enum pragma is ignored:

#pragma enum=small

enum e_tag {

 a,

 b,

 #pragma enum=int /* error: cannot be within a declaration */

 c

} e_var;

#pragma enum=reset /* second reset isn’t required */

v The range of enum constants must fall within the range of either unsigned int or

int (signed int). For example, the following code segments contain errors:

#pragma enum=small

enum e_tag { a=-1,

 b=2147483648 /* error: larger than maximum int */

 } e_var;

#pragma options enum=reset

v The enum constant range does not fit within the range of an unsigned int.

#pragma options enum=small

enum e_tag { a=0,

 b=4294967296 /* error: larger than maximum int */

 } e_var;

#pragma options enum=reset

Related information

v “-qenum” on page 78

v “#pragma options” on page 248

#pragma execution_frequency

Description

The #pragma execution_frequency directive lets you mark program source code

that you expect will be either very frequently or very infrequently executed.

Syntax

�� # pragma execution_frequency (very_low)

very_high
 ��

Notes

Use this pragma to mark program source code that you expect will be executed

very frequently or very infrequently. The pragma must be placed within block

scope, and acts on the closest point of branching.

The pragma is used as a hint to the optimizer. If optimization is not selected, this

pragma has no effect.

230 XL C/C++ Compiler Reference

Examples

1. This pragma is used in an if statement block to mark code that is executed

infrequently.

int *array = (int *) malloc(10000);

if (array == NULL) {

 /* Block A */

 #pragma execution_frequency(very_low)

 error();

}

The code block ″Block B″ would be marked as infrequently executed and

″Block C″ is likely to be chosen during branching.

if (Foo > 0) {

 #pragma execution_frequency(very_low)

 /* Block B */

 doSomething();

} else {

 /* Block C */

 doAnotherThing();

}

2. This pragma is used in a switch statement block to mark code that is executed

frequently.

while (counter > 0) {

 #pragma execution_frequency(very_high)

 doSomething();

} /* This loop is very likely to be executed. */

switch (a) {

 case 1:

 doOneThing();

 break;

 case 2:

 #pragma execution_frequency(very_high)

 doTwoThings();

 break;

 default:

 doNothing();

} /* The second case is frequently chosen. */

3. This pragma cannot be used at file scope. It can be placed anywhere within a

block scope and it affects the closest branching.

int a;

#pragma execution_frequency(very_low)

int b;

int foo(boolean boo) {

 #pragma execution_frequency(very_low)

 char c;

 if (boo) {

 /* Block A */

 doSomething();

 {

 /* Block C */

 doSomethingAgain();

 #pragma execution_frequency(very_low)

 doAnotherThing();

 }

 } else {

 /* Block B */

 doNothing();

 }

Chapter 5. Compiler pragmas reference 231

return 0;

}

#pragma execution_frequency(very_low)

The first and fourth pragmas are invalid, while the second and third are valid.

However, only the third pragma has effect, and it affects whether program

execution branches to Block A or Block B during the decision of if (boo). The

second pragma is ignored by the compiler.

#pragma hashome

Description

The #pragma hashome directive informs the compiler that the specified class has a

home module that will be specified by #pragma ishome. This class’s virtual

function table, along with certain inline functions, will not be generated as static.

Instead, they will be referenced as externals in the compilation unit of the class in

which #pragma ishome was specified.

Syntax

�� # pragma hashome (className)

AllInlines
 ��

where:

 className specifies the name of a class that requires the above mentioned external

referencing. className must be a class and it must be defined.

AllInlines specifies that all inline functions from within className should be referenced as

being external. This argument is case insensitive.

Notes

A warning will be produced if there is a #pragma ishome without a matching

#pragma hashome.

Example

In the following example, compiling the code samples will generate virtual

function tables and the definition of S::foo() only for compilation unit a.o, but

not for b.o. This reduces the amount of code generated for the application.

// a.h

struct S

{

 virtual void foo() {}

 virtual void bar();

};

// a.C

#pragma ishome(S)

#pragma hashome (S)

#include "a.h"

int main()

232 XL C/C++ Compiler Reference

{

 S s;

 s.foo();

 s.bar();

}

// b.C

#pragma hashome(S)

#include "a.h"

void S::bar() {}

Related information

v “#pragma ishome” on page 237

#pragma ibm snapshot

Description

The #pragma ibm snapshot allows the user to specify a location at which a

breakpoint can be set and to define a list of variables that can be examined when

program execution reaches that location.

Syntax

��

�

 ,

#

pragma

ibm snapshot

(

variable_name

)

��

where variable_name is a collection of variables. Class, structure, or union members

cannot be specified.

Notes

This pragma is provided to facilitate debugging optimized code produced by the

XL C/C++ compiler. During a debugging session, a breakpoint can be placed on

this line to view the values of the named variables. When the program has been

compiled with optimization and including the option -g, the named variables are

guaranteed to be visible to the debugger.

Snapshot does not consistently preserve the contents of variables with a static

storage class at high optimization levels.

Variables specified in #pragma ibm snapshot should be considered read-only while

being observed in the debugger, and should not be modified. Modifying these

variables in the debugger may result in unpredictable behavior.

Example

#pragma ibm snapshot(a, b, c)

If a breakpoint is set through the debugger at this point in a program, the values

of variables a, b, and c should be visible.

 Related information

v “-g” on page 90

v “-O, -qoptimize” on page 148

Chapter 5. Compiler pragmas reference 233

#pragma implementation

Description

The #pragma implementation directive tells the compiler the name of the template

instantiation file containing the function-template definitions. These definitions

correspond to the template declarations in the include file containing the pragma.

Syntax

�� # pragma implementation (string_literal) ��

Notes

This pragma can appear anywhere that a declaration is allowed. It is used when

organizing your program for the efficient or automatic generation of template

functions.

 Related information

v “-qtempmax” on page 191

#pragma info

Description

The #pragma info directive instructs the compiler to produce or suppress specific

groups of compiler messages.

Syntax

��

�

 # pragma info (all)

none

restore

,

group

 ��

where:

 all Turns on all diagnostic checking.

none Turns off all diagnostic suboptions for specific portions of your program.

restore Restores the option that was in effect before the previous #pragma info directive.

234 XL C/C++ Compiler Reference

group Generates or suppresses all messages associated with the specified diagnostic

group. More than one group name in the following list can be specified.

group Type of messages returned or suppressed

c99|noc99 C code that may behave differently between C89 and C99

language levels.

cls|nocls C++ classes.

cmp|nocmp Possible redundancies in unsigned comparisons.

cnd|nocnd Possible redundancies or problems in conditional expressions.

cns|nocns Operations involving constants.

cnv|nocnv Conversions.

dcl|nodcl Consistency of declarations.

eff|noeff Statements and pragmas with no effect.

enu|noenu Consistency of enum variables.

ext|noext Unused external definitions.

gen|nogen General diagnostic messages.

gnr|nognr Generation of temporary variables.

got|nogot Use of goto statements.

ini|noini Possible problems with initialization.

inl|noinl Functions not inlined.

lan|nolan Language level effects.

obs|noobs Obsolete features.

ord|noord Unspecified order of evaluation.

par|nopar Unused parameters.

por|nopor Nonportable language constructs.

ppc|noppc Possible problems with using the preprocessor.

ppt|noppt Trace of preprocessor actions.

pro|nopro Missing function prototypes.

rea|norea Code that cannot be reached.

ret|noret Consistency of return statements.

trd|notrd Possible truncation or loss of data or precision.

tru|notru Variable names truncated by the compiler.

trx|notrx Hexadecimal floating point constants rounding.

uni|nouni Uninitialized variables.

upg|noupg Generates messages describing new behaviors of the current

compiler release as compared to the previous release.

use|nouse Unused auto and static variables.

vft|novft Generation of virtual function tables in C++ programs.

zea|nozea Zero-extent arrays.

Chapter 5. Compiler pragmas reference 235

Notes

You can use the #pragma info directive to temporarily override the current -qinfo

compiler option settings specified on the command line, in the configuration file,

or by earlier invocations of the #pragma info directive.

Example

For example, in the code segments below, the #pragma info(eff, nouni) directive

preceding MyFunction1 instructs the compiler to generate messages identifying

statements or pragmas with no effect, and to suppress messages identifying

uninitialized variables. The #pragma info(restore) directive preceding MyFunction2

instructs the compiler to restore the message options that were in effect before the

#pragma info(eff, nouni) directive was invoked.

#pragma info(eff, nouni)

int MyFunction1()

{

 .

 .

 .

}

#pragma info(restore)

int MyFunction2()

{

 .

 .

 .

}

Related information

v “-qinfo” on page 100

#pragma instantiate

Description

The #pragma instantiate directive instructs the compiler to immediately instantiate

the specified template declaration.

Syntax

�� # pragma instantiate template ��

where template is a class template-id. For example:

#pragma instantiate Stack < int >

Notes

Use this pragma if you are migrating existing code. New code should use standard

C++ explicit instantiation.

If you are handling template instantiations manually (that is, -qnotempinc and

-qnotemplateregistry are specified), using #pragma instantiate will ensure that the

specified template instantiation will appear in the compilation unit.

 Related information

v “#pragma define” on page 225

236 XL C/C++ Compiler Reference

v “#pragma do_not_instantiate” on page 226

v “-qtempinc” on page 189

v “-qtemplateregistry” on page 190

#pragma ishome

Description

The #pragma ishome directive informs the compiler that the specified class’s home

module is the current compilation unit. The home module is where items, such as

the virtual function table, are stored. If an item is referenced from outside of the

compilation unit, it will not be generated outside its home. This can reduce the

amount of code generated for the application.

Syntax

�� # pragma ishome (className) ��

where:

 className Is the literal name of the class whose home will be the current compilation

unit.

Notes

A warning will be produced if there is a #pragma ishome without a matching

#pragma hashome.

Example

In the following example, compiling the code samples will generate virtual

function tables and the definition of S::foo() only for compilation unit a.o, but

not for b.o. This reduces the amount of code generated for the application.

// a.h

struct S

{

 virtual void foo() {}

 virtual void bar();

};

// a.C

#pragma ishome(S)

#pragma hashome (S)

#include "a.h"

int main()

{

 S s;

 s.foo();

 s.bar();

}

// b.C

Chapter 5. Compiler pragmas reference 237

#pragma hashome(S)

#include "a.h"

void S::bar() {}

Related information

v “#pragma hashome” on page 232

#pragma isolated_call

Description

The #pragma isolated_call directive marks a function that does not have or rely on

side effects, other than those implied by its parameters.

Syntax

�� # pragma isolated_call (function) ��

where function is a primary expression that can be an identifier, operator function,

conversion function, or qualified name. An identifier must be of type function or a

typedef of function. If the name refers to an overloaded function, all variants of

that function are marked as isolated calls.

Notes

The -qisolated_call compiler option has the same effect as this pragma.

The pragma informs the compiler that the function listed does not have or rely on

side effects, other than those implied by its parameters. Functions are considered to

have or rely on side effects if they:

v Access a volatile object

v Modify an external object

v Modify a static object

v Modify a file

v Access a file that is modified by another process or thread

v Allocate a dynamic object, unless it is released before returning

v Release a dynamic object, unless it was allocated during the same invocation

v Change system state, such as rounding mode or exception handling

v Call a function that does any of the above

Essentially, any change in the state of the runtime environment is considered a side

effect. Modifying function arguments passed by pointer or by reference is the only

side effect that is allowed. Functions with other side effects can give incorrect

results when listed in #pragma isolated_call directives.

Marking a function as isolated_call indicates to the optimizer that external and

static variables cannot be changed by the called function and that pessimistic

references to storage can be deleted from the calling function where appropriate.

Instructions can be reordered with more freedom, resulting in fewer pipeline

delays and faster execution in the processor. Multiple calls to the same function

with identical parameters can be combined, calls can be deleted if their results are

not needed, and the order of calls can be changed.

238 XL C/C++ Compiler Reference

The function specified is permitted to examine non-volatile external objects and

return a result that depends on the non-volatile state of the runtime environment.

The function can also modify the storage pointed to by any pointer arguments

passed to the function, that is, calls by reference. Do not specify a function that

calls itself or relies on local static storage. Listing such functions in the #pragma

isolated_call directive can give unpredictable results.

The -qignprag compiler option causes aliasing pragmas to be ignored. Use the

-qignprag compiler option to debug applications containing the #pragma

isolated_call directive.

Example

The following example shows the use of the #pragma isolated_call directive.

Because the function this_function does not have side effects, a call to it will not

change the value of the external variable a. The compiler can assume that the

argument to other_function has the value 6 and will not reload the variable from

memory.

int a;

// Assumed to have no side effects

int this_function(int);

#pragma isolated_call(this_function)

that_function()

{

 a = 6;

 // Call does not change the value of "a"

 this_function(7);

 // Argument "a" has the value 6

 other_function(a);

}

Related information

v “-qignprag” on page 99

v “-qisolated_call” on page 115

#pragma langlvl

Description

The #pragma langlvl directive selects the C language level for compilation.

Syntax

�� # pragma langlvl (language) ��

where values for language are described below.

For C programs, you can specify one of the following values for language:

 classic Allows the compilation of non-stdc89 programs, and conforms closely to the

K&R level preprocessor.

extended Provides compatibility with the RT compiler and classic. This language level

is based on C89.

saa Compilation conforms to the current SAA C CPI language definition. This is

currently SAA C Level 2.

Chapter 5. Compiler pragmas reference 239

saal2 Compilation conforms to the SAA C Level 2 CPI language definition, with

some exceptions.

stdc89 Compilation conforms to the ANSI C89 standard, also known as ISO C90.

stdc99 Compilation conforms to the ISO C99 standard.

extc89 Compilation conforms to the ANSI C89 standard, and accepts

implementation-specific language extensions.

extc99 Compilation conforms to the ISO C99 standard, and accepts

implementation-specific language extensions.

 extended Compilation is based on strict98, with some differences to accommodate

extended language features.

strict98 Compilation conforms to the ISO C++ standard for C++ programs.

Default

The default language level varies according to the command you use to invoke the

compiler:

Invocation Default language level

xlc extc89

cc extended

c89 stdc89

c99 stdc99

Notes

This pragma can be specified only once in a source file, and it must appear before

any noncommentary statements in a source file.

The compiler uses predefined macros in the header files to make declarations and

definitions available that define the specified language level.

This directive can dynamically alter preprocessor behavior. As a result, compiling

with the -E compiler option may produce results different from those produced

when not compiling with the -E option.

Related information

v “-qlanglvl” on page 119

v ″The IBM XL C language extensions″ and ″The IBM XL C++ language

extensions″ in XL C/C++ Language Reference

#pragma leaves

Description

The #pragma leaves directive takes a function name and specifies that the function

never returns to the instruction after the call.

Syntax

��

�

 ,

#

pragma

leaves

(

function

)

��

240 XL C/C++ Compiler Reference

Notes

This pragma tells the compiler that function never returns to the caller.

The advantage of the pragma is that it allows the compiler to ignore any code that

exists after function, in turn, the optimizer can generate more efficient code. This

pragma is commonly used for custom error-handling functions, in which programs

can be terminated if a certain error is encountered. Some functions which also

behave similarily are exit, longjmp, and terminate.

Example

#pragma leaves(handle_error_and_quit)

void test_value(int value)

{

 if (value == ERROR_VALUE)

 {

 handle_error_and_quit(value);

 TryAgain(); // optimizer ignores this because

 // never returns to execute it

 }

}

#pragma loop_id

Description

Marks a block with a scope-unique identifier.

Syntax

�� # pragma loopid (name) ��

where name is an identifier that is unique within the scoping unit.

Notes

The #pragma loopid directive must immediately precede a #pragma block_loop

directive or for loop. The specified name can be used by #pragma block_loop to

control transformations on that loop. It can also be used to provide information on

loop transformations through the use of the -qreport compiler option.

You must not specify #pragma loopid more than once for a given loop.

 Related information

v “-qunroll” on page 198

v “#pragma block_loop” on page 219

v “#pragma unroll” on page 261

v “#pragma unrollandfuse” on page 262

#pragma map

Description

The #pragma map directive tells the compiler that all references to an identifier are

to be converted to “name”. “name” is then used in the object file and any assembly

code.

Chapter 5. Compiler pragmas reference 241

Syntax

�� # pragma map (identifier , ″name″)

function_signature
 ��

where:

 identifier A name of a data object or a nonoverloaded function with external

linkage.

If the identifier is the name of an overloaded function or a

member function, there is a risk that the pragma will override the

compiler-generated names. This will create problems during linking.

function_signature A name of a function or operator with internal linkage. The name can be

qualified.

name The external name that is to be bound to the given object, function, or

operator.

Specify the mangled name if linking into a C++ name (a name

that will have C++ linkage signature, which is the default signature in

C++). See Example 4, in the Examples section below.

Notes

The compiler emits a severe error message when the label name is the same as:

v an existing assembly label name that is specified on a different variable or

function.

v an existing mapped name that is specified on a different variable or function by

a #pragma map.

You should not use #pragma map to map the following:

v C++ member functions

v Overloaded functions

v Objects generated from templates

v Functions with built-in linkage

The directive can appear anywhere in the program. The identifiers appearing in

the directive, including any type names used in the prototype argument list, are

resolved as though the directive had appeared at file scope, independent of its

actual point of occurrence.

If the name specified with pragma map exceeds 65535 bytes, an information

message is emitted and the pragma is ignored.

Examples

Example 1

int funcname1()

{

 return 1;

}

#pragma map(func , "funcname1") //maps func to funcname1

242 XL C/C++ Compiler Reference

int main()

{

 return func(); // no function prototype needed in C

}

Chapter 5. Compiler pragmas reference 243

Example 2

extern "C" int funcname1()

{

 return 0;

}

extern "C" int func(); //function prototypes needed in C++

#pragma map(func , "funcname1") // maps ::func to funcname1

int main()

{

 return func();

}

Example 3

#pragma map(foo, "bar")

int foo(); //function prototypes needed in C++

int main()

{

 return foo();

}

extern "C" int bar() {return 7;}

The following examples illustrate several cases which interaction between #pragma

map and assembly labels may generate an error message.

Example 5

#pragma map(a, "abc")

// error, since the label name is the same as a map name to a

// different identifier

 int cba asm("abc");

Example 6

 int abc asm("myID");

//error, since the same label is used on two different variables

 int cba asm("myID");

When an asm label specification is applied to a declaration with a different label

name than previously specified in a pragma map, the compiler generates an error

message.

Example 7

#pragma map(a, "aaa")

// severe error, since "a" is already mapped by pragma map to a

// different name

 void a() asm("bbb");

Example 8

244 XL C/C++ Compiler Reference

#pragma map(a, "aaa")

// Valid declaration, Since "a" is mapped to the same name

 int a asm("aaa");

When a pragma map specifies a mapped name for an identifier, which conflicts

with the mapped name from a previous assembly label on a different declaration,

the #pragma map is ignored with a warning message.

Example 9

 int a asm("abc");

// Warning message, since ’abc’ is already used as a label name

 #pragma map(b, "abc")

When a #pragma map tries to map an identifier that already has an assembly label,

the pragma map is ignored with a warning message.

Example 10

int a asm("abc");

 //Warning, since ’a’ already has a label, pragma map is ignored

 #pragma map(a, "aaa")

Example 11

int a asm("abc");

// Valid declaration, Since "a" is mapped to the same name

 #pragma map(a, "abc")

#pragma mc_func

Description

The #pragma mc_func directive lets you define a function containing a short

sequence of machine instructions.

Syntax

��

�

#

pragma

mc_func

function

{

instruction_seq

}

��

where:

 function Should specify a previously-defined function in a C or C++ program. If

the function is not previously-defined, the compiler will treat the

pragma as a function definition.

instruction_seq Is a string containing a sequence of zero or more hexadecimal digits.

The number of digits must comprise an integral multiple of 32 bits.

Notes

The mc_func pragma lets you embed a short sequence of machine instructions

″inline″ within your program source code. The pragma instructs the compiler to

generate specified instructions in place rather than the usual linkage code. Using

this pragma avoids performance penalties associated with making a call to an

Chapter 5. Compiler pragmas reference 245

assembler-coded external function. This pragma is similar in function to the asm

keyword found in this and other compilers.

The mc_func pragma defines a function and should appear in your program

source only where functions are ordinarily defined. The function name defined by

#pragma mc_func should be previously declared or prototyped.

The compiler passes parameters to the function in the same way as any other

function. For example, in functions taking integer-type arguments, the first

parameter is passed to GPR3, the second to GPR4, and so on. Values returned by

the function will be in GPR3 for integer values, and FPR1 for float or double

values. See “#pragma reg_killed_by” on page 256 for a list of volatile registers

available on your system.

Code generated from instruction_seq may use any and all volatile registers available

on your system unless you use #pragma reg_killed_by to list a specific register set

for use by the function.

Inlining options do not affect functions defined by #pragma mc_func. However,

you may be able to improve runtime performance of such functions with #pragma

isolated_call.

If an string literal exceeding 65535 bytes is specified with pragma map, an

information message is emitted and the pragma is ignored.

Example

In the following example, #pragma mc_func is used to define a function called

add_logical. The function consists of machine instructions to add 2 ints with

so-called end-around carry; that is, if a carry out results from the add then add the

carry to the sum. This is frequently used in checksum computations.

The example also shows the use of #pragma reg_killed_by to list a specific set of

volatile registers that can be altered by the function defined by #pragma mc_func.

int add_logical(int, int);

#pragma mc_func add_logical {"7c632014" "7c630194"}

 /* addc r3 <- r3, r4 */

 /* addze r3 <- r3, carry bit */

#pragma reg_killed_by add_logical gr3, xer

 /* only gpr3 and the xer are altered by this function */

main() {

 int i,j,k;

 i = 4;

 k = -4;

 j = add_logical(i,k);

 printf("\n\nresult = %d\n\n",j);

}

Related information

v “#pragma isolated_call” on page 238

v “#pragma reg_killed_by” on page 256

v “-qasm” on page 52

246 XL C/C++ Compiler Reference

#pragma nosimd

Description

The #pragma nosimd directive instructs the compiler to not generate VMX (Vector

Multimedia Extension) instructions in the loop immediately following this

directive.

Syntax

�� # pragma nosimd ��

Notes

This directive has effect only for architectures that support VMX and when used

with -qhot=simd option. With these compiler options in effect, the compiler will

convert certain operations that are performed in a loop on successive elements of

an array into a call to VMX (Vector Multimedia Extension) instruction. This call

calculates several results at one time, which is faster than calculating each result

sequentially.

The #pragma nosimd directive applies only to while, do while, and for loops.

The #pragma nosimd directive applies only to the loops immediately following it.

The directive has no effect on other loops that may be nested within the specified

loop.

The #pragma nosimd directive can be mixed with loop optimization and OpenMP

directives without requiring any specific optimization level.

 Related information

v “-qarch” on page 49

v “-qenablevmx” on page 77

v “-qhot” on page 94

#pragma novector

Description

The #pragma novector directive instructs the compiler to not auto-vectorize the

loop immediately following this directive.

Syntax

�� # pragma novector ��

Notes

This directive has effect only on architectures that support vectorization and when

used with -qhot=vector option. With -qhot=vector in effect, the compiler will

convert certain operations that are performed in a loop on successive elements of

an array (for example, square root, reciprocal square root) into a call to a vector

library routine (MASS libraries). This call will calculate several results at one time,

which is faster than calculating each result sequentially.

The #pragma novector directive applies only to while, do while, and for loops.

Chapter 5. Compiler pragmas reference 247

The #pragma novector directive applies only to the loops immediately following it.

The directive has no effect on other loops that may be nested within the specified

loop.

The #pragma novector directive can be mixed with loop optimization and

OpenMP directives without requiring any specific optimization level.

 Related information

v “-qhot” on page 94

#pragma options

Description

The #pragma options directive specifies compiler options for your source program.

Syntax

��

�

�

�

#

pragma

option

option_keyword

options

;

,

option_keyword

=

value

��

Notes

By default, pragma options generally apply to the entire compilation unit.

To specify more than one compiler option with the #pragma options directive,

separate the options using a blank space. For example:

#pragma options langlvl=stdc89 halt=s spill=1024 source

Most #pragma options directives must come before any statements in your source

program; only comments, blank lines, and other pragma specifications can precede

them. For example, the first few lines of your program can be a comment followed

by the #pragma options directive:

/* The following is an example of a #pragma options directive: */

#pragma options langlvl=stdc89 halt=s spill=1024 source

/* The rest of the source follows ... */

Options specified before any code in your source program apply to your entire

compilation unit. You can use other pragma directives throughout your program to

turn an option on for a selected block of source code. For example, you can request

that parts of your source code be included in your compiler listing:

#pragma options source

/* Source code between the source and nosource #pragma

 options is included in the compiler listing */

#pragma options nosource

The settings in the table below are valid options for #pragma options. For more

information, refer to the pages of the equivalent compiler option.

248 XL C/C++ Compiler Reference

Valid settings for #pragma

options option_keyword

Compiler option

equivalent

Description

align=option -qalign Specifies what aggregate

alignment rules the compiler uses

for file compilation.

[no]attr

attr=full

-qattr Produces an attribute listing

containing all names.

chars=option -qchars

See also #pragma chars

Instructs the compiler to treat all

variables of type char as either

signed or unsigned.

[no]check -qcheck Generates code which performs

certain types of runtime checking.

[no]compact -qcompact When used with optimization,

reduces code size where possible,

at the expense of execution speed.

[no]dbcs -qmbcs, -qdbcs String literals and comments can

contain DBCS characters.

[no]dbxextra -qdbxextra Generates symbol table

information for unreferenced

variables.

[no]digraph -qdigraph Allows special digraph and

keyword operators.

[no]dollar -qdollar Allows the $ symbol to be used in

the names of identifiers.

enum=option -qenum

See also #pragma enum

Specifies the amount of storage

occupied by the enumerations.

flag=option -qflag Specifies the minimum severity

level of diagnostic messages to be

reported.

Severity levels can also be

specified with:

#pragma options flag=i =>

#pragma report (level,I)

#pragma options flag=w =>

#pragma report (level,W)

#pragma options flag=e,s,u =>

#pragma report (level,E)

float=[no]option -qfloat Specifies various floating point

options to speed up or improve

the accuracy of floating point

operations.

[no]flttrap=option -qflttrap Generates extra instructions to

detect and trap floating point

exceptions.

[no]fullpath -qfullpath Specifies the path information

stored for files for dbx stabstrings.

[no]funcsect -qfuncsect Places intructions for each function

in a separate csect.

Chapter 5. Compiler pragmas reference 249

Valid settings for #pragma

options option_keyword

Compiler option

equivalent

Description

halt -qhalt Stops compiler when errors of the

specified severity detected.

[no]idirfirst -qidirfirst Specifies search order for user

include files.

[no]ignerrno -qignerrno Allows the compiler to perform

optimizations that assume errno is

not modified by system calls.

ignprag=option -qignprag Instructs the compiler to ignore

certain pragma statements.

[no]info=option -qinfo

See also #pragma info

Produces informational messages.

initauto=value -qinitauto Initializes automatic storage to a

specified hexadecimal byte value.

[no]inlglue -qinlglue Generates fast external linkage by

inlining the pointer glue code

necessary to make a call to an

external function or a call through

a function pointer.

isolated_call=names -qisolated_call

See also #pragma

isolated_call

Specifies functions in the source

file that have no side effects.

langlvl -qlanglvl Specifies different language levels.

This directive can dynamically

alter preprocessor behavior. As a

result, compiling with the -E

compiler option may produce

results different from those

produced when not compiling

with the -E option.

[no]libansi -qlibansi Assumes that all functions with

the name of an ANSI C library

function are in fact the system

functions.

[no]list -qlist Produces a compiler listing that

includes an object listing.

[no]longlong -qlonglong Allows long long types in your

program.

[no]maxmem=number -qmaxmem Instructs the compiler to halt

compilation when a specified

number of errors of specified or

greater severity is reached.

[no]mbcs -qmbcs, -qdbcs String literals and comments can

contain DBCS characters.

250 XL C/C++ Compiler Reference

Valid settings for #pragma

options option_keyword

Compiler option

equivalent

Description

[no]optimize
optimize=number

-O, -qoptimize Specifies the optimization level to

apply to a section of program

code.

The compiler will accept the

following values for number:

v 0 - sets level 0 optimization

v 2 - sets level 2 optimization

v 3 - sets level 3 optimization

If no value is specified for number,

the compiler assumes level 2

optimization.

priority=number -qpriority

See also “#pragma

priority” on page 255

Specifies the priority level for the

initialization of static constructors

[no]proclocal,

[no]procimported,

[no]procunknown

-qproclocal,

-qprocimported,

-qprocunknown

Marks functions as local,

imported, or unknown.

[no]proto -qproto If this option is set, the compiler

assumes that all functions are

prototyped.

[no]ro -qro Specifies the storage type for

string literals.

[no]roconst -qroconst Specifies the storage location for

constant values.

[no]showinc -qshowinc If used with -q-qsource, all

include files are included in the

source listing.

[no]source -qsource Produces a source listing.

spill=number -qspill Specifies the size of the register

allocation spill area.

[no]stdinc -qstdinc Specifies which files are included

with #include <file_name>

and #include "file_name"

directives.

[no]strict -qstrict Turns off aggressive optimizations

of the -O3 compiler option that

have the potential to alter the

semantics of your program.

tbtable=option -qtbtable Changes the length of tabs as

perceived by the compiler.

tune=option -qtune Specifies the architecture for which

the executable program is

optimized.

[no]unroll

unroll=number

-qunroll Unrolls inner loops in the program

by a specified factor.

Chapter 5. Compiler pragmas reference 251

Valid settings for #pragma

options option_keyword

Compiler option

equivalent

Description

[no]upconv -qupconv Preserves the unsigned

specification when performing

integral promotions.

[no]vftable -qvftable Controls the generation of virtual

function tables.

[no]xref -qxref Produces a compiler listing that

includes a cross-reference listing of

all identifiers.

 Related information

v “-E” on page 75

#pragma option_override

Description

The #pragma option_override directive lets you specify alternate optimization

options to apply to specific functions.

Syntax

��

�

 ,

#

pragma

option_override

(

fname

″

option

″

)

��

Valid settings and syntax for option, and their corresponding command line

options, are shown below:

 Settings and syntax for

#pragma option_override

option

Command

line option

Examples

opt(level,number) -O, -O2, -O3,

-O4, -O5

#pragma option_override (fname, ″opt(level, 3)″)

opt(registerSpillSize,num) -qspill=num #pragma option_override (fname, ″opt(registerSpillSize,512)″)

opt(size[,yes]) -qcompact #pragma option_override (fname, ″opt(size)″)
#pragma option_override (fname, ″opt(size,yes)″)

opt(size,no) -qnocompact #pragma option_override (fname, ″opt(size,no)″)

opt(strict) -qstrict #pragma option_override (fname, ″opt(strict)″)

opt(strict,no) -qnostrict #pragma option_override (fname, ″opt(strict,no)″)

Notes

By default, optimization options specified on the command line apply to the entire

source program. However, certain types of runtime errors may occur only when

optimization is turned on. This pragma lets you override command line

optimization settings for specific functions (fname) in your program, which may be

useful in identifying and correcting programming errors in those functions.

Per-function optimizations have effect only if optimization is already enabled by

compilation option. You can request per-function optimizations at a level less than

that applied to the rest of the program being compiled. Selecting options through

this pragma affects only the specific optimization option selected, and does not

affect the implied settings of related options.

252 XL C/C++ Compiler Reference

Options are specified in double quotes, so they are not subject to macro expansion.

The option specified within quotes must comply with the syntax of the build

option.

This pragma cannot be used with overloaded member functions.

This pragma affects only functions defined in your compilation unit and can

appear anywhere in the compilation unit, for example:

v before or after a compilation unit

v before or after the function definition

v before or after the function declaration

v before or after a function has been referenced

v inside or outside a function definition.

Related information

v “-O, -qoptimize” on page 148

v “-qcompact” on page 63

v “-qspill” on page 179

v “-qstrict” on page 183

#pragma pack

Description

The #pragma pack directive modifies the current alignment rule for members of

structures following the directive.

Syntax

�� # pragma pack ()

nopack

1

2

4

8

16

pop

 ��

where:

 1 | 2 | 4 | 8 | 16 Members of structures are aligned on the specified byte-alignment, or on

their natural alignment boundary, whichever is less, and the specified

value is pushed on the stack.

nopack No packing is applied, and nopack is pushed onto the pack stack

pop The top element on the pragma pack stack is popped.

(no argument

specified)

Specifying #pragma pack() has the same effect as specifying #pragma

pack(pop).

Notes

The #pragma pack directive modifies the current alignment rule for only the

members of structures whose declarations follow the directive. It does not affect

the alignment of the structure directly, but by affecting the alignment of the

members of the structure, it may affect the alignment of the overall structure

according to the alignment rule.

Chapter 5. Compiler pragmas reference 253

The #pragma pack directive cannot increase the alignment of a member, but rather

can decrease the alignment. For example, for a member with data type of integer

(int), a #pragma pack(2) directive would cause that member to be packed in the

structure on a 2-byte boundary, while a #pragma pack(4) directive would have no

effect.

The #pragma pack directive is stack based. All pack values are pushed onto a stack

as the source code is parsed. The value at the top of the current pragma pack stack

is the value used to pack members of all subsequent structures within the scope of

the current alignment rule.

A #pragma pack stack is associated with the current element in the alignment rule

stack. Alignment rules are specified with the -qalign compiler option or with the

#pragma options align directive. If a new alignment rule is specified, a new

#pragma pack stack is created. If the current alignment rule is popped off the

alignment rule stack, the current #pragma pack stack is emptied and the previous

#pragma pack stack is restored. Stack operations (pushing and popping pack

settings) affect only the current #pragma pack stack.

The #pragma pack directive causes bit fields to cross bit field container boundaries.

Examples

1. In the code shown below, the structure s_t2 will have its members packed to

1-byte, but structure s_t1 will not be affected. This is because the declaration

for s_t1 began before the pragma directive. However, s_t2 is affected because

its declaration began after the pragma directive.

struct s_t1 {

 char a;

 int b;

 #pragma pack(1)

 struct s_t2 {

 char x;

 int y;

 } S2;

 char c;

 int d;

} S1;

2. This example shows how a #pragma pack directive can affect the size and

mapping of a structure:

struct s_t {

 char a;

 int b;

 short c;

 int d;

}S;

 Default mapping: With #pragma pack(1):

sizeof s_t = 16 sizeof s_t = 11

offsetof a = 0 offsetof a = 0

offsetof b = 4 offsetof b = 1

offsetof c = 8 offsetof c = 5

offsetof d = 12 offsetof d = 7

align of a = 1 align of a = 1

align of b = 4 align of b = 1

align of c = 2 align of c = 1

254 XL C/C++ Compiler Reference

Default mapping: With #pragma pack(1):

align of d = 4 align of d = 1

Related information

v “-qalign” on page 47

v “#pragma options” on page 248

v "Using alignment modifiers"in the XL C/C++ Programming Guide

#pragma priority

Description

The #pragma priority directive specifies the order in which static objects are to be

initialized.

Syntax

�� # pragma priority (n) ��

Notes

The value of n must be an integer literal in the range of 101 to 65535. The default

value is 65535. A lower value indicates a higher priority; a higher value indicates a

lower priority.

The priority value applies to all global and static objects following the #pragma

priority directive, unless an explicit value is given by the variable attribute

init_priority or another #pragma priority directive is encountered.

 Objects with the same priority value are constructed in declaration order. Use

#pragma priority to specify the construction order of objects across files. However,

if you are creating an executable or shared library target from source files, the

compiler will check dependency ordering, which may override #pragma priority.

For example, if a copy of object A is passed as a parameter to the object B

constructor, then the compiler will arrange for A to be constructed first, even if this

violates the top-to-bottom or #pragma priority ordering. This is essential for

orderless programming, which the compiler permits. If the target is an .obj/.lib,

this processing is not done, because there may not be enough information to detect

the dependencies.

Note: The C++ variable attribute init_priority can also be used to assign a

priority level to a shared variable of class type. See ″The init_priority

variable attribute″ in the XL C/C++ Language Reference for more information.

Example

#pragma priority(1001)

Related information

v “-qinfo” on page 100

v "Initializing static objects in libraries"in the XL C/C++ Programming Guide

Chapter 5. Compiler pragmas reference 255

#pragma reachable

Description

The #pragma reachable directive declares that the point after the call to a routine,

function, can be the target of a branch from some unknown location. This pragma

should be used in conjunction with the setjmp macro.

Syntax

��

�

 ,

#

pragma

reachable

(

function

)

��

#pragma reg_killed_by

Description

The #pragma reg_killed_by directive specifies a set of volatile registers that may

be altered (killed) by the specified function. This pragma can only be used on

functions that are defined using #pragma mc_func.

Syntax

��

�

 ,

#

pragma

reg_killed_by

function

regid

-

regid

��

where:

 function The function previously defined using the #pragma mc_func.

regid The symbolic name(s) of either a single register or a range of registers to be

altered by the named function. A range of registers is identified by providing

the symbolic names of both starting and ending registers, separated by a dash.

If no registers are specified, no registers will be altered by the specified

function.

The symbolic name is made up of two parts. The first part is the register class

name, specified using a sequence of one or more characters in the range of ″a″

to ″z″ and/or ″A″ to ″Z″.

The second part is a integral number in the range of unsigned int. This

number identifies a specific register number within a register class. Some

register classes do not require that a register number be specified, and an error

will result if you try to do so.

If regid is not specified, no volatile registers will be killed by the named

function.

 Registers

Class and [register numbers] Description and usage

ctr Count register (CTR)

256 XL C/C++ Compiler Reference

cr[0-7] Condition register (CR)

v Each register in this class is one of the 4-bit fields in the condition

register.

v Of the 8 CR fields, only cr0, cr1, and cr5-cr7 can be specified by

#pragma reg_killed_by.

fp[0-31] Floating point registers (FPR)

v Of the 32 machine registers, only fp0-fp13 can be specified by

#pragma reg_killed_by.

fs Floating point status and control register (FPSCR)

lr Link register (LR)

gr[0-31] General purpose registers (GPR)

v Of the 32 machine registers, only gr0 and gr3-gr12 can be

specified by #pragma reg_killed_by.

vr[0–31] Vector registers (VMX processors only)

xer Fixed point exception (XER)

Notes

Ordinarily, code generated for functions specified by #pragma mc_func may alter

any or all volatile registers available on your system. You can use #pragma

reg_killed_by to explicitly list a specific set of volatile registers to be altered by

such functions. Registers not in this list will not be altered.

Registers specified by regid must meet the following requirements:

v the class name part of the register name must be valid

v the register number is either required or prohibited

v when the register number is required, it must be in the valid range

If any of these requirements are not met, an error is issued and the pragma is

ignored.

Example

The following example shows how to use #pragma reg_killed_by to list a specific

set of volatile registers to be used by the function defined by #pragma mc_func.

int add_logical(int, int);

#pragma mc_func add_logical {"7c632014" "7c630194"}

 /* addc r3 <- r3, r4 */

 /* addze r3 <- r3, carry bit */

#pragma reg_killed_by add_logical gr3, xer

 /* only gpr3 and the xer are altered by this function */

main() {

 int i,j,k;

 i = 4;

 k = -4;

 j = add_logical(i,k);

 printf("\n\nresult = %d\n\n",j);

}

Related information

v “#pragma mc_func” on page 245

Chapter 5. Compiler pragmas reference 257

#pragma report

Description

The #pragma report directive controls the generation of specific messages. The

pragma will take precedence over #pragma info. Specifying #pragma report(pop)

will revert the report level to the previous level. If no previous report level was

specified, then a warning will be issued and the report level will remain

unchanged.

Syntax

�� # pragma report (level , E)

W

I

enable

,

message_number

disable

pop

 ��

where:

 level Indicates the minimum severity level of diagnostic messages to display.

E | W | I Used in conjunction with level to determine the type of diagnostic

messages to display.

E Signifies a minimum message severity of ’error’. This is

considered as the most severe type of diagnostic message. A

report level of ’E’ will display only ’error’ messages. An

alternative way of setting the report level to ’E’ is by specifying

the -qflag=e:e compiler option.

W Signifies a minimum message severity of ’warning’. A report level

of ’W’ will filter out all informational messages, and display only

those messages classified as warning or error messages. An

alternative way of setting the report level to ’W’ is by specifying

the -qflag=w:w compiler option.

I Signifies a minimum message severity of ’information’.

Information messages are considered as the least severe type of

diagnostic message. A level of ’I’ would display messages of all

types. The compiler sets this as the default option. An alternative

way of setting the report level to ’I’ is by specifying the -qflag=i:i

compiler option.

enable | disable Enables or disables the specified message number.

message_number Is an identifier containing the message number prefix, followed by the

message number. An example of a message number is: CPPC1004

pop resets the report level back to the previous report level. If a pop operation

is performed on an empty stack, the report level will remain unchanged

and no message will be generated.

Examples

1. Specifying #pragma info instructs the compiler to print all informational

diagnostics. The pragma report instructs the compiler to display only those

messages with a severity of ’W’ or warning messages. In this case, none of the

informational diagnostics will be displayed.

1 #pragma info(all)

2 #pragma report(level, W)

258 XL C/C++ Compiler Reference

2. If CPPC1000 was an error message, it would be displayed. If it was any other

type of diagnostic message, it would not be displayed.

1 #pragma report(enable, CPPC1000) // enables message number CPPC1000

2 #pragma report(level, E) // display only error messages.

Changing the order of the code like so:

1 #pragma report(level, E)

2 #pragma report(enable, CPPC1000)

would yield the same result. The order in which the two lines of code appear

in, does not affect the outcome. However, if the message was ’disabled’, then

regardless of what report level is set and order the lines of code appear in, the

diagnostic message will not be displayed.

3. In line 1 of the example below, the initial report level is set to ’I’, causing

message CPPC1000 to display regardless of the type of diagnostic message it is

classified as. In line 3, a new report level of ’E’ is set, indicating only messages

with a severity level of ’E’ will be displayed. Immediately following line 3, the

current level ’E’ is ’popped’ and reset back to ’I’.

1 #pragma report(level, I)

2 #pragma report(enable, CPPC1000)

3 #pragma report(level, E)

4 #pragma report(pop)

Related information

v “-qflag” on page 82

#pragma STDC cx_limited_range

Descripton

The STDC cx_limited_range pragma instructs the compiler that within the scope it

controls, complex division and absolute value are only invoked with values such

that intermediate calculation will not overflow or lose significance. The default

setting of the pragma is off.

Syntax

��
 off

#

pragma

STDC cx_limited_range

on

default

��

Notes

Using values outside the limited range may generate wrong results, where the

limited range is defined such that the "obvious symbolic definition" will not

overflow or run out of precision.

The pragma is effective from its first occurrence until another cx_limited_range

pragma is encountered, or until the end of the translation unit. When the pragma

occurs inside a compound statement (including within a nested compound

statement), it is effective from its first occurrence until another cx_limited_range

pragma is encountered, or until the end of the compound statement.

#pragma stream_unroll

Description

Breaks a stream contained in a for loop into multiple streams.

Chapter 5. Compiler pragmas reference 259

Syntax

�� # pragma stream_unroll ()

n
 ��

where n is a loop unrolling factor. In C programs, the value of n is a positive

integral constant expression. In C++ programs, the value of n is a positive scalar

integer or compile-time constant initialization expression. An unroll factor of 1

disables unrolling. If n is not specified and if -qhot, -qsmp, or -O4 or higher is

specified, the optimizer determines an appropriate unrolling factor for each nested

loop.

Notes

Neither -O3 nor -qipa=level=2 is sufficient to enable stream unrolling. You must

additionally specify -qhot or -qsmp, or use optimization level -O4 or higher.

For stream unrolling to occur, the #pragma stream_unroll directive must be the

last pragma specified preceding a for loop. Specifying #pragma stream_unroll

more than once for the same for loop or combining it with other loop unrolling

pragmas (unroll, nounroll, unrollandfuse, nounrollandfuse) also results in a

warning from XL C; XL C++ silently ignores all but the last of multiple loop

unrolling pragmas specified on the same for loop.

Stream unrolling is also suppressed by compilation under certain optimization

options. If option -qstrict is in effect, no stream unrolling takes place. Therefore, if

you want to enable stream unrolling with the -qhot option alone, you must also

specify -qnostrict.

Examples

The following is an example of how #pragma stream_unroll can increase

performance.

int i, m, n;

int a[1000][1000];

int b[1000][1000];

int c[1000][1000];

....

#pragma stream_unroll(4)

for (i=1; i<n; i++) {

 a[i] = b[i] * c[i];

}

The unroll factor of 4 reduces the number of iterations from n to n/4, as follows:

for (i=1; i<n/4; i++) {

 a[i] = b[i] + c[i];

 a[i+m] = b[i+m] + c[i+m];

 a[i+2*m] = b[i+2*m] + c[i+2*m];

 a[i+3*m] = b[i+3*m] + c[i+3*m];

}

The increased number of read and store operations are distributed among a

number of streams determined by the compiler, reducing computation time and

boosting performance.

 Related information

v “-qunroll” on page 198

260 XL C/C++ Compiler Reference

v “#pragma unroll”

v “#pragma unrollandfuse” on page 262

#pragma strings

Description

The #pragma strings directive sets the storage type for string literals and specifies

whether they can be placed in read-only or read-write memory.

Syntax

�� # pragma strings (writeable)

readonly
 ��

Notes

Strings are read-only by default if any form of the compiler invocation xlc

is used.

Strings are read-only by default if any form of the compiler invocations

xlC or xlc++ is used.

This pragma must appear before any source statements in order to have effect.

Example

#pragma strings(writeable)

Related information

v “-qroconst” on page 169

#pragma unroll

Description

The #pragma unroll directive is used to unroll the innermost or outermost for

loops in your program, which can help improve program performance.

Syntax

�� # pragma nounroll

unroll

(

)

n

 ��

where n is the loop unrolling factor. In C programs, the value of n is a positive

integral constant expression. In C++ programs, the value of n is a positive scalar

integer or compile-time constant initialization expression. An unroll factor of 1

disables unrolling. If n is not specified and if -qhot, -qsmp, or -O4 or higher is

specified, the optimizer determines an appropriate unrolling factor for each nested

loop.

Notes

The #pragma unroll and #pragma nounroll directives can only be used on for

loops or a block_loop directive. It cannot be applied to do while and while loops.

The #pragma unroll and #pragma nounroll directives must appear immediately

before the loop or the block_loop directive to be affected.

Chapter 5. Compiler pragmas reference 261

Only one of these directives can be specified for a given loop. The loop structure

must meet the following conditions:

v There must be only one loop counter variable, one increment point for that

variable, and one termination variable. These cannot be altered at any point in

the loop nest.

v Loops cannot have multiple entry and exit points. The loop termination must be

the only means to exit the loop.

v Dependencies in the loop must not be ″backwards-looking″. For example, a

statement such as A[i][j] = A[i -1][j + 1] + 4) must not appear within the

loop.

Specifying #pragma nounroll for a loop instructs the compiler to not unroll that

loop. Specifying #pragma unroll(1) has the same effect.

To see if the unroll option improves performance of a particular application, you

should first compile the program with usual options, then run it with a

representative workload. You should then recompile with command line -qunroll

option and/or the unroll pragmas enabled, then rerun the program under the

same conditions to see if performance improves.

Examples

v In this example, loop control is modified:

#pragma unroll(3)

for (i=0; i<n; i++) {

 a[i]=b[i] * c[i];

}

Unrolling by 3 gives:

i=0;

if (i>n-2) goto remainder;

for (; i<n-2; i+=3) {

 a[i]=b[i] * c[i];

 a[i+1]=b[i+1] * c[i+1];

 a[i+2]=b[i+2] * c[i+2];

}

if (i<n) {

 remainder:

 for (; i<n; i++) {

 a[i]=b[i] * c[i];

 }

}

Related information

v “-qunroll” on page 198

v “#pragma unrollandfuse”

#pragma unrollandfuse

Description

This pragma instructs the compiler to attempt an unroll and fuse operation on

nested for loops.

262 XL C/C++ Compiler Reference

Syntax

�� # pragma nounrollandfuse

unrollandfuse

(

)

n

 ��

where n is a loop unrolling factor. In C programs, the value of n is a positive

integral constant expression. In C++ programs, the value of n is a positive scalar

integer or compile-time constant initialization expression. If n is not specified and

if -qhot, -qsmp, or -O4 or higher is specified, the optimizer determines an

appropriate unrolling factor for each nested loop.

Notes

The #pragma unrollandfuse directive applies only to the outer loops of nested for

loop structures that meet the following conditions:

v There must be only one loop counter variable, one increment point for that

variable, and one termination variable. These cannot be altered at any point in

the loop nest.

v Loops cannot have multiple entry and exit points. The loop termination must be

the only means to exit the loop.

v Dependencies in the loop must not be ″backwards-looking″. For example, a

statement such as A[i][j] = A[i -1][j + 1] + 4) must not appear within the

loop.

For loop unrolling to occur, the #pragma unrollandfuse directive must precede a

for loop. You must not specify #pragma unrollandfuse for the innermost for loop.

You must not specify #pragma unrollandfuse more than once, or combine the

directive with nounrollandfuse, nounroll, unroll, or stream_unroll directives for

the same for loop.

Specifying #pragma nounrollandfuse instructs the compiler to not unroll that loop.

Examples

1. In the following example, a #pragma unrollandfuse directive replicates and

fuses the body of the loop. This reduces the number of cache misses for array

b.

int i, j;

int a[1000][1000];

int b[1000][1000];

int c[1000][1000];

....

#pragma unrollandfuse(2)

for (i=1; i<1000; i++) {

 for (j=1; j<1000; j++) {

 a[j][i] = b[i][j] * c[j][i];

 }

}

The for loop below shows a possible result of applying the #pragma

unrollandfuse(2) directive to the loop structure shown above.

Chapter 5. Compiler pragmas reference 263

for (i=1; i<1000; i=i+2) {

 for (j=1; j<1000; j++) {

 a[j][i] = b[i][j] * c[j][i];

 a[j][i+1] = b[i+1][j] * c[j][i+1];

 }

}

2. You can also specify multiple #pragma unrollandfuse directives in a nested

loop structure.

int i, j, k;

int a[1000][1000];

int b[1000][1000];

int c[1000][1000];

int d[1000][1000];

int e[1000][1000];

....

#pragma unrollandfuse(4)

for (i=1; i<1000; i++) {

#pragma unrollandfuse(2)

 for (j=1; j<1000; j++) {

 for (k=1; k<1000; k++) {

 a[j][i] = b[i][j] * c[j][i] + d[j][k] * e[i][k];

 }

 }

}

Related information

v “-qunroll” on page 198

v “#pragma unroll” on page 261

#pragma weak

Description

The #pragma weak directive prevents the link editor from issuing error messages if

it does not find a definition for a symbol, or if it encounters a symbol

multiply-defined during linking.

Syntax

�� # pragma weak identifier

=

identifier2
 ��

Notes

While this pragma is intended for use primarily with functions, it will also work

for most data objects.

This pragma should not be used with uninitialized global data, or with shared

library data objects that are exported to executables.

The dynamic linker will use the definition in whatever object appears first on the

command line. Thus, the order in which the object files are presented to the linker

is important.

Two forms of #pragma weak can be specified in your program source.

264 XL C/C++ Compiler Reference

#pragma weak identifier

This form of the pragma defines identifier as a weak global symbol.

References to identifier uses the identifier value if it is defined, otherwise

identifier is assigned a value of 0.

 If Identifier is defined in the same compilation unit as #pragma weak

identifier, identifier is treated as a weak definition. If #pragma weak exists in

a compilation unit that does not use or declare identifier, the pragma is

accepted and ignored.

 If identifier denotes a function with C++ linkage, identifier must be specified

using the C++ mangled name of the function. Also, if the C++ function is a

template function, you must explicitly instantiate the template function.

#pragma weak identifier=identifier2

This form of the pragma defines identifier as a weak global symbol.

References to identifier will use the value of identifier2.

 identifier2 must not be a member function.

 identifier may or may not be declared in the same compilation unit as the

#pragma weak, but must never be defined in the compilation unit.

 If identifier is declared in the compilation unit, identifier’s declaration must

be compatible to that of identifier2. For example, if identifier2 is a function,

identifier must have the same return and argument types as identifier2.

 identifier2 must be declared in the same compilation unit as #pragma weak.

 If identifier2 denotes a function with C++ linkage, the names of identifier

and identifier2 must be specified using the mangled names of the functions.

If the C++ function is a template function, you must explicitly instantiate

the template function.

The compiler will ignore #pragma weak and issue warning messages if:

v If identifer2 (if specified) is not defined in the compilation unit.

v If identifer2 (if specified) is a member function.

v If identifer is declared but its type is not compatible with that of identifer2 (if

specified).

The compiler will ignore #pragma weak and issue a severe error message if the

weak identifier is defined.

Examples

1. The following is an example of the #pragma weak identifier form of the

pragma:

// Begin Compilation Unit 1

#include <stdio.h>

extern int foo;

#pragma weak foo

int main()

{

 int *ptr;

 ptr = &foo;

 if (ptr == 0)

 printf("foo has been assigned a value of 0\n");

 else

 printf("foo was already defined\n");

}

//End Compilation Unit 1

Chapter 5. Compiler pragmas reference 265

// Begin Compilation Unit 2

int foo = 1;

// End Compilation Unit 2

If only Compilation Unit 1 is compiled to produce an executable, identifier foo

will be defined and assigned the value 0. The output from execution will be the

string: ″foo has been assigned a value of 0.″

2. The following is an example of the #pragma weak identifier=identifier2 form of

the pragma:

//Begin Compilation Unit

extern "C" void printf(char *,...);

void foo1(void)

{

 printf("Just in function foo1()\n");

}

#pragma weak _Z3foov = _Z4foo1v

int main()

{

 foo();

}

//End Compilation Unit

Pragma directives for parallel processing

Parallel processing operations are controlled by pragma directives in your program

source. The pragmas have effect only when parallelization is enabled with the

-qsmp compiler option.

#pragma omp atomic

Description

The omp atomic directive identifies a specific memory location that must be

updated atomically and not be exposed to multiple, simultaneous writing threads.

Syntax

�� # pragma omp atomic

statement
 ��

where statement is an expression statement of scalar type that takes one of the

forms that follow:

 statement Conditions

x bin_op = expr where:

bin_op is one of:

+ * - / & ^ | << >>

expr is an expression of scalar type that does not reference x.

x++

++x

266 XL C/C++ Compiler Reference

statement Conditions

x--

--x

Notes

Load and store operations are atomic only for object x. Evaluation of expr is not

atomic.

All atomic references to a given object in your program must have a compatible

type.

Objects that can be updated in parallel and may be subject to race conditions

should be protected with the omp atomic directive.

Examples

extern float x[], *p = x, y;

/* Protect against race conditions among multiple updates. */

#pragma omp atomic

x[index[i]] += y;

/* Protect against races with updates through x. */

#pragma omp atomic

p[i] -= 1.0f;

#pragma omp parallel

Description

The omp parallel directive explicitly instructs the compiler to parallelize the

chosen block of code.

Syntax

��

�

 ,

#

pragma

omp parallel

clause

��

where clause is any of the following:

 if (exp) When the if argument is specified, the program code executes in parallel

only if the scalar expression represented by exp evaluates to a non-zero

value at run time. Only one if clause can be specified.

private (list) Declares the scope of the data variables in list to be private to each thread.

Data variables in list are separated by commas.

firstprivate (list) Declares the scope of the data variables in list to be private to each thread.

Each new private object is initialized with the value of the original variable

as if there was an implied declaration within the statement block. Data

variables in list are separated by commas.

num_threads

(int_exp)

The value of int_exp is an integer expression that specifies the number of

threads to use for the parallel region. If dynamic adjustment of the number

of threads is also enabled, then int_exp specifies the maximum number of

threads to be used.

shared (list) Declares the scope of the comma-separated data variables in list to be

shared across all threads.

Chapter 5. Compiler pragmas reference 267

default (shared

| none)

Defines the default data scope of variables in each thread. Only one

default clause can be specified on an omp parallel directive.

Specifying default(shared) is equivalent to stating each variable in a

shared(list) clause.

Specifying default(none) requires that each data variable visible to the

parallelized statement block must be explcitly listed in a data scope clause,

with the exception of those variables that are:

v const-qualified,

v specified in an enclosed data scope attribute clause, or,

v used as a loop control variable referenced only by a corresponding omp

for or omp parallel for directive.

copyin (list) For each data variable specified in list, the value of the data variable in the

master thread is copied to the thread-private copies at the beginning of the

parallel region. Data variables in list are separated by commas.

Each data variable specified in the copyin clause must be a threadprivate

variable.

reduction

(operator: list)

Performs a reduction on all scalar variables in list using the specified

operator. Reduction variables in list are separated by commas.

A private copy of each variable in list is created for each thread. At the end

of the statement block, the final values of all private copies of the

reduction variable are combined in a manner appropriate to the operator,

and the result is placed back into the original value of the shared

reduction variable.

Variables specified in the reduction clause:

v must be of a type appropriate to the operator.

v must be shared in the enclosing context.

v must not be const-qualified.

v must not have pointer type.

Notes

When a parallel region is encountered, a logical team of threads is formed. Each

thread in the team executes all statements within a parallel region except for

work-sharing constructs. Work within work-sharing constructs is distributed

among the threads in a team.

Loop iterations must be independent before the loop can be parallelized. An

implied barrier exists at the end of a parallelized statement block.

Nested parallel regions are always serialized.

#pragma omp for

Description

The omp for directive instructs the compiler to distribute loop iterations within the

team of threads that encounters this work-sharing construct.

268 XL C/C++ Compiler Reference

Syntax

��

�

 ,

#

pragma

omp for

clause

for-loop

��

where clause is any of the following:

 private (list) Declares the scope of the data variables in list to be private to

each thread. Data variables in list are separated by commas.

firstprivate (list) Declares the scope of the data variables in list to be private to

each thread. Each new private object is initialized as if there was

an implied declaration within the statement block. Data variables

in list are separated by commas.

lastprivate (list) Declares the scope of the data variables in list to be private to

each thread. The final value of each variable in list, if assigned,

will be the value assigned to that variable in the last iteration.

Variables not assigned a value will have an indeterminate value.

Data variables in list are separated by commas.

reduction (operator:list) Performs a reduction on all scalar variables in list using the

specified operator. Reduction variables in list are separated by

commas.

A private copy of each variable in list is created for each thread.

At the end of the statement block, the final values of all private

copies of the reduction variable are combined in a manner

appropriate to the operator, and the result is placed back into the

original value of the shared reduction variable.

Variables specified in the reduction clause:

v must be of a type appropriate to the operator.

v must be shared in the enclosing context.

v must not be const-qualified.

v must not have pointer type.

ordered Specify this clause if an ordered construct is present within the

dynamic extent of the omp for directive.

Chapter 5. Compiler pragmas reference 269

schedule (type) Specifies how iterations of the for loop are divided among

available threads. Acceptable values for type are:

dynamic

Iterations of a loop are divided into chunks of size

ceiling(number_of_iterations/number_of_threads).

 Chunks are dynamically assigned to threads on a

first-come, first-serve basis as threads become available.

This continues until all work is completed.

dynamic,n

As above, except chunks are set to size n. n must be an

integral assignment expression of value 1 or greater.

guided Chunks are made progressively smaller until the default

minimum chunk size is reached. The first chunk is of size

ceiling(number_of_iterations/number_of_threads).

Remaining chunks are of size

ceiling(number_of_iterations_left/number_of_threads).

 The minimum chunk size is 1.

 Chunks are assigned to threads on a first-come,

first-serve basis as threads become available. This

continues until all work is completed.

guided,n

As above, except the minimum chunk size is set to n. n

must be an integral assignment expression of value 1 or

greater.

runtime

Scheduling policy is determined at run time. Use the

OMP_SCHEDULE environment variable to set the

scheduling type and chunk size.

static Iterations of a loop are divided into chunks of size

ceiling(number_of_iterations/number_of_threads). Each

thread is assigned a separate chunk.

 This scheduling policy is also known as block scheduling.

static,n Iterations of a loop are divided into chunks of size n.

Each chunk is assigned to a thread in round-robin fashion.

 n must be an integral assignment expression of value 1

or greater.

 This scheduling policy is also known as block cyclic

scheduling.

Note: if n=1, iterations of a loop are divided into chunks

of size 1 and each chunk is assigned to a thread in

round-robin fashion. This scheduling policy is also known

as block cyclic scheduling

nowait Use this clause to avoid the implied barrier at the end of the for

directive. This is useful if you have multiple independent

work-sharing sections or iterative loops within a given parallel

region. Only one nowait clause can appear on a given for

directive.

and where for_loop is a for loop construct with the following canonical shape:

for (init_expr; exit_cond; incr_expr)

 statement

270 XL C/C++ Compiler Reference

where:

 init_expr takes form: iv = b

integer-type iv = b

exit_cond takes form: iv <= ub

iv < ub

iv >= ub

iv > ub

incr_expr takes form: ++iv

iv++

--iv

iv--

iv += incr

iv -= incr

iv = iv + incr

iv = incr + iv

iv = iv - incr

and where:

 iv Iteration variable. The iteration variable must be a signed integer not

modified anywhere within the for loop. It is implicitly made private for

the duration of the for operation. If not specified as lastprivate, the

iteration variable will have an indeterminate value after the operation

completes.

b, ub, incr Loop invariant signed integer expressions. No synchronization is

performed when evaluating these expressions and evaluated side effects

may result in indeterminate values.

Notes

This pragma must appear immediately before the loop or loop block directive to be

affected.

Program sections using the omp for pragma must be able to produce a correct

result regardless of which thread executes a particular iteration. Similarly, program

correctness must not rely on using a particular scheduling algorithm.

The for loop iteration variable is implicitly made private in scope for the duration

of loop execution. This variable must not be modified within the body of the for

loop. The value of the increment variable is indeterminate unless the variable is

specified as having a data scope of lastprivate.

An implicit barrier exists at the end of the for loop unless the nowait clause is

specified.

Restrictions are:

v The for loop must be a structured block, and must not be terminated by a break

statement.

v Values of the loop control expressions must be the same for all iterations of the

loop.

v An omp for directive can accept only one schedule clauses.

v The value of n (chunk size) must be the same for all threads of a parallel region.

Chapter 5. Compiler pragmas reference 271

#pragma omp ordered

Description

The omp ordered directive identifies a structured block of code that must be

executed in sequential order.

Syntax

�� # pragma omp ordered ��

Notes

The omp ordered directive must be used as follows:

v It must appear within the extent of a omp for or omp parallel for construct

containing an ordered clause.

v It applies to the statement block immediately following it. Statements in that

block are executed in the same order in which iterations are executed in a

sequential loop.

v An iteration of a loop must not execute the same omp ordered directive more

than once.

v An iteration of a loop must not execute more than one distinct omp ordered

directive.

#pragma omp parallel for

Description

The omp parallel for directive effectively combines the omp parallel and omp for

directives. This directive lets you define a parallel region containing a single for

directive in one step.

Syntax

��

�

,

#

pragma

omp for

clause

for-loop

��

Notes

With the exception of the nowait clause, clauses and restrictions described in the

omp parallel and omp for directives also apply to the omp parallel for directive.

#pragma omp section, #pragma omp sections

Description

The omp sections directive distributes work among threads bound to a defined

parallel region.

Syntax

��

�

 ,

#

pragma

omp sections

clause

��

272 XL C/C++ Compiler Reference

where clause is any of the following:

 private (list) Declares the scope of the data variables in list to be private to each

thread. Data variables in list are separated by commas.

firstprivate (list) Declares the scope of the data variables in list to be private to each

thread. Each new private object is initialized as if there was an

implied declaration within the statement block. Data variables in

list are separated by commas.

lastprivate (list) Declares the scope of the data variables in list to be private to each

thread. The final value of each variable in list, if assigned, will be

the value assigned to that variable in the last section. Variables not

assigned a value will have an indeterminate value. Data variables

in list are separated by commas.

reduction (operator: list) Performs a reduction on all scalar variables in list using the

specified operator. Reduction variables in list are separated by

commas.

A private copy of each variable in list is created for each thread. At

the end of the statement block, the final values of all private

copies of the reduction variable are combined in a manner

appropriate to the operator, and the result is placed back into the

original value of the shared reduction variable.

Variables specified in the reduction clause:

v must be of a type appropriate to the operator.

v must be shared in the enclosing context.

v must not be const-qualified.

v must not have pointer type.

nowait Use this clause to avoid the implied barrier at the end of the

sections directive. This is useful if you have multiple independent

work-sharing sections within a given parallel region. Only one

nowait clause can appear on a given sections directive.

Notes

The omp section directive is optional for the first program code segment inside the

omp sections directive. Following segments must be preceded by an omp section

directive. All omp section directives must appear within the lexical construct of the

program source code segment associated with the omp sections directive.

When program execution reaches a omp sections directive, program segments

defined by the following omp section directive are distributed for parallel

execution among available threads. A barrier is implicitly defined at the end of the

larger program region associated with the omp sections directive unless the

nowait clause is specified.

#pragma omp parallel sections

Description

The omp parallel sections directive effectively combines the omp parallel and

omp sections directives. This directive lets you define a parallel region containing

a single sections directive in one step.

Syntax

Chapter 5. Compiler pragmas reference 273

��

�

,

#

pragma

omp parallel sections

clause

��

Notes

All clauses and restrictions described in the omp parallel and omp sections

directives apply to the omp parallel sections directive.

#pragma omp single

Description

The omp single directive identifies a section of code that must be run by a single

available thread.

Syntax

��

�

,

#

pragma

omp single

clause

��

where clause is any of the following:

 private (list) Declares the scope of the data variables in list to be private to each

thread. Data variables in list are separated by commas.

A variable in the private clause must not also appear in a copyprivate

clause for the same omp single directive.

copyprivate (list) Broadcasts the values of variables specified in list from one member of

the team to other members. This occurs after the execution of the

structured block associated with the omp single directive, and before

any of the threads leave the barrier at the end of the construct. For all

other threads in the team, each variable in the list becomes defined with

the value of the corresponding variable in the thread that executed the

structured block. Data variables in list are separated by commas. Usage

restrictions for this clause are:

v A variable in the copyprivate clause must not also appear in a private

or firstprivate clause for the same omp single directive.

v If an omp single directive with a copyprivate clause is encountered in

the dynamic extent of a parallel region, all variables specified in the

copyprivate clause must be private in the enclosing context.

v Variables specified in copyprivate clause within dynamic extent of a

parallel region must be private in the enclosing context.

v A variable that is specified in the copyprivate clause must have an

accessible and unambiguous copy assignment operator.

v The copyprivate clause must not be used together with the nowait

clause.

274 XL C/C++ Compiler Reference

firstprivate (list) Declares the scope of the data variables in list to be private to each

thread. Each new private object is initialized as if there was an implied

declaration within the statement block. Data variables in list are

separated by commas.

A variable in the firstprivate clause must not also appear in a

copyprivate clause for the same omp single directive.

nowait Use this clause to avoid the implied barrier at the end of the single

directive. Only one nowait clause can appear on a given single directive.

The nowait clause must not be used together with the copyprivate

clause.

Notes

An implied barrier exists at the end of a parallelized statement block unless the

nowait clause is specified.

#pragma omp master

Description

The omp master directive identifies a section of code that must be run only by the

master thread.

Syntax

�� # pragma omp master ��

Notes

Threads other than the master thread will not execute the statement block

associated with this construct.

No implied barrier exists on either entry to or exit from the master section.

#pragma omp critical

Description

The omp critical directive identifies a section of code that must be executed by a

single thread at a time.

Syntax

��

�

 ,

#

pragma

omp critical

(name)

��

where name can optionally be used to identify the critical region. Identifiers

naming a critical region have external linkage and occupy a namespace distinct

from that used by ordinary identifiers.

Notes

A thread waits at the start of a critical region identified by a given name until no

other thread in the program is executing a critical region with that same name.

Critical sections not specifically named by omp critical directive invocation are

mapped to the same unspecified name.

Chapter 5. Compiler pragmas reference 275

#pragma omp barrier

Description

The omp barrier directive identifies a synchronization point at which threads in a

parallel region will wait until all other threads in that section reach the same point.

Statement execution past the omp barrier point then continues in parallel.

Syntax

�� # pragma omp barrier ��

Notes

The omp barrier directive must appear within a block or compound statement. For

example:

if (x!=0) {

 #pragma omp barrier /* valid usage */

}

if (x!=0)

 #pragma omp barrier /* invalid usage */

#pragma omp flush

Description

The omp flush directive identifies a point at which the compiler ensures that all

threads in a parallel region have the same view of specified objects in memory.

Syntax

��

�

,

#

pragma

omp flush

list

��

where list is a comma-separated list of variables that will be synchronized.

Notes

If list includes a pointer, the pointer is flushed, not the object being referred to by

the pointer. If list is not specified, all shared objects are synchronized except those

inaccessible with automatic storage duration.

An implied flush directive appears in conjunction with the following directives:

v omp barrier

v Entry to and exit from omp critical.

v Exit from omp parallel.

v Exit from omp for.

v Exit from omp sections.

v Exit from omp single.

The omp flush directive must appear within a block or compound statement. For

example:

276 XL C/C++ Compiler Reference

if (x!=0) {

 #pragma omp flush /* valid usage */

}

if (x!=0)

 #pragma omp flush /* invalid usage */

#pragma omp threadprivate

Description

The omp threadprivate directive makes the named file-scope, namespace-scope, or

static block-scope variables private to a thread.

Syntax

��

�

 ,

#

pragma

omp threadprivate

(identifier)

��

where identifier is a file-scope, name space-scope or static block-scope variable.

Notes

Each copy of an omp threadprivate data variable is initialized once prior to first

use of that copy. If an object is changed before being used to initialize a

threadprivate data variable, behavior is unspecified.

A thread must not reference another thread’s copy of an omp threadprivate data

variable. References will always be to the master thread’s copy of the data variable

when executing serial and master regions of the program.

Use of the omp threadprivate directive is governed by the following points:

v An omp threadprivate directive must appear at file scope outside of any

definition or declaration.

v The omp threadprivate directive is applicable to static-block scope variables and

may appear in lexical blocks to reference those block-scope variables. The

directive must appear in the scope of the variable and not in a nested scope, and

must precede all references to variables in its list.

v A data variable must be declared with file scope prior to inclusion in an omp

threadprivate directive list.

v An omp threadprivate directive and its list must lexically precede any reference

to a data variable found in that list.

v A data variable specified in an omp threadprivate directive in one translation

unit must also be specified as such in all other translation units in which it is

declared.

v Data variables specified in an omp threadprivate list must not appear in any

clause other than the copyin, copyprivate, if, num_threads, and schedule

clauses.

v The address of a data variable in an omp threadprivate list is not an address

constant.

v A data variable specified in an omp threadprivate list must not have an

incomplete or reference type.

Chapter 5. Compiler pragmas reference 277

278 XL C/C++ Compiler Reference

Chapter 6. Predefined macros

Predefined macros fall into several categories:

v Macros related to language features

v Macros indicating the XL C/C++ compiler

v Macros related to the Linux platform

Macros related to language features

The following macros can be tested for enabled C99 features, features related to

GNU C or C++, and other IBM language extensions. A macro is defined to the

value of 1 if the listed feature is supported under the specified compiler option. If

the feature is not supported, then the macro is undefined. All predefined macros

are protected.

 Table 41. Predefined macros for language features

Predefined macro name Description Compiler option:

__ALTIVEC__ Support for vector data types -qaltivec

__C99_BOOL Support for the _Bool data type

-qlanglvl=stdc99|extc99|extc89|extended

__C99_COMPLEX Support for complex data types

-qlanglvl=stdc99|extc99|extc89|extended

__C99_COMPLEX_HEADERS__ Support for C99-style complex

headers

-qlanglvl=extended

__C99_CPLUSCMT Support for C++ style comments

-qlanglvl=stdc99|extc99-qcpluscmt

__C99_COMPOUND_LITERAL Support for compound literals

-qlanglvl=stdc99|extc99|extc89|extended

__C99_DESIGNATED_INITIALIZER Support for designated initialization

-qlanglvl=stdc99|extc99|extc89|extended

__C99_DUP_TYPE_QUALIFIER Support for duplicated type

qualifiers

-qlanglvl=stdc99|extc99|extc89|extended

__C99_EMPTY_MACRO_ARGUMENTS Support for empty macro

arguments

-qlanglvl=stdc99|extc99|extc89|extended

-qlanglvl=extended

__C99_FLEXIBLE_ARRAY_MEMBER Support for flexible array members

-qlanglvl=stdc99|extc99|extc89|extended

__C99__FUNC__ Support for the __func__ keyword

-qlanglvl=stdc99|extc99|extc89|extended

-qlanglvl=extended

__C99_HEX_FLOAT_CONST Support for hexadecimal floating

constants

-qlanglvl=stdc99|extc99|extc89|extended

-qlanglvl=extended

__C99_INLINE Support for the inline function

specifier

-qlanglvl=stdc99|extc99

-qkeyword=inline

__C99_LLONG Support for long long data types

-qlanglvl=stdc99|extc99

__C99_MACRO_WITH_VA_ARGS Support for function-like macros

with variable arguments

-qlanglvl=stdc99|extc99|extc89|extended

-qlanglvl=extended

__C99_MAX_LINE_NUMBER New limit for #line directive

-qlanglvl=stdc99|extc99|extc89|extended

__C99_MIXED_DECL_AND_CODE Support for mixed declaration and

code

-qlanglvl=stdc99|extc99|extc89|extended

__C99_MIXED_STRING_CONCAT Support for concatenation of wide

string and non-wide string literals

-qlanglvl=stdc99|extc99|extc89|extended

© Copyright IBM Corp. 1995, 2005 279

Table 41. Predefined macros for language features (continued)

Predefined macro name Description Compiler option:

__C99_NON_LVALUE_ARRAY_SUB Support for non-lvalue subscripts

for arrays

-qlanglvl=stdc99|extc99|extc89|extended

__C99_NON_CONST_AGGR_INITIALIZER Support for non-constant aggregate

initializers

-qlanglvl=stdc99|extc99|extc89|extended

__C99_PRAGMA_OPERATOR Support for the _Pragma operator

-qlanglvl=stdc99|extc99|extc89|extended

-qlanglvl=extended

__C99_REQUIRE_FUNC_DECL Implicit function declaration not

supported

-qlanglvl=stdc99

__C99_RESTRICT Support for the restrict qualifier

-qlanglvl=stdc99|extc99 -qkeyword=restrict

-qlanglvl=extended -qkeyword=restrict

__C99_STATIC_ARRAY_SIZE Support for the static keyword in

array parameters to functions

-qlanglvl=stdc99|extc99|extc89|extended

__C99_STD_PRAGMAS Support for standard pragmas

-qlanglvl=stdc99|extc99|extc89|extended

__C99_TGMATH Support for type-generic macros in

tgmath.h

-qlanglvl=stdc99|extc99|extc89|extended

__C99_UCN Support for universal character

names

-qlanglvl=stdc99|extc99|ucs

-qlanglvl=ucs

__C99_VAR_LEN_ARRAY Support for variable length arrays

-qlanglvl=stdc99|extc99|extc89|extended

__C99_VARIABLE_LENGTH_ARRAY

extended

__IBM__ALIGNOF__ Support for the __alignof__

operator

-qlanglvl=extc99|extc89|extended

-qlanglvl=extended

__IBM_ALTERNATE_KEYWORDS Support for alternate keywords

-qlanglvl=extc99|extc89|extended

__IBM_ATTRIBUTES Support for type, variable, and

function attributes

-qlanglvl=extc99|extc89|extended

-qlanglvl=extended

__IBM_COMPUTED_GOTO Support for computed goto

statements

-qlanglvl=extc99|extc89|extended

-qlanglvl=extended

__IBM_EXTENSION_KEYWORD Support for the __extension__

keyword

-qlanglvl=extc99|extc89|extended

-qlanglvl=extended

__IBM_GCC_ASM Support for GNU C inline asm

statements

-qlanglvl=extc99|extc89|extended,

-qkeyword=asm, -qasm=gcc

-qlanglvl=extended, -qasm=gcc

__IBM_GCC__INLINE__ Support for the GNU C __inline__

specifier

-qlanglvl=extc99|extc89|extended

-qlanglvl=extended

__IBM_DOLLAR_IN_ID Support for dollar signs in

identifiers

-qlanglvl=extc99|extc89|extended

__IBM_GENERALIZED_LVALUE Support for generalized lvalues

-qlanglvl=extc99|extc89|extended

__IBM_INCLUDE_NEXT Support for the #include_next

preprocessing directive

-qlanglvl=extc99|extc89|extended

-qlanglvl=extended

__IBM_LABEL_VALUE Support for labels as values

-qlanglvl=extc99|extc89|extended

-qlanglvl=extended

__IBM_LOCAL_LABEL Support for local labels

-qlanglvl=extc99|extc89|extended

-qlanglvl=extended

280 XL C/C++ Compiler Reference

Table 41. Predefined macros for language features (continued)

Predefined macro name Description Compiler option:

__IBM_MACRO_WITH_VA_ARGS Support for variadic macro

extensions

-qlanglvl=extc99|extc89|extended

-qlanglvl=extended

_IBM_NESTED_FUNCTION Support for nested functions

-qlanglvl=extc99|extc89|extended

__IBM_PP_PREDICATE Support for #assert, #unassert,

#cpu, #machine, and #system

preprocessing directives

-qlanglvl=extc99|extc89|extended

__IBM_PP_WARNING Support for the #warning

preprocessing directive

-qlanglvl=extc99|extc89|extended

__IBM_REGISTER_VARS Support for variables in specified

registers

__IBM_STDCPP_ASM Support for asm statements. If

assembler code is generated, the

macro has the value 1; otherwise, 0

__IBM__TYPEOF__ Support for the __typeof__

keyword

-qlanglvl=extc99|extc89|extended,

-qkeyword=typeof

-qlanglvl=extended, -qkeyword=typeof

__IBM_UTF_LITERAL Support for UTF-16 and UTF-32

string literals

-qutf

Macros indicating the XL C/C++ compiler

Predefined macros related to the XL C/C++ compiler are always defined.

 Predefined macro name Description

__IBMC__

Indicates the level of the XL C compiler as an integer

constant representing version, release, and modification

number.

__IBMCPP__

Indicates the level of the XL C++ compiler as an integer

constant representing version, release, and modification

number.

__xlc__

Indicates the level of the XL C compiler as a string

displaying the version, release, modification, and fix

level.

__xlC__ Indicates the level of the XL C++ compiler as a

three-digit hexadecimal constant, representing version,

release, and modification number. Using the XL C

compiler also automatically defines this macro.

Macros related to the Linux platform

The following predefined macros are provided to facilitate porting applications

between platforms.

 Predefined macro name Description

__BASE_FILE__ Defined to the fully qualified file name of the primary source file.

_BIG_ENDIAN Defined to 1.

__BIG_ENDIAN__ Defined to 1.

_CALL_SYSV Defined to 1.

__CHAR_UNSIGNED__ Defined to 1 if the option -qchars=unsigned or #pragma chars(unsigned) is in

effect. This macro is undefined if the option -qchars=signed or #pragma

chars(signed) is in effect.

__ELF__ Defined to 1 on this platform to indicate the ELF object model is in effect.

__EXCEPTIONS

Defined to 1 if the -qeh option is in effect. Otherwise it is not defined.

__GXX_WEAK__ Undefined for C. For C++, this macro is defined to 0 for gcc V3.3 or 1 for g++ V3.5.

Chapter 6. Predefined macros 281

Predefined macro name Description

__HOS_LINUX__ Defined to 1 if the host operating system is Linux. Otherwise it is not defined.

__linux Defined to 1.

__linux__ Defined to 1.

__OPTIMIZE__ Defined to 2 for optimization level -O or -O2, or to 3 for optimization level -O3 or

higher.

__OPTIMIZE_SIZE__ Defined to 1 if the options -qcompact and -O are set. Otherwise it is not defined.

__powerpc Defined to 1.

__powerpc__ Defined to 1.

__powerpc64__ Defined to 1 when compiling in 64-bit mode. Otherwise it is not defined.

__PPC Defined to 1.

__PPC__ Defined to 1.

__PPC64__ Defined to 1 when compiling in 64-bit mode. Otherwise it is not defined.

__SIZE_TYPE__ Defined to the underlying type of size_t on this platform. On Linux, in 32-bit

mode, the macro is defined as unsigned int. In 64-bit mode, the macro is defined

as unsigned long.

__TOS_LINUX__ Defined to 1 if the target operating system is Linux. Otherwise it is not defined.

__unix Defined to 1 on all UNIX-like platforms. Otherwise it is not defined.

__unix__ Defined to 1 on all UNIX-like platforms. Otherwise it is not defined.

282 XL C/C++ Compiler Reference

Chapter 7. Built-in functions for POWER and PowerPC

architectures

A built-in function is a coding extension to C and C++ that allows a programmer

to use the syntax of C function calls and C variables to access the instruction set of

the processor of the compiling machine. IBM POWER and PowerPC architectures

have special instructions that enable the development of highly optimized

applications. Access to some POWER or PowerPC instructions cannot be generated

using the standard constructs of the C and C++ languages. Other instructions can

be generated through standard constructs, but using built-in functions allows exact

control of the generated code. Inline assembly language programming, which uses

these instructions directly, is not fully supported by XL C/C++ and other

compilers. Furthermore, the technique can be time-consuming to implement.

As an alternative to managing hardware registers through assembly language, XL

C/C++ built-in functions provide access to the optimized POWER or PowerPC

instruction set and allow the compiler to optimize the instruction scheduling.

To call any of the XL C/C++ built-in functions in C++, you must include

the header file builtins.h in your source code.

The following tables describe the available built-in functions for the Linux

platform.

v “Fixed-point built-in functions”

v “Floating-point built-in functions” on page 285

v “Synchronization and atomic built-in functions” on page 289

v “Cache-related built-in functions” on page 295

v “Block-related built-in functions” on page 296

v “Miscellaneous built-in functions” on page 297

v “Built-in functions for parallel processing” on page 298

Fixed-point built-in functions

 Prototype Description

int __assert1(int, int, int); Generates trap instructions for kernel debugging.

void __assert2(int); Generates trap instructions for kernel debugging.

unsigned int __cntlz4(unsigned int); Count Leading Zeros, 4-byte integer

unsigned int __cntlz8(unsigned long long); Count Leading Zeros, 8-byte integer

unsigned int __cnttz4(unsigned int); Count Trailing Zeros, 4-byte integer

unsigned int __cnttz8(unsigned long long); Count Trailing Zeros, 8-byte integer

signed long long __llabs (signed long long); Returns the absolute value of the argument.

unsigned short __load2r(unsigned short*); Load Halfword Byte Reversed

unsigned int __load4r(unsigned int*); Load Word Byte Reversed

long long int __mulhd(long long int ra, long long int rb); Multiply High Doubleword Signed

Returns the highorder 64 bits of the 128bit product of the

operands ra and rb.

Supported only in 64-bit mode.

© Copyright IBM Corp. 1995, 2005 283

Prototype Description

unsigned long long int __mulhdu(unsigned long long

int ra, unsigned long long int rb);

Multiply High Doubleword Unsigned

Returns the highorder 64 bits of the 128bit product of the

operands ra and rb.

Supported only in 64-bit mode.

int __mulhw(int ra, int rb); Multiply High Word Signed

Returns the highorder 32 bits of the 64bit product of the

operands ra and rb.

unsigned int __mulhwu(unsigned int ra, unsigned int

rb);

Multiply High Word Unsigned

Returns the highorder 32 bits of the 64bit product of the

operands ra and rb.

int __popcnt4(unsigned int); Returns the number of bits set for a 32-bit integer.

int __popcnt8(unsigned long long); Returns the number of bits set for a 64-bit integer.

unsigned long __popcntb(unsigned long); Counts the 1 bits in each byte of the source operand and

places that count into the corresponding byte of the

result.

int __poppar4(unsigned int); Returns 1 if there is an odd number of bits set in a 32-bit

integer. Returns 0 otherwise.

int __poppar8(unsigned long long); Returns 1 if there is an odd number of bits set in a 64-bit

integer. Returns 0 otherwise.

unsigned long long __rdlam(unsigned long long rs,

unsigned int shift, unsigned long long mask);

Rotate Double Left and AND with Mask

Rotates the contents of rs left shift bits, ANDs the rotated

data with the mask. mask must be a constant and

represent a contiguous bit field.

unsigned long long __rldimi(unsigned long long rs,

unsigned long long is, unsigned int shift, unsigned long

long mask);

Rotate Left Doubleword Immediate then Mask Insert

Rotates rs left shift bits then inserts rs into is under bit

mask mask. shift must be a constant and 0<=shift<=63.

mask must be a constant and represent a contiguous bit

field.

unsigned int __rlwimi(unsigned int rs, unsigned int is,

unsigned int shift, unsigned int mask);

Rotate Left Word Immediate then Mask Insert

Rotates rs left shift bits then inserts rs into is under bit

mask mask. shift must be a constant and 0<=shift<=31.

mask must be a constant and represent a contiguous bit

field.

unsigned int __rlwnm(unsigned int rs, unsigned int shift,

unsigned int mask);

Rotate Left Word then AND with Mask

Rotates rs left shift bits, then ANDs rs with bit mask mask.

mask must be a constant and represent a contiguous bit

field.

unsigned int __rotatel4(unsigned int rs, unsigned int

shift);

Rotate Left Word

Rotates rs left shift bits.

unsigned long long __rotatel8(unsigned long long rs,

unsigned long long shift);

Rotate Left Doubleword

Rotates rs left shift bits.

void __store2r(unsigned short, unsigned short *); Store 2-byte Register

void __store4r(unsigned int, unsigned int *); Store 4-byte Register

284 XL C/C++ Compiler Reference

Prototype Description

void __tdw(long long a, long long b, unsigned int TO); Trap Doubleword

Compares operand a with operand b. This comparison

results in five conditions which are ANDed with a 5-bit

constant TO containing a value of 0 to 31 inclusive.

If the result is not 0 the system trap handler is invoked.

Each bit position, if set, indicates one or more of the

following possible conditions:

0 (high-order bit)

a Less than b, using signed comparison.

1 a Greater than b, using signed comparison.

2 a Equal b

3 a Less than b, using unsigned comparison.

4 (low-order bit)

a Greater than b, using unsigned comparison.

Supported only in 64-bit mode.

void __trap(int); Trap if the Parameter is not Zero

void __trapd (long long); Trap if the Parameter is not Zero

Supported only in 64-bit mode.

void __tw(int a, int b, unsigned int TO); Trap Word

Compares operand a with operand b. This comparison

results in five conditions which are ANDed with a 5-bit

constant TO containing a value of 0 to 31 inclusive.

If the result is not 0 the system trap handler is invoked.

Each bit position, if set, indicates one or more of the

following possible conditions:

0 (high-order bit)

a Less than b, using signed comparison.

1 a Greater than b, using signed comparison.

2 a Equal b

3 a Less than b, using unsigned comparison.

4 (low-order bit)

a Greater than b, using unsigned comparison.

Floating-point built-in functions

 Prototype Description

double __exp(double); Returns the exponential value.

double __fabs(double); Returns the absolute value of a double-precision

floating-point.

float __fabss(float); Returns the absolute value of a single-precision

floating-point.

Chapter 7. Built-in functions for POWER and PowerPC architectures 285

Prototype Description

double __fcfid (double); Floating Convert from Integer Doubleword

Converts a 64bit signed fixedpoint operand to a

double-precision floating-point.

double __fctid (double); Floating Convert to Integer Doubleword

Converts a floating-point operand to a 64-bit signed

fixed-point integer, using the rounding mode specified by

FPSCRRN

(Floating-Point Rounding Control field in the

Floating-Point Status and Control Register).

double __fctidz (double); Floating Convert to Integer Doubleword with Rounding

towards Zero

Converts a floating-point operand to a 64-bit signed

fixed-point integer, using the rounding mode

round-toward-zero.

double __fctiw (double); Floating Convert to Integer Word

Converts a floating-point operand to a 32-bit signed

fixed-point integer, using the rounding mode specified by

FPSCRRN

(Floating-Point Rounding Control field in the

Floating-Point Status and Control Register).

double __fctiwz (double); Floating Convert to Integer Word with Rounding towards

Zero

Converts a floating-point operand to a 32-bit signed

fixed-point integer, using the rounding mode

round-toward-zero.

double __fmadd(double, double, double); Floating Point Multiply-Add

float __fmadds(float, float, float); Floating Point Multiply-Add Short

double __fmsub(double, double, double); Floating Point Multiply-Subtract

float __fmsubs(float, float, float); Floating Point Multiply-Subtract

double __fmul (double, double); Floating Point Multiply

float __fmuls (float, float); Floating Point Multiply

double __fnabs(double); Floating Point Negative Absolute

float __fnabss(float); Floating Point Negative Absolute

double __fnmadd(double, double, double); Floating Point Negative Multiply-Add

float __fnmadds (float, float, float); Floating Point Negative Multiply-Add

double __fnmsub(double, double, double); Floating Point Negative Multiply-Subtract
__fnmsubs (a, x, y) = [- (a * x - y)]

float __fnmsubs (float, float, float); Floating Point Negative Multiply-Subtract

float __fre (double); Floating Point Reciprocal
__fre (x) = [(estimate of) 1.0/x]

Supported only when the target architecture is specified

for POWER5 processors (-qarch is set to pwr5 or pwr5x).

float __fres (float); Floating Point Reciprocal
__fres (x) = [(estimate of) 1.0/x]

286 XL C/C++ Compiler Reference

Prototype Description

double __frim (double); Rounds the double argument to an integer using

round-to-minus-infinity mode, and returns the value as a

double.

Supported only when the target architecture is specified

for POWER5+ processors (-qarch is set to pwr5x).

double __frin (double); Rounds the double argument to an integer using

round-to-nearest mode, and returns the value as a double.

Supported only when the target architecture is specified

for POWER5+ processors (-qarch is set to pwr5x).

double __frip (double); Rounds the double argument to an integer using

round-to-plus-infinity mode, and returns the value as a

double.

Supported only when the target architecture is specified

for POWER5+ processors (-qarch is set to pwr5x).

double __friz (double); Rounds the double argument to an integer using

round-to-zero mode, and returns the value as a double.

Supported only when the target architecture is specified

for POWER5+ processors (-qarch is set to pwr5x).

double __frsqrte (double); Floating Point Reciprocal Square Root
__frsqrte (x) = [(estimate of) 1.0/sqrt(x)]

float __frsqrtes (float); Floating Point Reciprocal Square Root
__frsqrtes (x) = [(estimate of) 1.0/sqrt(x)].

Supported only when the target architecture is specified

for POWER5 processors (-qarch is set to pwr5 or pwr5x).

double __fsel (double, double, double); Floating Point Select
if (a >= 0.0) then __fsel (a, x, y) = x;

else __fsel (a, x, y) = y

float __fsels (float, float, float); Floating point select
if (a >= 0.0) then __fsels (a, x, y) = x;

else __fsels (a, x, y) = y

double __fsqrt (double); Floating Point Square Root
__fsqrt (x) = square root of x

float __fsqrts (float); Floating Point Square Root
__fsqrts (x) = square root of x

signed long __labs (signed long); Calculates the absolute value of a long integer.

void __mtfsb0(unsigned int bt); Move to Floating Point Status/Control Register (FPSCR)

Bit 0

Sets bit bt of the FPSCR to 0. bt must be a constant and

0<=bt<=31.

void __mtfsb1(unsigned int bt); Moves to FPSCR Bit 1

Sets bit bt of the FPSCR to 1. bt must be a constant and

0<=bt<=31.

Chapter 7. Built-in functions for POWER and PowerPC architectures 287

Prototype Description

void __mtfsf(unsigned int flm, unsigned int frb); Move to FPSCR Fields

Places the contents of frb into the FPSCR under control of

the field mask specified by flm. The field mask flm

identifies the 4bit fields of the FPSCR affected. flm must

be a constant 8-bit mask.

void __mtfsfi(unsigned int bf, unsigned int u); Move to FPSCR Field Immediate

Places the value of u into the FPSCR field specified by bf.

bf and u must be constants, with 0<=bf<=7 and 0<=u<=15.

double __pow(double, double); Calculates the value of the first argument raised to the

power of the second argument.

double __readflm(); Reads the FPSCR.

double __setflm(double); Sets the FPSCR.

double __setrnd(int); Sets the rounding mode.

The allowable values for the argument are:

v 0 — round to zero

v 1 — round to nearest

v 2 — round to +infinity

v 3 — round to -infinity

void __stfiw(const int* addr, double value); Store Floating Point as Integer Word

Stores the contents of the loworder 32 bits of value,

without conversion, into the word in storage addressed

by addr.

double __swdiv_nochk(double, double); Floating-point division of double types; no range

checking. This function can provide better performance

than the normal divide operator or the __swdiv built-in

function in situations where division is performed

repeatedly in a loop and when arguments are within the

permitted ranges.

Argument restrictions: numerators equal to infinity are

not allowed; denominators equal to infinity, zero, or

denormalized are not allowed; the quotient of numerator

and denominator may not be equal to positive or

negative infinity.

With -qstrict in effect, the result is identical bitwise to

IEEE division. For correct operation in this scenario, the

arguments must satisfy the following additional

restrictions. Numerators must have an absolute value

greater than 2 ^ (-970) and less than infinity.

Denominators must have an absolute value greater than 2

^ (-1022) and less than 2 ^ 1021. The quotient of

numerator and denominator must have an absolute value

greater than 2 ^ (-1021) and less than 2 ^ 1023.

double __swdiv(double, double); Floating-point division of double types. No argument

restrictions.

288 XL C/C++ Compiler Reference

Prototype Description

float __swdivs_nochk(float, float); Floating-point division of float types; no range checking.

Argument restrictions: numerators equal to infinity are

not allowed; denominators equal to infinity, zero, or

denormalized are not allowed; the quotient of numerator

and denominator may not be equal to positive or

negative infinity.

float __swdivs(float, float); Floating-point division of double types. No argument

restrictions.

Synchronization and atomic built-in functions

 Prototype Description

unsigned int __check_lock_mp (const int* addr, int

old_value, int new_value);

Check Lock on Multiprocessor Systems

Conditionally updates a single word variable atomically.

addr specifies the address of the single word variable.

old_value specifies the old value to be checked against the

value of the single word variable. new_value specifies the

new value to be conditionally assigned to the single word

variable. The word variable must be aligned on a full

word boundary.

Return values:

1. A return value of false indicates that the single word

variable was equal to the old value and has been set

to the new value.

2. A return value of true indicates that the single word

variable was not equal to the old value and has been

left unchanged.

unsigned int __check_lockd_mp (const long long int*

addr, long long int old_value, long long int new_value);

Check Lock Doubleword on Multiprocessor Systems

Conditionally updates a doubleword variable atomically.

addr specifies the address of the doubleword variable.

old_value specifies the old value to be checked against the

value of the doubleword variable. new_value specifies the

new value to be conditionally assigned to the doubleword

variable. The doubleword variable must be aligned on a

doubleword boundary.

Return values:

1. A return value of false indicates that the doubleword

variable was equal to the old value and has been set

to the new value.

2. A return value of true indicates that the doubleword

variable was not equal to the old value and has been

left unchanged.

Supported only in 64-bit mode.

Chapter 7. Built-in functions for POWER and PowerPC architectures 289

Prototype Description

unsigned int __check_lock_up (const int* addr, int

old_value, int new_value);

Check Lock on Uniprocessor Systems

Conditionally updates a single word variable atomically.

addr specifies the address of the single word variable.

old_value specifies the old value to be checked against the

value of the single word variable. new_value specifies the

new value to be conditionally assigned to the single word

variable. The word variable must be aligned on a full

word boundary.

Return values:

v A return value of false indicates that the single word

variable was equal to the old value, and has been set to

the new value.

v A return value of true indicates that the single word

variable was not equal to the old value and has been

left unchanged.

unsigned int __check_lockd_up (const long long int*

addr, long long int old_value, int long long new_value);

Check Lock Doubleword on Uniprocessor systems

Conditionally updates a doubleword variable atomically.

addr specifies the address of the doubleword variable.

old_value specifies the old value to be checked against the

value of the doubleword variable. new_value specifies the

new value to be conditionally assigned to the doubleword

variable. The doubleword variable must be aligned on a

doubleword boundary.

Return values:

v A return value of false indicates that the doubleword

variable was equal to the old value, and has been set to

the new value.

v A return value of true indicates that the doubleword

variable was not equal to the old value and has been

left unchanged.

Supported only in 64-bit mode.

void __clear_lock_mp (const int* addr, int value); Clear Lock on Multiprocessor Systems

Atomic store of the value into the single word variable at

the address addr. The word variable must be aligned on a

full word boundary.

void __clear_lockd_mp (const long long int* addr, long

long int value);

Clear Lock Doubleword on Multiprocessor Systems

Atomic store of the value into the doubleword variable at

the address addr. The doubleword variable must be

aligned on a doubleword boundary.

Supported only in 64-bit mode.

void __clear_lock_up (const int* addr, int value); Clear Lock on Uniprocessor Systems

Atomic store of the value into the single word variable at

the address addr. The word variable must be aligned on a

full word boundary.

290 XL C/C++ Compiler Reference

Prototype Description

void __clear_lockd_up (const long long int* addr, long

long int value);

Clear Lock Doubleword on Uniprocessor Systems

Atomic store of the value into the doubleword variable at

the address addr. The doubleword variable must be

aligned on a doubleword boundary.

Supported only in 64-bit mode.

int __compare_and_swap(volatile int* addr, int*

old_val_addr, int new_val);

Performs an atomic operation which compares the

contents of a single word variable with a stored old

value. If the values are equal, a new value is stored in the

single word variable and 1 is returned; otherwise, the

single word variable is not updated and 0 is returned. In

either case, the contents of the memory location specified

by addr are copied into the memory location specified by

old_val_addr.

The __compare_and_swap function is useful when a single

word value must be updated only if it has not been

changed since it was last read. The memory location that

is taken as the input parameteraddr must be 4-byte

aligned. If __compare_and_swap is used as a locking

primitive, insert a call to the __isync built-in function at

the start of any critical sections.

int __compare_and_swaplp(volatile long* addr, long*

old_val_addr, long new_val);

Performs an atomic operation which compares the

contents of a doubleword variable with a stored old

value. If the values are equal, a new value is stored in the

doubleword variable and 1 is returned; otherwise, the

doubleword variable is not updated and 0 is returned. In

either case, the contents of the memory location specified

byaddr are copied into the memory location specified by

old_val_addr. The memory location that is taken as the

input parameteraddr must be 8-byte aligned.

This function is useful when a doubleword value must be

updated only if it has not been changed since it was last

read. If __compare_and_swaplp is used as a locking

primitive, insert a call to the __isync built-in function at

the start of any critical sections.

Supported only in 64-bit mode.

void __eieio(void); Enforce In-order Execution of Input/Output

Ensures that all I/O storage access instructions preceding

the call to __eioeio complete in main memory before I/O

storage access instructions following the function call can

execute.

This built-in function is useful to manage shared data

instructions where the execution order of load/store

access is significant. The function can provide the

necessary functionality for controlling I/O stores without

the cost to performance that can occur with other

synchronization instructions.

Chapter 7. Built-in functions for POWER and PowerPC architectures 291

Prototype Description

int __fetch_and_add(volatile int* addr, int val); Increments the single word specified by addr by the

amount specified by val in a single atomic operation.

The return value is equal to the original contents of the

memory location. The address specified by addr must be

4-byte aligned.

This operation is useful when a counter variable is shared

between several threads or processes.

long __fetch_and_addlp(volatile long* addr, long val); Increments the doubleword specified by addr by the

amount specified by val in a single atomic operation. The

return value is equal to the original contents of the

memory location. The address specified by addr must be

8-byte aligned.

This operation is useful when a counter variable is shared

between several threads or processes.

Supported only in 64-bit mode.

unsigned int __fetch_and_and(volatile unsigned int*

addr, unsigned int val);

Clears bits in the single word specified byaddr by

AND-ing that value with the input val parameter, in a

single atomic operation. The return value is equal to the

original contents of the memory location. The address

specified by addr must be 4-byte aligned.

This operation is useful when a variable containing bit

flags is shared between several threads or processes.

unsigned long __fetch_and_andlp(volatile unsigned

long* addr, unsigned long val);

Clears bits in the doubleword specified by addr by

AND-ing that value with the input val parameter, in a

single atomic operation. The return value is equal to the

original contents of the memory location. The address

specified by addr must be 8-byte aligned.

This operation is useful when a variable containing bit

flags is shared between several threads or processes.

Supported only in 64-bit mode.

unsigned int __fetch_and_or(volatile unsigned int* addr,

unsigned intval);

Sets bits in the single word specified by addr by OR-ing

that value with the input val parameter, in a single atomic

operation. The return value is equal to the original

contents of the memory location. The address specified by

addr must be 4-byte aligned.

This operation is useful when a variable containing bit

flags is shared between several threads or processes.

292 XL C/C++ Compiler Reference

Prototype Description

unsigned long __fetch_and_orlp(volatile unsigned long*

addr, unsigned long val;

Sets bits in the doubleword specified by addr by OR-ing

that value with the input val parameter, in a single atomic

operation. The return value is equal to the original

contents of the memory location. The address specified by

addr must be 8-byte aligned.

This operation is useful when a variable containing bit

flags is shared between several threads or processes.

Supported only in 64-bit mode.

unsigned int __fetch_and_swap(volatile unsigned int*

addr, unsigned intval);

Sets the single word specified by addr to the value or the

input val parameter and returns the original contents of

the memory location, in a single atomic operation.The

address specified by addr must be 4-byte aligned.

This operation is useful when a variable is shared

between several threads or processes, and one thread

needs to update the value of the variable without losing

the value that was originally stored in the location.

unsigned long __fetch_and_swaplp(volatile unsigned

long* addr, unsigned long val);

Sets the doubleword specified by addr to the value or the

input val parameter and returns the original contents of

the memory location, in a single atomic operation. The

address specified by addr must be 8-byte aligned.

This operation is useful when a variable is shared

between several threads or processes, and one thread

needs to update the value of the variable without losing

the value that was originally stored in the location.

Supported only in 64-bit mode.

void __iospace_eieio(void); Alternate name for the __eieio built-in function

(described above).

void __iospace_lwsync(void); Alternate name for the __lwsync built-in function

(described below).

void __iospace_sync(void);) Alternate name for the __sync built-in function (described

below).

void __isync(void); Waits for all previous instructions to complete and then

discards any prefetched instructions, causing subsequent

instructions to be fetched (or refetched) and executed in

the context established by previous instructions.

Chapter 7. Built-in functions for POWER and PowerPC architectures 293

Prototype Description

long __ldarx(volatile long* addr); Load Doubleword and Reserve Indexed

Loads the value from the memory location specified by

addr and returns the result. addr must be 8-byte aligned.

Can be used with a subsequent __stdcx built-in function

to implement a read-modify-write on a specified memory

location. The two built-in functions work together to

ensure that if the store is successfully performed, no other

processor or mechanism can modify the target

doubleword between the time the __ldarx function is

executed and the time the __stdcx function completes.

This has the same effect as inserting __fence built-in

functions before and after the __ldarx built-in function

and can inhibit compiler optimization of surrounding

code (see “Miscellaneous built-in functions” on page 297

for a description of the __fence built-in function.

Supported only in 64-bit mode.

int __lwarx(volatile int* addr); Load Word and Reserve Indexed

Loads the value from the memory location specified by

addr and returns the result. In 64-bit mode, the compiler

returns the sign-extended result. addr must be 4-byte

aligned.

Can be used with a subsequent __stwcx built-in function

to implement a read-modify-write on a specified memory

location. The two built-in functions work together to

ensure that if the store is successfully performed, no other

processor or mechanism can modify the target

doubleword between the time the __lwarx function is

executed and the time the __stwcx function completes.

This has the same effect as inserting __fence built-in

functions before and after the __lwarx built-in function

and can inhibit compiler optimization of surrounding

code.

void __lwsync(void); Ensures that all store instructions preceding the call to

__lwsync complete before any new instructions can be

executed on the processor that executed the function. This

allows you to synchronize between multiple processors

with minimal performance impact, as __lwsync does not

wait for confirmation from each processor.

294 XL C/C++ Compiler Reference

Prototype Description

int __stdcx(volatile long* addr, long val); Store Doubleword Conditional Indexed

Stores the value specified by val into the memory location

specified by addr, and returns 1 if the update of the

specified memory location is successful and 0 if it is

unsuccessful. addr must be 8-byte aligned.

Can be used with a preceding __ldarx built-in function to

implement a read-modify-write on a specified memory

location. The two built-in functions work together to

ensure that if the store is successfully performed, no other

processor or mechanism can modify the target

doubleword between the time the __ldarx function is

executed and the time the __stdcx function completes.

This has the same effect as inserting __fence built-in

functions before and after the __stdcx built-in function

and can inhibit compiler optimization of surrounding

code.

Supported only in 64-bit mode.

int __stwcx(volatile int* addr, int val); Store Word Conditional Indexed

Stores the value specified by val into the memory location

specified by addr, and returns 1 if the update of the

specified memory location is successful and 0 if it is

unsuccessful. addr must be 4-byte aligned.

Can be used with a preceding __lwarx built-in function to

implement a read-modify-write on a specified memory

location. The two built-in functions work together to

ensure that if the store is successfully performed, no other

processor or mechanism can modify the target

doubleword between the time the __lwarx function is

executed and the time the __stwcx function completes.

This has the same effect as inserting __fence built-in

functions before and after the __stwcx built-in function

and can inhibit compiler optimization of surrounding

code.

void __sync(void); Ensures that all instructions preceding the function the

call to __sync complete before any instructions following

the function call can execute.

Cache-related built-in functions

 Prototype Description

void __dcbt (void *); Data Cache Block Touch

Loads the block of memory containing the specified

address into the data cache.

void __dcbz (void *); Data Cache Block set to Zero

Sets a cache line containing the specified address in the

data cache to zero (0).

void __prefetch_by_load(const void*); Touches a memory location by using an explicit load.

Chapter 7. Built-in functions for POWER and PowerPC architectures 295

Prototype Description

void __prefetch_by_stream(const int, const void*); Touches a memory location by using an explicit stream.

void __protected_stream_count(unsigned int unit_cnt,

unsigned int ID);

Sets unit_cnt number of cache lines for the limited length

protected stream with identifier ID. unit_cnt must be an

integer with value of 0 to 1023. Stream ID must have

integer value 0 to 15.

Supported only when the target architecture is specified

for POWER5 processors (-qarch is set to pwr5 or pwr5x).

void __protected_stream_go(); Starts prefetching all limited-length protected streams.

Supported only when the target architecture is specified

for POWER5 processors (-qarch is set to pwr5 or pwr5x).

void __protected_stream_set(unsigned int direction, const

void* addr, unsigned int ID);

Establishes a limited length protected stream using

identifier ID, which begins with the cache line at addr and

then depending on the value of direction, fetches from

either incremental (forward) or decremental (backward)

memory addresses. The stream is protected from being

replaced by any hardware detected streams.

direction must have value of 1 (forward) or 3 (backward).

Stream ID must have integer value 0 to 15.

Supported only when the target architecture is specified

for POWER5 processors (-qarch is set to pwr5 or pwr5x).

void __protected_unlimited_stream_set_go (unsigned int

direction, const void* addr, unsigned int ID);

Establishes an unlimited length protected stream using

identifier ID, which begins with the cache line at addr and

then depending on the value of direction, fetches from

either incremental (forward) or decremental (backward)

memory addresses. The stream is protected from being

replaced by any hardware detected streams.

Direction must have value of 1 (forward) or 3 (backward).

Stream ID must have integer value 0 to 15.

Supported only when the target architecture is specified

for POWER5 or PowerPC 970 processors (-qarch is set to

pwr5, pwr5x, or ppc970).

void __protected_stream_stop(unsigned int ID); Stops prefetching the protected steam with identifier ID.

Supported only when the target architecture is specified

for POWER5 processors (-qarch is set to pwr5 or pwr5x).

void __protected_stream_stop_all(); Stops prefetching all protected steams.

Supported only when the target architecture is specified

for POWER5 processors (-qarch is set to pwr5 or pwr5x).

Block-related built-in functions

 Prototype Description

void __bcopy(char *, char *, size_t); Block copy for 64-bit systems

void __bzero(void *, size_t); Block zero

296 XL C/C++ Compiler Reference

Miscellaneous built-in functions

 Prototype Description

void __alignx(int alignment, const void *address); Informs the compiler that the specified address is aligned

at a known compile-time offset. alignment must be a

positive constant integer with a value greater than zero

and of a power of two.

void __builtin_return_address (unsigned int level); Returns the return address of the current function, or of

one of its callers. Where level argument is a constant

literal indicating the number of frames to scan up the call

stack. The level must range from 0 to 63. A value of 0

yields the return address of the current function, a value

of 1 yields the return address of the caller of the current

function and so on.

Notes:

1. When the top of the stack is reached, the function will

return 0.

2. The level must range from 0 to 63, otherwise a

warning message will be issued and the compilation

will halt.

3. When functions are inlined, the return address

corresponds to that of the function that is returned to.

4. Compiler optimization may affect expected return

value due to introducing extra stack frames or fewer

stack frames than expected due to optimizations such

as inlining.

void __builtin_frame_address (unsigned int level); Returns the address of the function frame of the current

function, or of one of its callers. Where level argument is a

constant literal indicating the number of frames to scan

up the call stack. The level must range from 0 to 63. A

value of 0 yields the return the frame address of the

current function, a value of 1 yields the return the frame

address of the caller of the current function and so on.

Notes:

1. When the top of the stack is reached, the function will

return 0.

2. The level must range from 0 to 63, otherwise a

warning message will be issued and the compilation

will halt.

3. When functions are inlined, the frame address

corresponds to that of the function that is returned to.

4. Compiler optimization may affect expected return

value due to introducing extra stack frames or fewer

stack frames than expected due to optimizations such

as inlining.

void __fence(void); Acts as a barrier to compiler optimizations that involve

code motion, or reordering of machine instructions.

Compiler optimizations will not move machine

instructions past the location of the __fence call. This

construct is useful to guarantee the ordering of

instructions in the object code generated by the compiler

when optimization is enabled.

Chapter 7. Built-in functions for POWER and PowerPC architectures 297

Prototype Description

unsigned long __mftb(); Move from Time Base

In 32-bit compilation mode, returns the lower word of the

time base register, and can be used in conjunction with

the__mftbu built-in function to read the entire time base

register. In 64-bit mode, returns the entire doubleword

time base register.

Note: It is recommended that you insert the __fence

built-in function before and after the __mftb built-in

function.

unsigned int __mftbu(); Move from Time Base Upper

In 32-bit compilation mode, returns the upper word of the

time base register, and can be used in conjunction with

the __mftb built-in function to read the entire time base

register. In 64-bit mode, returns the entire doubleword

time base register; therefore, separate use of __mftbu is

unnecessary.

Note: It is recommended that you insert the __fence

built-in function before and after the __mftbu built-in

function.

unsigned long __mfmsr (void); Moves the contents of the MSR into bits 32 to 63 of the

designated GPR. Execution of this instruction is

privileged and restricted to supervisor mode only.

unsigned __mfspr(const int registerNumber); Returns the value of given special purpose register

registerNumber. The registerNumber must be known at

compile time.

void __mtmsr (unsigned long); Moves the contents of bits 32 to 63 of the designated GPR

into the MSR. Execution of this instruction is privileged

and restricted to supervisor mode only.

void __mtspr(const int registerNumber, unsigned long

value);

Sets the value of special purpose register registerNumber

with unsigned long value. Both values must be known at

compile time.

Built-in functions for parallel processing

Use these built-in functions to obtain information about the parallel environment.

Function definitions for the omp_ functions can be found in the omp.h header file.

 Prototype Description

int omp_get_num_threads(void); Returns the number of threads currently in the team

executing the parallel region from which it is called.

void omp_set_num_threads(int num_threads); Overrides the setting of the OMP_NUM_THREADS

environment variable, and specifies the number of threads

to use in parallel regions following this directive. The value

num_threads must be a positive integer.
If the num_threads clause is present, then for the parallel

region it is applied to, it supersedes the number of threads

requested by the omp_set_num_threads library function or

the OMP_NUM_THREADS environment variable.

Subsequent parallel regions are not affected by it.

298 XL C/C++ Compiler Reference

Prototype Description

int omp_get_max_threads(void); Returns the maximum value that can be returned by calls

to omp_get_num_threads.

int omp_get_thread_num(void); Returns the thread number, within its team, of the thread

executing the function. The thread number lies between 0

and omp_get_num_threads()-1, inclusive. The master thread

of the team is thread 0.

int omp_get_num_procs(void); Returns the maximum number of processors that could be

assigned to the program.

int omp_in_parallel(void); Returns non-zero if it is called within the dynamic extent of

a parallel region executing in parallel; otherwise, it returns

0.

void omp_set_dynamic(int dynamic_threads); Enables or disables dynamic adjustment of the number of

threads available for execution of parallel regions.

int omp_get_dynamic(void); Returns non-zero if dynamic thread adjustments enabled

and returns 0 otherwise.

void omp_set_nested(int nested); Enables or disables nested parallelism.

int omp_get_nested(void); Returns non-zero if nested parallelism is enabled and 0 if it

is disabled.

void omp_init_lock(omp_lock_t *lock);

void omp_init_nest_lock(omp_nest_lock_t *lock);

These functions provide the only means of initializing a

lock. Each function initializes the lock associated with the

parameter lock for use in subsequent calls.

void omp_destroy_lock(omp_lock_t *lock);

void omp_destroy_nest_lock(omp_nest_lock_t *lock);

These functions ensure that the specified lock variable lock

is uninitialized.

void omp_set_lock(omp_lock_t *lock);

void omp_set_nest_lock(omp_nest_lock_t *lock);

Each of these functions blocks the thread executing the

function until the specified lock is available and then sets

the lock. A simple lock is available if it is unlocked. A

nestable lock is available if it is unlocked or if it is already

owned by the thread executing the function.

void omp_unset_lock(omp_lock_t *lock);

void omp_unset_nest_lock(omp_nest_lock_t *lock);

These functions provide the means of releasing ownership

of a lock.

int omp_test_lock(omp_lock_t *lock);

int omp_test_nest_lock(omp_nest_lock_t *lock);

These functions attempt to set a lock but do not block

execution of the thread.

double omp_get_wtime(void); Returns the time elapsed from a fixed starting time. The

value of the fixed starting time is determined at the start of

the current program, and remains constant throughout

program execution.

double omp_get_wtick(void); Returns the number of seconds between clock ticks.

Note: In the current implementation, nested parallel regions are always serialized.

As a result, omp_set_nested does not have any effect, and omp_get_nested

always returns 0.

For complete information about OpenMP runtime library functions, refer to the

OpenMP C/C++ Application Program Interface specification in www.openmp.org.

Related information

v Chapter 7, “Built-in functions for POWER and PowerPC architectures,” on page

283

Chapter 7. Built-in functions for POWER and PowerPC architectures 299

http://www.openmp.org

300 XL C/C++ Compiler Reference

Appendix A. Redistributable libraries

If you build your application using XL C/C++, it may use one or more of the

following redistributable libraries. If you ship the application, ensure that the users

of the application have the packages containing the libraries. To make sure the

required libraries are available to users, one of the following can be done:

v You can ship the packages that contain the libraries with the application. The

packages are stored under the rpms/ directory under the appropriate Linux

distribution directory on the installation CD.

v The user can download the packages that contain the libraries from the XL

C/C++ support Web site at:

http://www.ibm.com/software/awdtools/xlcpp/support/

For information on the licensing requirements related to the distribution of these

packages refer to LicAgree.pdf on the CD.

 Table 42. Redistributable libraries

Package

name Libraries (and default installation path) Description

vacpp.rte /opt/ibmcmp/lib/libibmc++.so.1

/opt/ibmcmp/lib64/libibmc++.so.1

C++ runtime libraries

xlsmp.rte /opt/ibmcmp/lib/libxlomp_ser.so.1

/opt/ibmcmp/lib/libxlsmp.so.1

/opt/ibmcmp/lib64/libxlomp_ser.so.1

/opt/ibmcmp/lib64/libxlsmp.so.1

SMP (OMP) runtime

libraries

xlsmp.msg.rte /opt/ibmcmp/msg/en_US/smprt.cat

/opt/ibmcmp/msg/en_US.utf8/smprt.cat

SMP message catalogs

(English)

/opt/ibmcmp/msg/ja_JP/smprt.cat

/opt/ibmcmp/msg/ja_JP.eucjp/smprt.cat

/opt/ibmcmp/msg/ja_JP.utf8/smprt.cat

SMP message catalogs

(Japanese)

/opt/ibmcmp/msg/zh_CN/smprt.cat

/opt/ibmcmp/msg/zh_CN.gb18030/smprt.cat

/opt/ibmcmp/msg/zh_CN.gb2312/smprt.cat

/opt/ibmcmp/msg/zh_CN.gbk/smprt.cat

/opt/ibmcmp/msg/zh_CN.utf8/smprt.cat

SMP message catalogs

(Chinese)

.

© Copyright IBM Corp. 1995, 2005 301

http://www.ibm.com/software/awdtools/xlcpp/support/

302 XL C/C++ Compiler Reference

Appendix B. ASCII character set

XL C/C++ uses the American National Standard Code for Information Interchange

(ASCII) character set.

The following table lists the standard ASCII characters in ascending numerical

order, with their corresponding decimal, octal, and hexadecimal values. It also

shows the control characters with Ctrl- notation. For example, the carriage return

(ASCII symbol CR) appears as Ctrl-M, which you enter by simultaneously

pressing the Ctrl key and the M key.

 Decimal

value

Octal

value

Hex

value

Control

character

ASCII

symbol

Meaning

0 0 00 Ctrl-@ NUL null

1 1 01 Ctrl-A SOH start of heading

2 2 02 Ctrl-B STX start of text

3 3 03 Ctrl-C ETX end of text

4 4 04 Ctrl-D EOT end of transmission

5 5 05 Ctrl-E ENQ enquiry

6 6 06 Ctrl-F ACK acknowledge

7 7 07 Ctrl-G BEL bell

8 10 08 Ctrl-H BS backspace

9 11 09 Ctrl-I HT horizontal tab

10 12 0A Ctrl-J LF new line

11 13 0B Ctrl-K VT vertical tab

12 14 OC Ctrl-L FF form feed

13 15 0D Ctrl-M CR carriage return

14 16 0E Ctrl-N SO shift out

15 17 0F Ctrl-O SI shift in

16 20 10 Ctrl-P DLE data link escape

17 21 11 Ctrl-Q DC1 device control 1

18 22 12 Ctrl-R DC2 device control 2

19 23 13 Ctrl-S DC3 device control 3

20 24 14 Ctrl-T DC4 device control 4

21 25 15 Ctrl-U NAK negative acknowledge

22 26 16 Ctrl-V SYN synchronous idle

23 27 17 Ctrl-W ETB end of transmission

block

24 30 18 Ctrl-X CAN cancel

25 31 19 Ctrl-Y EM end of medium

26 32 1A Ctrl-Z SUB substitute

27 33 1B Ctrl-[ESC escape

28 34 1C Ctrl-\ FS file separator

© Copyright IBM Corp. 1995, 2005 303

Decimal

value

Octal

value

Hex

value

Control

character

ASCII

symbol

Meaning

29 35 1D Ctrl-] GS group separator

30 36 1E Ctrl-^ RS record separator

31 37 1F Ctrl-_ US unit separator

32 40 20 SP digit select

33 41 21 ! exclamation point

34 42 22 “ double quotation mark

35 43 23 # pound sign, number

sign

36 44 24 $ dollar sign

37 45 25 % percent sign

38 46 26 & ampersand

39 47 27 ’ apostrophe

40 50 28 (left parenthesis

41 51 29) right parenthesis

42 52 2A * asterisk

43 53 2B + addition sign

44 54 2C , comma

45 55 2D - subtraction sign

46 56 2E . period

47 57 2F / right slash

48 60 30 0

49 61 31 1

50 62 32 2

51 63 33 3

52 64 34 4

53 65 35 5

54 66 36 6

55 67 37 7

56 70 38 8

57 71 39 9

58 72 3A : colon

59 73 3B ; semicolon

60 74 3C < less than

61 75 3D = equal

62 76 3E > greater than

63 77 3F ? question mark

64 100 40 @ at sign

65 101 41 A

66 102 42 B

67 103 43 C

304 XL C/C++ Compiler Reference

Decimal

value

Octal

value

Hex

value

Control

character

ASCII

symbol

Meaning

68 104 44 D

69 105 45 E

70 106 46 F

71 107 47 G

72 110 48 H

73 111 49 I

74 112 4A J

75 113 4B K

76 114 4C L

77 115 4D M

78 116 4E N

79 117 4F O

80 120 50 P

81 121 51 Q

82 122 52 R

83 123 53 S

84 124 54 T

85 125 55 U

86 126 56 V

87 127 57 W

88 130 58 X

89 131 59 Y

90 132 5A Z

91 133 5B [left bracket

92 134 5C \ left slash, backslash

93 135 5D] right bracket

94 136 5E ^ hat, circumflex, caret

95 137 5F _ underscore

96 140 60 ` grave accent

97 141 61 a

98 142 62 b

99 143 63 c

100 144 64 d

101 145 65 e

102 146 66 f

103 147 67 g

104 150 68 h

105 151 69 i

106 152 6A j

107 153 6B k

Appendix B. ASCII character set 305

Decimal

value

Octal

value

Hex

value

Control

character

ASCII

symbol

Meaning

108 154 6C l

109 155 6D m

110 156 6E n

111 157 6F o

112 160 70 p

113 161 71 q

114 162 72 r

115 163 73 s

116 164 74 t

117 165 75 u

118 166 76 v

119 167 77 w

120 170 78 x

121 171 79 y

122 172 7A z

123 173 7B { left brace

124 174 7C | logical or, vertical bar

125 175 7D } right brace

126 176 7E ~ similar, tilde

127 177 7F DEL delete

306 XL C/C++ Compiler Reference

Notices

Note to U.S. Government Users Restricted Rights -- use, duplication or disclosure

restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1995, 2005 307

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

Lab Director

IBM Canada Ltd. Laboratory

B3/KB7/8200/MKM

8200 Warden Avenue

Markham, Ontario L6G 1C7

Canada

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement or any equivalent agreement

between us.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

308 XL C/C++ Compiler Reference

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. 1998, 2002. All rights reserved.

Programming interface information

Programming interface information is intended to help you create application

software using this program.

General-use programming interface allow the customer to write application

software that obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning

information. Diagnosis, modification, and tuning information is provided to help

you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a

programming interface because it is subject to change.

Trademarks and service marks

The following terms are trademarks of the International Business Machines

Corporation in the United States, or other countries, or both:

AIX

IBM

PowerPC

pSeries

SAA

VisualAge

Other company, product, and service names, which may be denoted by a double

asterisk(**), may be trademarks or service marks of others.

Industry standards

The following standards are supported:

v The C language is consistent with the International Standard for Information

Systems-Programming Language C (ISO/IEC 9899-1999 (E)).

v The C++ language is consistent with the International Standard for Information

Systems-Programming Language C++ (ISO/IEC 14882:1998).

v The C and C++ languages are consistent with the OpenMP C and C++

application programming interface, Version 1.0.

Notices 309

310 XL C/C++ Compiler Reference

Index

A
alias 46

-qalias compiler option 46

pragma disjoint 225

alignment 47

-qalign compiler option 47

pragma align 217

pragma pack 253

architecture 20

-q32 compiler option 44

-q64 compiler option 44

-qarch compiler option 49

-qcache compiler option 58

-qhot compiler option 94

-qtune compiler option 197

architecture combination 208

B
built-in functions 283

block-related 296

built-in functions for POWER

andPowerPC architectures 283

cache-related 295

fixed-point 283

floating-point 285

for parallel processing 298

miscellaneous 297

synchronization and atomic 289

C
compatibility

-qabi_version compiler option 44

options for compatibility 40

compiler options 16

architecture-specific 20

performance optimization 35

resolving conflicts 19

specifying compiler options 16

command line 16

configuration file 18

source files 18

summary of command line

options 31

configuration file 8

attributes 9

customizing 8

specifying compiler options 18

D
data types 49

-qaltivec compiler option 49

pragma altivec_model 219

dynamic profiling 5

-p compiler option 153

-pg compiler option 157

-qpdf1 compiler option 154

dynamic profiling (continued)
-qpdf2 compiler option 154

-qshowpdf compiler option 174

environment variable 7

E
environment variable 1

algorithm environment variable 6

environment variables 1

parallel environment options 4

parallel environment variables 7

XLSMPOPTS environment variable 2

error checking and debugging 37

-g compiler option 90

-qcheck compiler option 61

-qlinedebug compiler option 136

H
high order transformation 94

-qhot compiler option 94

I
IBM SMP directives 216

inline functions 104

-Q compiler option 164

-qalloca compiler option 48

-qstaticinline compiler option 180

ma 141

pragma alloca 218

qinline 104

interprocedural analysis (IPA) 106

-qipa compiler option 106

invocations 11

compiler or components 11

preprocessor 21

selecting 11

syntax 13

L
language standards 119

-qlanglvl compiler option 119

pragma langlvl 239

libraries
redistributable 301

XL C/C++ 301

linkage editor 23

invoking 23

linking 23

invoking 23

options that control linking 40

order of linking 24

listing
-qattr compiler option 54

-qlist compiler option 136

-qlistopt compiler option 137

listing (continued)
-qsource compiler option 177

-qxref compiler option 206

compiler listing 27

options that control listings and

messages 38

M
macros 279

related to language feature 279

related to the Linux platform 281

related to XL C/C++ compiler 281

O
OpenMp 6

OpenMP environment variables 6

OpenMP directives 216

optimization 35

-O compiler option 148

-qalias compiler option 46

-qipa compiler option 106

-qoptimize compiler option 148

loop optimization 35

-qhot compiler option 94

-qstrict_induction compiler

option 184

-qunroll compiler option 198

opt 35

options for performance

optimization 35

P
parallel processing 6

built-in functions 298

OpenMP environment variables 6

parallel processing pragmas 266

pragma directives 266

setting parallel processing

environment variables 2

summary of OpenMP pragma

directives 216

performance 35

-O compiler option 148

-qalias compiler option 46

-qipa compiler option 106

-qoptimize compiler option 148

optimizing 35

profile-directed feedback (PDF) 154

-qpdf1 compiler option 154

-qpdf2 compiler option 154

S
shared objects 147

-qmkshrobj 147

shared-memory parallelism (SMP) 3

© Copyright IBM Corp. 1995, 2005 311

shared-memory parallelism (SMP)

(continued)
-qsmp compiler option 175

environment variables 3

IBM SMP directives 216

T
templates 189

-qtempinc compiler option 189

-qtemplaterecompile compiler

option 190

-qtemplateregistry compiler

option 190

-qtempmax compiler option 191

-qtmplinst compiler option 193

-qtmplparse compiler option 194

pragma define 225

pragma do_not_instantiate 226

pragma implementation 234

pragma instantiate 236

tuning 197

-qarch compiler option 197

-qtune compiler option 197

V
vector data types 49

-qaltivec compiler option 49

-qenablevmx compiler option 77

vector multimedia extension (VMX) 77

-qaltivec compiler option 49

virtual function table (VFT) 74

-qdump_class_hierarchy 74

-qvftable compiler option 203

VMX 77

-qaltivec compiler option 49

-qenablevmx compiler option 77

312 XL C/C++ Compiler Reference

���

SC09-8013-00

	Contents
	About this document
	Who should read this document
	How to use this document
	How this document is organized
	Conventions used in this document
	Typographical conventions
	Icons
	How to read syntax diagrams

	Related information
	Additional documentation

	Technical support
	How to send your comments

	Chapter 1. Configuring the compiler
	Setting environment variables
	General environment variables
	Environment variables for parallel processing
	Suboptions of the XLSMPOPTS environment variable for parallel processing
	OpenMP environment variables for parallel processing

	Customizing the configuration file
	Configuration file attributes

	Chapter 2. Compiling and linking applications
	Invoking the compiler
	Selecting an invocation command
	Invocation syntax

	Types of input files
	Types of output files
	Specifying compiler options
	Specifying compiler options on the command line
	Specifying compiler options in a configuration file
	Specifying compiler options in program source files
	Resolving conflicting compiler options
	Specifying compiler options for architecture-specific, 32-bit or 64-bit compilation

	Preprocessing
	Specifying path names for include files
	Directory search sequence for include files using relative path names

	Linking
	Order of linking

	Compiler messages and listings
	Compiler messages
	Compiler message format
	Message severity levels and compiler response

	Compiler listings
	Compiler return codes
	Message catalog errors
	Paging space errors during compilation

	Chapter 3. Compiler options reference
	Summary of compiler options by functional category
	Options that control input
	Options that control output
	Options for performance optimization
	Options for error checking and debugging
	Options that control listings and messages
	Options for compatibility
	Options that control integer and floating-point processing
	Options that control linking
	Options for customizing the compiler

	Individual option descriptions
	-+ (plus sign)
	-# (pound sign)
	-q32, -q64
	-qabi_version
	-qaggrcopy
	-qalias
	-qalign
	-qalloca
	-qaltivec
	-qarch
	-qasm
	-qasm_as
	-qattr
	-B
	-qbigdata
	-qbitfields
	-C
	-c
	-qc_stdinc
	-qcache
	-qchars
	-qcheck
	-qcinc
	-qcompact
	-qcomplexgccincl
	-qcpluscmt
	-qcpp_stdinc
	-qcrt
	-D
	-qdataimported
	-qdatalocal
	-qdbxextra
	-qdigraph
	-qdirectstorage
	-qdollar
	-qdump_class_hierarchy
	-E
	-e
	-qeh
	-qenablevmx
	-qenum
	-F
	-qflag
	-qfloat
	-qflttrap
	-qformat
	-qfullpath
	-qfuncsect
	-g
	-qgcc_c_stdinc
	-qgcc_cpp_stdinc
	-qgenproto
	-qhalt
	-qhaltonmsg
	-qhot
	-I
	-qidirfirst
	-qignerrno
	-qignprag
	-qinfo
	-qinitauto
	-qinlglue
	-qinline
	-qipa
	-qisolated_call
	-qkeepinlines
	-qkeepparm
	-qkeyword
	-L
	-l
	-qlanglvl
	-qlib
	-qlibansi
	-qlinedebug
	-qlist
	-qlistopt
	-qlonglit
	-qlonglong
	-M
	-ma
	-MF
	-qmakedep
	-qmaxerr
	-qmaxmem
	-qmbcs, -qdbcs
	-qminimaltoc
	-qmkshrobj
	-O, -qoptimize
	-o
	-P
	-p
	-qpath
	-qpdf1, -qpdf2
	-pg
	-qphsinfo
	-qpic
	-qppline
	-qprefetch
	-qprint
	-qpriority
	-qproclocal, -qprocimported, -qprocunknown
	-qproto
	-Q
	-R
	-r
	-qreport
	-qreserved_reg
	-qro
	-qroconst
	-qrtti
	-S
	-s
	-qsaveopt
	-qshowinc
	-qshowpdf
	-qsmallstack
	-qsmp
	-qsource
	-qsourcetype
	-qspill
	-qsrcmsg
	-qstaticinline
	-qstaticlink
	-qstatsym
	-qstdinc
	-qstrict
	-qstrict_induction
	-qsuppress
	-qsymtab
	-qsyntaxonly
	-t
	-qtabsize
	-qtbtable
	-qtempinc
	-qtemplaterecompile
	-qtemplateregistry
	-qtempmax
	-qthreaded
	-qtls
	-qtmplinst
	-qtmplparse
	-qtocdata
	-qtrigraph
	-qtune
	-U
	-qunroll
	-qunwind
	-qupconv
	-qutf
	-V
	-v
	-qversion
	-qvftable
	-qvrsave
	-W
	-w
	-qwarn64
	-qxcall
	-qxref
	-y

	Chapter 4. Reusing GNU C/C++ compiler options with glxc and glxc++
	glxc and glxc++ syntax
	Configuring the option mapping

	Chapter 5. Compiler pragmas reference
	Summary of XL C/C++ pragmas
	Summary of OpenMP pragma directives
	Individual pragma descriptions
	#pragma align
	#pragma alloca
	#pragma altivec_vrsave
	#pragma block_loop
	Examples of accurate use of the directive
	Examples of inaccurate use of the directive

	#pragma chars
	#pragma comment
	#pragma complexgcc
	#pragma define
	#pragma disjoint
	#pragma do_not_instantiate
	#pragma enum
	#pragma execution_frequency
	#pragma hashome
	#pragma ibm snapshot
	#pragma implementation
	#pragma info
	#pragma instantiate
	#pragma ishome
	#pragma isolated_call
	#pragma langlvl
	#pragma leaves
	#pragma loop_id
	#pragma map
	#pragma mc_func
	#pragma nosimd
	#pragma novector
	#pragma options
	#pragma option_override
	#pragma pack
	#pragma priority
	#pragma reachable
	#pragma reg_killed_by
	#pragma report
	#pragma STDC cx_limited_range
	#pragma stream_unroll
	#pragma strings
	#pragma unroll
	#pragma unrollandfuse
	#pragma weak

	Pragma directives for parallel processing
	#pragma omp atomic
	#pragma omp parallel
	#pragma omp for
	#pragma omp ordered
	#pragma omp parallel for
	#pragma omp section, #pragma omp sections
	#pragma omp parallel sections
	#pragma omp single
	#pragma omp master
	#pragma omp critical
	#pragma omp barrier
	#pragma omp flush
	#pragma omp threadprivate

	Chapter 6. Predefined macros
	Macros related to language features
	Macros indicating the XL C/C++ compiler
	Macros related to the Linux platform

	Chapter 7. Built-in functions for POWER and PowerPC architectures
	Fixed-point built-in functions
	Floating-point built-in functions
	Synchronization and atomic built-in functions
	Cache-related built-in functions
	Block-related built-in functions
	Miscellaneous built-in functions
	Built-in functions for parallel processing

	Appendix A. Redistributable libraries
	Appendix B. ASCII character set
	Notices
	Programming interface information
	Trademarks and service marks
	Industry standards

	Index

