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INTRODUCTION

Optimal design is a broad field of research in Applied Mathematics.
It refers to a large class of problems in which, roughly speaking, one
controls a system by means of a control variable which is the shape of
the domain itself, rather than an external or boundary force applied
to the system.

Optimal shape design may also be viewed as a pasive control mecha-
nism introduced in a system at the manufacturing level. Choosing an
optimal shape once forever one optimizes the behavior of the system
for all its time duration.

Of course, in practice, one combines often optimal shape design with
feedback controllers: pasive + active control, to guarantee an optimal
behavior.



The number of applications is hughe:

* Aeronautics.

* Design of flexible structures.

* Location of pollutants.

* Optical fibers, wave guides.

* Medicine, Biology,...



Optimal shape design is also very closely related to the field of Inverse

Problems in which one wishes to determine some unkown shape from

partial measurements: natural resources, the dammage in a structure

after an earthquake, the size and form of a tumor, or of the region

dammaged by some pollutant, ...

One of the intrinsic difficulties of the field lies on the fact that, we

are obliged to manipulate “shapes” (open sets, for instance) and not

functions. Obviously, shapes, when they are “regular enough” they

can be represented by functions: the graph of a function determines

a hypersurface in RN , the local charts for the parametrization of the

boundary of a domain,... But, often in practice, the shapes appearing

in nature or in manufactured systems are rather “complex”: fractal

domains, reticulated structures, perforated domains, domains with



fractures and cracks, ... and consequently, they are hard to represent

as graphs of smooth functions,...

Moreover, when the domains under consideration are complex, the

solutions of the underlying PDE’s (the heat equation if a diffusion

process is optimized or a wave equation in the case of flexible struc-

tures or acustic waves in noise reduction) develop singularities, thus

making the analysis more difficult.



There are several different approaches to the mathematical theory

of optimal design in the context of Continuum Mechanics and/or

PDE. Different topics are also often addressed. Their relevance and

mathematical complexity may differ significantly. Often in practice

“simple” ideas and results are those that are more frequently imple-

mented. The most sophisticated part of the theory, based on the deep

theory pf PDE and/or Geometric Measure Theory, is rarely applied in

real problems.

The following topics/approaches may be investigated:

* Numerical issues: To develop efficient numerical algorithms for

improving shape in a reasonable manner for relevant engineering prob-

lems: elasticity/structures, fluid flows/aeronautics,...



This is the “optimization” point of view.

Here we do not look for sophisticated theorems but rather methods

whose efficiency has to be tested/proved in the real mechanism. Very

often a very subtle improvement of the shape may produce hughe

economical succes.

Normally the methods that are developed in this setting are based on

some minimization algorithm (conjugate gradient method, steepest

descent,...).

The main difficulty is: what is the right descent direction? In which

direction the shape should be modified in order to guarantee the best

decrease of the functional under consideration?



Lagrange multipliers give the answer in the context of the minimiza-
tion of a function in a set of the euclidean space represented as the
level set of a smooth function.

But in the context of PDE’s we are neither in the euclidean space
(we work with functions, solutions of PDE’s, that, of course, do
cover infinite-dimensional spaces) and the contrainsts on the feasible
domains may be not be written easily as the level set of a smooth
function.

Of course, at this level, the natural and implicit constraints of the
problem can not be ignored.

For instance, we do not want the wing of the plane to have a fractal
shape....



Very often, in real applications, this has to be done on models for
which we do not still have a good existence and uniqueness theory:
nonlinear elaticity, turbulent 3 − d flows,... Thus, we can not expect
to have a clear and rigorous notion of the “derivative of the functional
with respect to the domain”. But still mathematics may be of great
help.

Some of the most relevant progresses in this field have been done
precisely in situations in which the theory is not completely justified.
The works by Jameson on Optimal Design in aeronautics and the
mathematical counterpart that can be found in the books by Piron-
neau and Glowinski, for instance, is a good example of this. The
same can be said about the application of the “level-set” method by
Osher-Shetian in the context of optimal design in elasticity as applied
by Allaire.



Mathematics are indeed needed even in the formal setting. One has

to compute “linearizations”, “adjoints”, “gradients”, “numerical dis-

cretizations”, “discrete gradients”,...

All known receipts are thus welcome: characterization of gradients

by means of the adjoint state, the need of numerical viscosity for a

better stability of numerical schemes,....

* Theoretical issues: This time one looks for rigourous theorems

on the existence of optimal shapes.

One needs to work in the context of PDE’s for which one disposes

of a good theory for existence and uniqueness.



But even in those cases the problem may become very complex if the

class of shapes under consideration is not restricted enough.

In fact, there is a beatiful theory on these topics very much based

in the ideas by De Giorgi, combining Γ-convergence and Geometric

measure theory. The interested reader may find an introduction to

this topic in the books by Dal Maso, Buttazzo, Pironneau, and the

forthcoming ones by Bucur-Buttazzo and Henrot-Pierre.

The difficulty is easy to understand. Consider the Dirichlet laplacian.

It is well-kown that, if the domain under consideration is of class

C2 and the right hand size is in L2, then solutions belong to H2.

Moreover, this result is robust in the sense that estimates are uniform,

when one works with classes of domains which are uniformly bounded



in C2, or a family of right hand side terms which are uniformly bounded

in L2.

Thus, it is not hard to guess that, when working in such restricted

classes of admissible domains, the existence of an optimal shape is

guaranteed by some compactness argument.

But, what happens if the requirements of the real problem impose

considering general shapes which are not smooth?

For instance, the space H1
0(Ω) and therefore the solution of the

Dirichlet problem is well-defined for all open set Ω. Why then impos-

ing so restrictive regularity conditions in the domain Ω?



Then the following type of questions arises naturally: What is the

minimal convergence notion of domains Ω so that the solutions of

the Dirichlet laplacian converge in H1
0?

Note that, in this particular case, we do not need to face the problem

that each solution is defined in a different domain. We can simply

extend all solutions by zero to the exterior of its domain of definition,

and view all of them as elements of H1(RN).



Important efforst have been done in order to unify the two different

approaches: the more theoretical and the more applied one. But

there is still a lot to be done.

Here we mention some of the issues that arise and that are still the

object of intensive research:

* The optimal shapes are not computed in the context of PDE’s

but rather for suitable numerical approximations.

Even in those cases in which an optimal shape is known to exist and

in which one is able to write a reasonable descent algorithm, it has to

be implemented in the computer. Thus, one has to apply the same



ideas for a numerical model in which the PDE has been replaced by
a numerical scheme.

Is it true that the optimal discrete shape for the numerical model
converges to the optimal shape for the continuous one?

By now we know well that this is often not true in the simpler problem
of boundary control of waves!

Later in the ocurse we will however prove a positive result in this sense
in the context of the optimal shape design of the Dirichlet laplacian
in R2.

* When the domain under consideration are smooth perturbations of
a reference smooth domain, one can develop the analysis initiated



by Hadamard (whose rigorous development for PDE’s was done by

Murat and Simon (see the Lecture Notes by Jacques Simon in the

University of Sevilla)). But what happens if there are topological

changes of the domains?

At this respect we should refer to the works by Guillaume and Mas-

moudi (Toulouse) in which the notion of topological derivative is

introduced and developed. Roughly pseaking, one analyzes the sen-

sitivity of the solution of a PDE with repect to an infinitesimal hole.

The leading term of the asymptotic development is viewed as a topo-

logical derivative an it indicates whether the functional under consid-

eration diminishes when perforating the domain or rather eliminating

an existing hole.



Note that, normally, one has to limit the class of domains under

consideration to only have a finite number of holes. Otherwise, ho-

mogenization phenomena may occur, and the PDE may change in

the limit process as the number of holes tends to infinity (the “term

étrange” by Cioranescu and Murat).

* Recently the “level set approach” has been applied to the problem

of optimal design. The point of view is rather natural: Manipulating

domains is complex. But one can view a domain as the support of

a characteristic function or, even better, as the level set of a regular

version of it. One can then try to optimize the functional by improving

the function whose level set provides the domain. In this way we do

not need to deal with shapes but rather with functions. This method

is very felxible and can be easily implemented. In particular it allows



holes to be created or to disappear. But, as far as we know, there is
no rigorous analysis of the convergence of the method.

* Generic properties of PDE’s. Optimal design and/or derivatives
with respect to domains appear also naturally when addressing fine
properties of solutions of PDE’s. One of the most classical example
is related with the spectrum of the Dirichlet Laplacian.

It is well known that the spectrum of the Dirichlet laplacian is not
simple in the case of a square domain.

But is this an exceptional situation or rather a general property?

Using differentiation with respect to the domain and Baire’s Theorem
(together with unique continuation properties of eigenfunctions) one



can show that generically with respect to the domain the Dirichlet
spectrum of the laplacian is simple. That means that multiplicity of
the spectrum only occurs in very particular and exceptional situations.

This kind of ideas arise also for control problems. Consider for in-
stance the heat equation with Neumann boundary control. In the
absence of control the average of the solution is constant in time. It
is then natural to raise the question of whether one may control the
trajectories by keeping the average constant in time. In the context
of approximate controllability this issue has been addressed by Ortega
anz Zuazua. It has been proved that the answer to the question is
negative for the ball, but generically positive.

The problem has not been addressed in the context of null-control but
we think that a combination of the work mentioned above with the



recent developments by Nakoulima et al. in the context of null con-

trol with partial boundary observations in which a finite-dimensional

projection is dropped, may solve the problem.

Another interesting problem in this setting is that of the generic sim-

pliicity of the spectrum of the Stokes operator. Ortega-Zuazua have

proved that to be the case in 2− d. But the problem is open in 3− d.



An important to fact to always keep in mind is that

THE LINEZARIZATION OF AN OPTIMAL SHAPE DESIGN PROB-

LEM IS A PROBLEM OF BOUNDARY CONTROL.

To make this statement rigorous let us consider the simplest problem,

that of the Dirichlet laplacian in 1−d in a interval (0, L) whose lenght

L is to be determined to fulfill some optimality condition:

−u′′ = f, 0 < x < L; u(0) = u(L) = 0.

Here f is given and the solution not only depends on x, as usual, but

also on the length of the interval L. Thus, u = u(x, L).



We want to determine L so that the solution is optimal in some sense.

For instance, so that the functional

J(L) =
∫ L

0
|u(x, L)− ud(x)|2dx,

achieves its minimum.

This is a very natural and frequently arising problem in which L is

searched so that the solution is as close as possible from the given

desired state ud.

This is an optimization problem. Note that the controllability problem

does not make sense in this context. Indeed, all solutions are confined

to satisfy the condition −u′′ = f and therefore, necessarily, they lie in

an affine subspace of the space of all functions.



To minimize the functional J one has to be able to compute the
derivative of J with respect to L, the “shape parameter in this simple
problem”. In this case we have:

J ′(L) = |u(L, L)− ud(L)|2 + 2
∫ L

0
(u(x, L)− ud(x))uL(x, L)dx.

Here uL stands for the derivative of the solution with respect to the
“shape paparemter” L.

The key point is then computing v = uL.

Taking into account that, in the interior of the interval (0, L) the
equation −u′′ = f is independent of L, the derivative v = uL neces-
sarily satisfies the equation

−v′′ = 0.



On the other hand, since the boundary condition at x = 0 is indepen-

dent of L we also have

v(0) = 0.

The most delicate point is computing the boundary condition at x =

L. There we use the boundary condition

u(L, L) = 0.

After derivation this gives:

uL(L, L) + ux(L, L) = 0.

In other words,

v(L) = −ux(L, L).



Thus, v., the derivative of the state with respect to the “sahpe param-

eter” L satisfies a non-homogeneous boundary condition in which the

right hand side coincides with the normal derivative of the reference

solution.

This is a systematic fact in optimal design problems, whose derivative

is always a boundary control problem, the normal derivative of the

state being the control.



To choose the optimal domain Ω within the class of domains, embed-

ded in the pavé D and containing the subdomain ω, subject to some

optimality criterium.



Numerical approximation in 2-d elliptic optimal
shape design

Work in collaboration with D. Chenais, C. R. Acad. Sci. Paris, Ser.

I (2004)



OPTIMAL DESIGN

∼

OPTIMIZATION PROCESS

INVOLVING GEOMETRIES AND SHAPES.



Elliptic optimal design. Control= Shape of the domain. State equa-

tion = Dirichlet Laplacian.

Dimension n = 2, S̆veràk: There exists an optimal domain in the class

of all open subsets of a given bounded open set, whose complements

have a uniformly bounded number of connected components.

Key point: compactness of this class of domais with respect to the

complementary-Hausdorff topology and the continous dependence of

the solutions of the Dirichlet laplacian in H1 with respect to it.



It is well known that, when the number of holes is unlimited, ho-
mogenization phenomena arise and the minimum is not achieved.
Cioranescu-Murat: −∆ → −∆ + µ.



COMMON COMPUTATIONAL/NUMERICAL PRACTICE:

* Continous optimal design → discrete finite-element version.

* Compute the discrete optimal shape (discrete optimization or shape

and topological derivatives, level set methos,...)

The choice of one method or another depends very much on the

expertise and computational capacities.

THE PROBLEM:

Do these methods converge? YES!



This is a proof of the efficiency that most methods employed to solve
optimal design problem computationally exhibit.

One may use different tools at the discret level:

• Shape derivatives;

• Topological derivatives;

• Discrete Optimization.

But numerical experiments are often of a surprisingly good accuracy
(R. Feijoo, R. Tarocco, C. Padra,...)



We consider a finite-element discrete version of this problem and prove

that the discrete optimal domains converge in that topology towards

the continuous one.

Key point : finite-element approximations of the solution of the

Dirichlet laplacian converge in H1 whenever the polygonal domains

converge in the sense of Hc-topology.

This provides a rigorous justification to the most common engineering

to optimal design.



OPTIMAL SHAPE DESIGN+NUMERICS

=

NUMERICS+OPTIMAL SHAPE DESIGN



The triangulation of the pavé and the fixed subdomain (constraint)

from which all admissible discrete domains have to be built.



The class of admissible domains for the discrete problem. This time

the admissible domains need to be unions of triangles from the dis-

crete mesh.



Let D be a bounded open lipschitz connected subset of R2.

Denote by ]cΩ the number of connected components of D \Ω.

For a fixed N ∈ N, we consider the family of admissible domains

ON = {Ω ⊂ D; Ω open, ]cΩ ≤ N},

and the Hc-topology defined by the metric

dHc(Ω, Ω′) = max{ max
x∈D\Ω

d(x, Ω′), max
x′∈D\Ω′

d(x′, Ω)}.

ON is Hc-compact.



For f ∈ H−1(D) and Ω ∈ ON , let yΩ be the solution of the Dirichlet

problem in Ω:

−∆y = f in Ω; y = 0 on ∂Ω;

or, in variational form,

yΩ ∈ H1
0(Ω);

∫
Ω
∇yΩ · ∇z = < f, z >H−1(Ω),H1

0(Ω), ∀z ∈ H1
0(Ω).

Optimal design problem:

min
Ω∈ON

j(Ω), with j(Ω) =< f, yΩ >H−1(Ω),H1
0(Ω)=

∫
Ω
|∇y|2dx.

S̆veràk proved that a minimizer Ω? does exist in ON .



For each h > 0 we introduce a regular triangular mesh (Th)h of the
domain D of size h and the family ON

h of polygonal open subsets of
D union of triangles in (Th)h belonging to the class ON .

The finite-element space Vh(Ωh) ⊂ H1
0(Ωh) constituted by continuous

and piecewise P1 polynomial (over triangles).

The Galerkin finite-element approximation:

yh ∈ Vh(Ωh);
∫
Ωh

∇yh · ∇zh =< f, zh >H−1,H1
0(Ωh)

, ∀zh ∈ Vh(Ωh).

The discrete optimal design problem:

min
Ω∈ON

h

j(Ω), with jh(Ω) =
∫
Ωh

|∇yh|2dx.



The ingredients of the proof: Γ-convergence

FACT 1: Any Ω ∈ ON , can be approximated by Ωh ∈ ON
h as follows:

F = D \Ω, Fh =
⋃

T∈Th,T∩F 6=∅
T, Ωh = D \ Fh.

It is easy to prove that dHc(Ωh,Ω)
h→0−→ 0, and ]cΩh ≤ N for any h.

We then prove that

ỹh
h→0−→ ỹΩ strong−H1(D)

jh(Ωh) :=< f, yh >H−1(Ω),H1
0(Ωh)

h→0−→ j(Ω).

This result guarantees the convergence of the Galerkin finite-element
approximations with respect to the Hc- convergence of domains.



FACT 2: The same occurs if Ωh is an arbitrary sequence of admissible

domains Hc-converging to Ω.

FACT 3: The existence of a minimizer Ω?
h for jh in the class ON

h for

each h > 0 is obvious since ON
h has a finite number of elements.

FACT 4: The results above and a standard Γ-convergence argument

allow showing that any Hc-accumulation point Ω? of discrete optimal

domains Ω?
h is an optimal domain for the continuous problem.



CONCLUSION:

We have given a rigorous mathematical answer to the issue of whether

control and numerics commute depends in a very sensitive way on:

* The control requirement one imposes: Stronger control requirement

produce instabilities more easily.

* The model under consideration, and in this sense, the wave equation

is the most unstable one;

* The numerical scheme: correct dispersivity and dissipativity prop-

erties are needed to capture correctly high frequency components.



OPEN PROBLEMS:

* Analyze the same issue in thye context of the Neumann problem.
The problem is more difficult even for the continuous Laplacian;

* Analyze the problem of finding the discrete optimal shape. Compare
different strategies: discrete optimization, descent methods,...

* When applying descent methods for obtaining the discrete opti-
mal shapes analyze the possible use of the continuous gradient for
computing descent directions (continuous versus discrete gradients).

* Obtain convergence rates.

* Address more complex models: Elasticity and Stokes equations,
Navier-Stokes, ....
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