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SUFFICIENT SECOND-ORDER OPTIMALITY CONDITIONS FOR
SEMILINEAR CONTROL PROBLEMS WITH POINTWISE STATE
CONSTRAINTS*
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Abstract. Second-order sufficient optimality conditions are established for the optimal control of
semilinear elliptic and parabolic equations with pointwise constraints on the control and the state. In
contrast to former publications on this subject, the cone of critical directions is the smallest possible
in the sense that the second-order sufficient conditions are the closest to the associated necessary
ones. The theory is developed for elliptic distributed controls in domains up to dimension three.
Moreover, problems of elliptic boundary control and parabolic distributed control are discussed in
spatial domains of dimension two and one, respectively.

Key words. optimal control, elliptic equations, parabolic equations, pointwise state constraints,
second-order necessary optimality conditions, second-order sufficient optimality conditions

AMS subject classifications. 49K20, 90C48

DOI. 10.1137/07068240X

1. Introduction. In this paper, we essentially improve the theory of second-
order sufficient optimality conditions for state-constrained optimal control problems
of elliptic and parabolic type. We derive second-order sufficient conditions that are
as close as possible to the associated necessary ones. In this way, we are able to
complete the theory of second-order sufficient conditions for this class of problems, if
the dimension of the spatial domain is sufficiently small.

For the theory of nonconvex differentiable mathematical programming in finite-
dimensional spaces, second-order sufficient optimality conditions are indispensible
both in the numerical analysis and for reliable numerical methods. If second-order
information is not available, then local minima will not in general be stable and nu-
merical methods will most likely not converge. For instance, the convergence analysis
of SQP methods relies heavily on second-order conditions.

In the numerical analysis of nonlinear optimal control problems, second-order
sufficient optimality conditions are even more important. If they are not satisfied,
then the (strong) convergence of optimal controls or states and/or error estimates for
numerical discretizations of the problems can hardly be shown. Also, other types of
perturbations are difficult to handle without second-order conditions.

As is well known from the calculus of variations and the control theory for non-
linear ordinary differential equations, the theory of second-order conditions is more
delicate and rich in function spaces. We mention, for instance, the work by Maurer
[20] or Maurer and Zowe [21]. In particular, the well-known two-norm discrepancy
occurs that essentially complicates the analysis; cf. the expositions in IToffe [16] or
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SUFFICIENT SECOND-ORDER OPTIMALITY CONDITIONS 617

Malanowski [18]. For the important but more difficult case of pointwise state con-
straints in the control of ordinary differential equations, we refer to Malanowski [19]
and to the references therein.

At present, the control of distributed parameter systems with pointwise state
constraints is a very active field of research. Although the majority of papers are still
devoted to convex problems with linear equations, the important case of nonlinear
state equations is attracting more interest. Here, second-order conditions are needed.
However, when pointwise state constraints are imposed, the situation is more compli-
cated, since the Lagrange multipliers associated with them are measures. In contrast
to the theory for ordinary differential equations, this causes severe restrictions on the
dimension of the spatial domains of the equations and reduces the regularity of the
adjoint state.

To our best knowledge, there exist only two contributions to the theory of second-
order sufficient conditions for distributed problems with pointwise state constraints.
The elliptic case was discussed in [12], while parabolic problems were investigated in
[22]. The method of these papers was inspired by the splitting technique used in [11].
When applied to pointwise state constraints, the cones of critical directions established
by this technique are too large so that the second-order sufficient conditions are based
on slightly too strong assumptions. Moreover, the method was fairly complicated.

For other contributions to second-order optimality conditions for distributed pa-
rameter systems, we mention, for instance, the work by Bonnans [3] and the exposition
in the monography by Bonnans and Shapiro [4] on elliptic problems with control con-
straints. We also refer to [9], where second-order necessary optimality conditions were
first treated for elliptic problems, [10] for an abstract framework with applications to
elliptic and parabolic problems, and [7], where elliptic problems with control con-
straints and state constraints of integral type were considered Moreover, we refer to
the references therein.

In this paper, the sufficiency of second-order conditions is proven by a method
that is close to the theory of nonlinear optimization in finite-dimensional spaces. We
establish a cone of critical directions that is sharp; i.e., it is the one closest to the
cone for establishing second-order necessary conditions.

We present a detailed proof for the case of distributed elliptic problems in domains
of spatial dimension n < 3. Moreover, we briefly sketch the extension of this result
to elliptic boundary control problems for n < 2 and to the parabolic distributed case
for n = 1.

2. Problem statement. Let €2 be an open and bounded domain in R™, n < 3,
with a Lipschitz boundary I". In this domain we consider the following state equation:

Ay+ f(z,y) =u inQ,
(2.1) { y=0 onl,

where f : @ x R — R is a Carathéodory function and A denotes a second-order
elliptic operator of the form

Ay((ﬂ) = - Z aacj (azj(x)amqy(w))v

i,j=1
the coefficients a;; € L™ (12) satisfy

n

Aallgl® < Z a;j(x)&:& VEER™ forae z€Q

ij=1
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618 E. CASAS, J. C. DE LOS REYES, AND F. TROLTZSCH

for some A4 > 0. In (2.1), the function u denotes the control, and y,, is the solution
associated to the control u. We will state later the conditions leading to the existence
and uniqueness of a solution of (2.1) in C(Q) N H ().

In this paper, we study the following optimal control problem:

min J(u) = /QL(x,yu(:v),u(ac)) dx

(P){ subject to (yu,u) € (C(Q) N HYQ)) x L>=(Q),
a(z) <u(z) < p(z) forae. x €,
9(z,yu(x)) <0 Vr € K,

where a(z) < B(z) for almost all z € Q, a, 3 € L>=(Q2), and K C {2 is a compact set.
Let us state the assumptions on the functions L, f, and g.
(A1) f is of class C? with respect to the second variable:

0
f(-,0) € L*(Q), 8—£(x,y) >0 forae z€Q,
and for all M > 0 there exists a constant C'r 5s > 0 such that

o 0°
'85(9”@)’ * ‘Byé(xay)‘ < Cparforace. z € Qand |yl < M,

o2 f 52

/
a—yQ(x,yg) — 87112(35,341) < Ctumly2 —y1| for yi|,|y2| < M and for a.e. z € Q.

(A2) L:Q x (R x R) — R is a Carathéodory function of class C? with respect

to the second and third variables, L(-,0,0) € L'(Q), and for all M > 0 there is a
constant O, ps > 0 and a function ¢p; € L?(Q) such that

‘8L

%(xvy7u) S ’(/JM(SE), ||D(2y,u)L(‘r7y7u)|| S CL,M,

T LT
ay 7y7

D3y ) L, y2, u9) = D,y L, y1, un) | < Cpov(Jy2 — y1| + Jug — ual)

2

for a.e. x € Q and |y|, |y, [ul, Jui] < M, i = 1,2, where D(y

derivative of L with respect to (y,u).

(A3) The function g : K x R — R is continuous, of class C? with respect to the
second variable and d,g, and 85 g are also continuous functions in K x R. Moreover
we will assume that g(z,0) < 0 is satisfied for every x € K NT.

The following result on the existence of a solution holds true for (2.1) as well as
for the problem (P).

THEOREM 2.1. Suppose that (A1) holds. Then, for every u € L*(Q), the state
equation (2.1) has a unique solution y, € C(Q) N H(Y). Furthermore, if ux — u
weakly in L2(SY), then yu, — yu strongly in C(2) N HE(Q).

The existence of a unique solution of (2.1) in H(2) N L>(Q) is classical. It is
a consequence of the monotonicity of f with respect to the second component. The
continuity of y, is also a well-known result; see, for instance, [15]. The continuity
property is a consequence of the compactness of the inclusion L?(Q) c W~1P(Q) for
any p < 6 and the fact that data u € W~1P(Q), with 6/5 < p < 6, provide solutions
in C(Q) N H}(Q), the mapping u — ¥, being continuous between these spaces.

u)L denotes the second
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SUFFICIENT SECOND-ORDER OPTIMALITY CONDITIONS 619

THEOREM 2.2. Let the function L be convex with respect to the third component
and the set of feasible controls be nonempty. Then, under assumptions (Al)—(A3),
the control problem (P) has at least one solution.

The proof of this theorem can be obtained by standard arguments.

Remark 2.3. We should remark that the differentiability of the functions f, L,
and g is not necessary to prove the previous theorems. In fact, the only properties we
need are the continuity of g and f with respect to the second variable, the continuity
of L with respect to the second and third variables, the monotonicity of f with respect
to y, the convexity of L with respect to u, and, for every M > 0, the existence of two
functions ¢ € L(Q) and ¢r a € L*(Q) such that

|f(z,y)] < ¢pm(x) and |L(z,y,u)| < ¢r m(z) for ae. x € Q and |y|, |u] < M.

These properties are an immediate consequence of the assumptions (A1)—(A3).

We finish this section by recalling some results about the differentiability of the
nonlinear mappings involved in the control problem. For the detailed proofs, the
reader is referred to Casas and Mateos [7].

THEOREM 2.4. If (A1) holds, then the mapping G : L*(2) — C(Q) N H (),
defined by G(u) = y,, is of class C?. Moreover, for all v,u € L*(Q), z, = G'(u)v is
defined as the solution of

af .
Azy + = (2,yu)2y, = v in Q,
(2.2) 8y( bu)

zy, =0 onT.

Finally, for every vi,va € L?(Q), 2p,0, = G” (u)v1vy is the solution of

2
Azy, v, + g(xvyu)zmvz + 0 f(x7yu)zmzv2 =01in O,
Y

(2.3) y?

Zypp, =0 on I,

where z,, = G'(u)v;, i = 1,2.

Remark 2.5. This theorem shows why we assume n < 3: To prove Theorem 4.1
on second-order sufficient conditions, we need the operator G to be differentiable from
L?(Q) to C(Q). This result holds true only for n < 3.

The proof can be obtained by the implicit function theorem; see, for instance, [7,
Thm. 2.5] for the proof in the case of a Neumann problem, which can be translated
straightforwardly to the Dirichlet case.

THEOREM 2.6. Suppose that (Al) and (A2) hold. Then J : L®(Q) — R is a
functional of class C?. Moreover, for every u,v,vy,ve € L*(),

L
(24) T = [ (G0 + o) vio
O 8’&
and
0L 0L
(2 5) JH(U)U1U2 = /Q |:8y2(xa Yus u)zm Zyy + m(xﬂ Yus u)(zv1v2 + szvl)

2 2
+ w(wvyuau)vlzb - QDOuayg(z,yu)Zvlzvg] dl’a
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620 E. CASAS, J. C. DE LOS REYES, AND F. TROLTZSCH

where y, = G(u) and @o, € WP(Q) is the unique solution of the problem

of oL .
Ao+ (2, yu)p = — (T, Yy, u) in 8,
(26) @ ay( Yu)p 3y( Yu, 1)

=0 onT,

A* being the adjoint operator of A and z,, = G'(u)v;, i = 1,2.

Let us remark that the linear and quadratic functionals J'(u) and J”(u) can be
extended from L>°(Q) to L?(2) by the formulas (2.4) and (2.5). To check this point
it is enough to use the assumptions (A1) and (A2). This extension will be used in the
rest of the paper.

The previous theorem and the next one follow easily from Theorem 2.4 and the
chain rule.

THEOREM 2.7. Suppose that (A1) and (A3) hold. Then the mapping F : L*(Q) —
C(K), defined by F(u) = g(-,y.(+)), is of class C?. Moreover, for every u,v,vy,vs €
12(9),

(2~7) F’(u)v = @(ayu())zv()
and
(2.8) <me@=agm%omawmo+%m%omwxx

ay?

where z,, = G'(w)v;, i = 1,2, and 24,4, = G (u)v102.
Remark 2.8. A functional L that is very frequently appearing in the applications
is given by

N
L(xayvu) = Lo(l',y) + 5“’2'

In this case, the functional J is twice differentiable not only in L*°(£2) but also in
L2(Q). Indeed, J : L?(Q) — R is of class C?, and the derivatives are given by the
expressions

(2.9) J (u)v = /Q (Nu(x) + pou) vdx

and

" 82[10 82f
(210) J (u)vlv2 = o Tyg(mayu)zmzm + Nvjvg — SDOuai?f(xayu)ZvlQO dz.

Remark 2.9. The adjoint state ¢q, allows us to get a simple expression of J'(u),
but it is not the complete adjoint state of the control problem because the adjoint
state equation (2.6) does not include the Lagrange multiplier associated to the state
constraint; see (3.2) below for the full definition.

3. First-order optimality conditions. We define the Hamiltonian associated
with problem (P), H* : Q x R? — R, by

HA(*%?/?%@) =X\ L(z,y,u) —l—(p[’LL— f(x,y)]
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SUFFICIENT SECOND-ORDER OPTIMALITY CONDITIONS 621

We denote by M (K) the Banach space of all real and regular Borel measures in
K, which is identified with the dual space of C'(K).

In the rest of the paper, a local minimum of (P) is assumed to be a local solution
in the sense of the topology of L (). More precisely, we will say that @ is a local
minimum or a local solution of (P) in the sense of L4(2), 1 < ¢ < oo, if it is an
admissible control of (P) and there exists e > 0 such that the minimum of J in the
admissible set of (P) intersected with the ball B, (%) C L4(f2) is achieved at .

The following result concerning Pontryagin’s principle for problem (P) is well
known; look into [8] and [17] as well as in the references therein for the proof.

THEOREM 3.1. Let @ be a local solution of (P), and suppose that the assumptions
(A1)~(A3) hold. Then there exist a real number X > 0, a measure ji € M(K), and a
function @ € Wy *(Q), for all1 < s <n/(n—1), such that

(3.1) A+ Al >0
_of, _ <-O0L, _ _. dg, _. . _.
Ao+ == (z,y(z))p = A U, 0) + == (z,g(x) i in Q,
) Pt (w39 = A G (@0,0) + 5 (@5
p=0o0nT,

(3.3) /K(z(x) —g(z,y(z)))dia(x) <0 Vze C(K) such that z(z) <0 Vz € K,

(34) Hwg@).a@).p@) = min  H@)Le) forae zeq,

where
e, () = max{a(x),@(x) — ez} and B.,(zr) = min{B(x),u(z) + ez},

assuming that @ is a minimum of (P) in the ball B.,(a) C L>(Q). Moreover, if the
following linearized Slater condition holds:

Jug € L>(N), with a(x) < ug(x) < B(x) for a.e. x € Q, such that

9(x,y(x)) + %‘Z(x,ﬂ(x))zuofﬁ(x) <0 VzeK,

(3.5)

where § is the state associated to 4 and 2.,z = G'(u)(ug — ), then the choice A = 1
can be made.
From now on, we take A = 1 and denote the Hamilton function by H := H'.
Remark 3.2. Together with the inequality g(z,7(z)) < 0, relation (3.3) is equiva-
lent to the well-known complementarity conditions

g(z,g(z)) <0Vxe K, p>0in M(K), and/Kg(x,gj(x)) di(z) = 0.

It is also well known that (3.3) implies that i is a positive measure concentrated on
the set of points

Ko={z € K:g(z,y(zx)) = 0}

see, for instance, the references given before the statement of the previous theorem.
From this property and assumption (A3), we deduce that p(K NT) = 0.
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622 E. CASAS, J. C. DE LOS REYES, AND F. TROLTZSCH

Remark 3.3. By using elementary calculus, we obtain from (3.4) that

36 o g6, o)k~ @) 20 V€ [a(z), ()
and
61 2 penae,e@) 20 it ), 60),06) =0

Ou? ou
for a.e. z € Q. On the other hand, notice that

O%L 0’H
(38) w(mvyvu) - W(xyi%u,@)'

The inequality (3.6) implies that

0H

() 1), p()) 2 0 i ) = ala),
(39 o (0w, 1) 2()) <O a(a) = (o),
0H

5o (@ 9(),u(2), ¢(2)) =0 if a(z) <alz) < f(z).
Reciprocally we also deduce from (3.6) that

i) = afa) it 90 (2, gla), a(x), 5(x) >0,

i) = o) i (e, (e), 1), ola) <0,

(3.10)

The properties given by (3.8) and (3.9) are satisfied almost everywhere in €.
Remark 3.4. If we consider @ in Theorem 3.1 to be a local minimum of (P) in the
sense of L1(Q), 1 < ¢ < +o00, then (3.4) can be written in the form (see [8])

B, g(@). 0(e), () = | min - H(r.5(z). 1. 5(z)) for ac. x €0,

Let us formulate the Lagrangian version of the optimality conditions (3.2)—(3.4).
The Lagrange function £ : L (Q) x M (K) — R associated to problem (P) is defined
by

L(u,p) = J(u)+/

K

o v @) dus(z) = /

Q

Lz, yu(2), u(z)) dz+ / 92, v () dpu(z).

K

By using (2.4) we find that

oL OL
1) G- | (%@,yu(m,u(x»wu(w)) a)da = [ Ho@la) da.
where

(312) Hu(m) = ai(mayu(x)au(x)ﬂo(m))
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SUFFICIENT SECOND-ORDER OPTIMALITY CONDITIONS 623

and @, € W, *(Q), for all 1 < s < n/(n — 1), is the solution of the Dirichlet problem

af oL dg .
A + (T Yu = (T, Yu, U) + (2, Yu(T m Qa
(3.13) @ ay( Yu)p 3y( Yu, u) ay( Yu ()

=0 onlI.

Notice that the subscript « in y, and H, has a different meaning. While vy, is used
to indicate that y is the state associated with u, H, denotes the partial derivative of
H with respect to u. This short notation for partial derivatives is frequently used in
the following and will not cause confusion. Later, we also write Hy,,, Hy,,, or Hy, for
O0?H /ou?, 0*H /dydu, etc.

If we insert (g(z),u(x),®(z)) into expression (3.12), then we denote H,(z) by
H,(x).

Now the inequality (3.6) along with (3.11) leads to

(3.14) %(ﬂ,ﬂ)(u —1) >0 if a(r) <wu(z) < B(z) for a.e. x € Q
for any local solution @, where 7 is the associated state and @ is the adjoint state
given by (3.2), provided that (3.5) holds.

Before finishing this section we provide the expression of the second derivative of
the Lagrangian with respect to the control, which will be used in the next section.
From (2.8) we get

%(u,u)vlvg = J"(u)vive
9%g dg
+f [W<x,yu<x>>zm<x>zw<x> T ay(sc,yu@))zm(z)} ().

By (2.5), this is equivalent to

ou? 0y?
2L 2
+ %(xayuau)vl'l@ - Soung(x,yu)Zvlzvg] dx

= [ Otz s+ g (00 + zea)
U, )v1v2 = 0 Ty Yuy U) 2y Zuy ayau Ty Yuy W) Zvy V2 vy U1

(3.15) 4 /K g—;u,yu(as)m (2) 2 (2) (),

where ¢, is the solution of (3.13).

4. Second-order optimality conditions. Let @ be a feasible control of prob-
lem (P) and § be the associated state. We assume that there exist g € M(K) and
@€ Wy*(Q),1<s<n/(n—1), such that (3.2)-(3.4) are satisfied. As in the previous
section, we use the notation

() = (2 5(2), 5(2), 5())

The partial derivative of H with respect to y at (x,y(z), a(z), p(z)) is denoted anal-

ogously by Hy(x).
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624 E. CASAS, J. C. DE LOS REYES, AND F. TROLTZSCH

Associated with u, we define the cone of critical directions by

Cy = {h € L*(Q) : h satisfies (4.1), (4.2), and (4.3)},

> 0if a(z) = a(z),
(4.1) h(z) =< <0if a(z) = B(z),
=0if H,(x) # 0,

(4.2) g—jm,m»zh(x) <0 if gle.(x)) =0,
a9, _ o
(4.3) [ e gta))an(a) dinte) = .

If we think in terms of the finite-dimensional case, inequality (4.2) says that the
derivative of the state constraint in the direction A is nonpositive if the constraint
is active, and (4.3) states that this derivative is zero whenever the corresponding
Lagrange multiplier is strictly positive. The relations (4.2)—(4.3) provide a convenient
extension of the usual conditions in the finite-dimensional case.

We should mention that (4.3) is new in the context of infinite-dimensional opti-
mization problems. In earlier papers on this subject, other extensions to the infinite-
dimensional case were suggested. For instance, Maurer and Zowe [21] used first-order
sufficient conditions to consider strict positivity of Lagrange multipliers. Inspired by
their approach, in [12] an application to state-constrained elliptic boundary control
was suggested. In terms of our problem, (4.3) was relaxed by

e p@)an(o) o) = ¢ [ Ih(a)]da

K 9y Q\Q7

for some ¢ > 0; cf. [12, ineq. (5.15)]. Here Q7 C Q is the set of points where
|H,(z)| > 7 holds true. We will prove that this relaxation is not necessary, which
leads to a smaller cone of critical directions that seems to be optimal.

The sufficient second-order optimality conditions are given by the expressions
(4.4) and (4.5) in the next theorem.

THEOREM 4.1. Let @ a feasible control of problem (P), y be the associated state,
and (@, 1) € Wy (Q) x M(K), for all 1 < s < n/(n — 1), satisfying (3.2)~(3.4).
Assume further that there exist two constants w > 0 and T > 0 such that

(4.4) %(x,g(w),ﬁ(m)) >w if |Hy(z)| <71 forae x€,
0L
(4.5) W(a,ﬁ)fﬂ >0 Vhe Cy\ {0}

Then there exist € > 0 and § > 0 such that for every admissible control u of problem
(P) the following inequality holds:

L, 6 _ ) _
(4.6) J(@) + S llu=allfaig) < T(w) il —alp) <&
Remark 4.2. Thanks to (3.8), we can compare the second-order necessary con-
dition (3.7) with the sufficient one given by (4.4). We do not require only the strict

positivity on the second derivative of the Hamiltonian with respect to the control at
the points where the first derivative vanishes, as in the finite-dimensional case. We
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SUFFICIENT SECOND-ORDER OPTIMALITY CONDITIONS 625

also impose the second derivative to be strictly positive whenever the first derivative
is “small.” This is the usual case when we pass from finite to infinite dimension. For
an instructive example the reader is referred to [14].

Inequality (4.4) is satisfied if the second derivative of L with respect to w is strictly
positive for any (y,u, ) € R3 and almost all z € Q. This assumption implies that L
is strictly convex with respect to u. We recall that the convexity of L with respect
to u was necessary to prove the existence of an optimal control. Under this strict
convexity assumption, the sufficient second-order optimality conditions are reduced
to (4.5). This is the case when L(z,y,u) = Lo(z,y) + Nu?/2 if N > 0.

The condition (4.5) seems to be natural. In fact, under some regularity assump-
tion, we can expect the inequality

2
%(a,ﬁ)iﬁ >0 VYheCy

to be a necessary condition for local optimality. At least this is the case when the
state constraints are of integral type (see [7]) or when K is a finite set of points (see

[6]).
Proof of Theorem 4.1. We argue by contradiction. Suppose that @ does not satisfy
the quadratic growth condition (4.6). Then there exists a sequence {uy}32, C L*(Q2)

of feasible controls of (P) such that uy — @ in L>(Q2) and

1
(4.7) J(@) + 2w = )72 > J(ur) V.
Let us take

1
Pk = ||uk — ”ELHLZ(Q) and A = E (’LL]C — ﬁ)

Since ||hx][z2() = 1, we can extract a subsequence, denoted in the same way, such
that hj, — h weakly in L?(Q2). Now we split the proof into several steps.

Step 1: g—ﬁ(ﬂ,/j)h = 0. In the following, we write yi = y,,. Since uy is feasible,
it holds that g(z,yx(z)) <0 for every x € K. By using (3.3) and (4.7) we obtain

B 1 _ o 1 _ _
(4.8)  J(@) + llue = 32y = L(4, ) + 7l = 72 > J(ur) > Lluk, ).
From the mean value theorem we know that

oL
ﬁ(uk,ﬁ) - ‘C(ﬂ>ﬂ) + pk%(vkvﬂ)hb

with vg, a point between % and wy. This identity and (4.8) imply that

oL _ 1 _ 1 _
%(vkvﬂ)hk < @HW — l|72iq) = E”“k — /2.

Since hy — h weakly in L2(Q), vy, — @ in L>®(Q), y,, — 7 in C(Q) N H(), and
Qo — @ in Wy*() € L) for s close to n/(n — 1), we deduce from the above
inequality and the expression of the derivative of the Lagrangian given by (3.11) that

(49) O . = Jim O (i <0
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On the other hand, since a(z) < ug(x) < B(z) holds for almost all x € Q, we deduce
from the variational inequality (3.14) that

oL oL

which implies that

oL oL
— (21 17 — ] —_ m >
" (u7 ﬂ)h khm " (v;C7 ﬂ)hk 0.

This inequality, along with (4.9), leads to
(4.10) —(u, u)h = 0.

Step 2: h € Cy. We have to confirm (4.1)—(4.3). The set of functions of L?(2) that
are nonnegative if u(x) = a(x) and nonpositive if a(z) = B(x), almost everywhere, is
convex and closed. Therefore, it is weakly closed. Moreover uy — @ obviously belongs
to this set, and thus every hj also does. Consequently, h belongs to the same set.
Then (3.10), together with (3.12), implies that

/Q |, (2)h(x) | die = / A (x)h(a) d = O (i, i) =,

and hence h(x) = 0 if H,(z) # 0, which concludes the proof of (4.1).
Let us prove (4.2). From Theorem 2.4 we have

on=G'(Wh = lim W in C(Q) N H (),

which implies for every « € K such that g(z,y(z)) = 0 that

(4.11) @(%@(f))zh(x) = lim 902, Yt pune (%) = 9(2,5(x))]

<0.

The last inequality follows from the fact that wuy is feasible, @ + prhr = ug, and
consequently g(z, Yatprhy (T)) = 9(2, Yu, (x)) < 0 for every x € K.
Finally, we prove (4.3). By taking z = g(-, ¥y, (+)) in (3.3), we get

| @) date) = Jim - [ lg(a e, ) - oo 960)] dito)
(412) = Jim [ oo, (@) = gl 5(@)] di(o) < 0.

On the other hand, from (4.7) we find

(413)  J(@)h = tim 2EFPuhe) = I(@) <
k—o0 Pk k—o0 Pk k—oo k

Then (4.10), (4.12), (4.13), and the fact that

oL

O (@ i = @)+ /K g—;’@c,y(m))zh(m) dji(z)
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imply that

Jmmn:Kgyamwvmwdmwza

Thus (4.3) holds, and we know that h € Cj.
Step 3: h = 0. By taking into account (4.5), it is enough to prove that

9L
. —(u, < 0.
(4.14) (@ mh <0

For this purpose, we evaluate the Lagrangian. By a second-order Taylor expansion,
we derive

L L
(4.15) L(ur, 1) = L@, 1) + prey = (0 i) e + 55 =3 (Wi, AR,

wy, being an intermediate point between % and uy. From here we get

oc, Pi PL, o
pk%(u,u)hk + ?W(uvu)hk
_ _ 2lo*c, . 0°L _
(4.16) = Llup, i) = L@ ) + 5 | 5 (@, 1) — 57 (we ) |
Now (4.8) can be written
2
(4.17) Lo, ) — £, 7) < PE.

On the other hand, by taking into account the expression (3.15) of the second deriva-
tive of the Lagrangian, assumptions (A1)—(A3) and Theorems 2.1 and 2.4, and the
fact that u, — @ in L°°(Q2) and ||hg|/z2(o) = 1, we obtain

0L 0*L 9 0L 0L 9
==, ) — == (wg, [i < |I==(u, 1) — == (wy, i )
‘ |:8’LL2 (’LL, /”L) Ou2 (wkv M):| hk = ‘ Ou2 (’LL, /u’) ou2 (wka /1') B ) ||hk||L (Q)
2L 0L
(4.18) = H(u,u) — —(wk, ) — 0 when k — oo,
Ou? Ou? B(L2(®)

where B(L?(€)) is the space of quadratic forms in L?().
Let us define

QO ={reQ:|H,(z) >}
From (3.10) and the definition of hj we know that H,(z)hi(z) > 0 in Q; therefore

oc,

(4.19) %(u,u)hk = /QHu(x)hk(x) dx 2/ |H(2)||h(z)]| do > 7'/QT |hi ()| de.

-

For any € > 0 we can take k. such that

llprhill o) = 1@ — u|l L) <& Yk >k, forae z€Q,
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and therefore
2

h2
pkfk(x) < pglhi(z)| Vk > ke for ae. z €.

From this inequality and (4.19) it follows that

oL 2
(4.20) oo 25 (@ )b > prr / i (2)] dz > 27 [ B2 (2) da.
ou Qr 3 QT
By collecting (4.16)—(4.18) and (4.20) and dividing by p3 /2, we obtain for any
k> ke

2 0L 32£ 2£
a2y 2 [ e GL@mnt < f + | S8 wm - 55 )

B(L*()) .

Next, we study the left-hand side of this inequality. First of all let us notice that from
(3.15) we obtain for any v € L?(Q)

%(ﬁ,ﬂ)qﬂ = /Q [-Huu(l')’UQ(x) + 2H.y (2) 2 (z)v(2) + nyy(x)zf(x)] dxz

2 9 B
+ [ G @) data),
where
Hone) = 2 (2. 5(), 1(2), 5(2))
uu a'LLQ b b

and H,, and H,, are defined analogously. We also recall that

_ O2L
(4.22) Huu(2) = 575 (@, 5(x), u(z)).
Then we have
2T 2 32E _ 2
= [ e de+ S

— / (267 + Hyy(z )) hi(z) dx+/ﬂ\m Hyu ()i (x) dz

+ [ @) (hale) + Ho )3, ()] d
Q
329 — 2 p
4+ [ S, o) dnlo)

~ From assumptions (A1)-(A3) we deduce the existence of C' > 0 such that
|Hyu(x)] < C for ae. x € . Therefore we can take ¢ > 0 small enough so that
the following inequality holds:

2 2
l—l—Huu( )E—T—C’>O for a.e. z € Q7.
€

Thus

(4.24) liminf/T <2€T + Huu(x)> hi(x)dz > / (2; + Huu(x)) h%(z) dz.

k—oo
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Moreover from (4.4) we have H,,(z) > w > 01in Q\ Q7, and therefore we also get

(4.25) lim inf/ Hyo(z)hi (z) de > / Hyo ()R (2) d.
o\Qr o\Qr

k—oo

Finally, by taking into account that z,, — 2, strongly in C(Q) N H}(Q), we
deduce from (4.21)—(4.24) and (4.18) that

21 9 9
[ (E+ o) 126 &wﬁémgau>h<>d
@ﬂ»ﬁLWM@mm%w+mmm<nd+/ay<mm%ummmgu

This expression can be written as follows:

2
Eil R (x )dw+%(ﬂ a)h* <0,
€ QT 6

which along with (4.5) and the fact that h € Cj implies that A = 0.

Step 4: hy — 0 strongly in L?(2). We have already proved that hj, — 0 weakly
in L?(Q); therefore z,, — 0 strongly in C(2) N H}(Q). By using (4.21) and (4.23)
and the fact that ||| z2(q) = 1, we conclude that

2 2
0 < min {w, il C’} = min {w,T — C’} limsup/ hi(x) dx
€ 9 k—o0 Q

<g$?{ﬁ(f+mm>yﬂ M+Amfm(W(M}

2 oL, 0L
< limsup § = +|| S (@, p) — < (. )

k—oo au2 B(L2(Q))

2
-/ %g(x,@(x))zzk (z) dpi(x) — /Q [2Huy ()20, (2)hie(2) + Hyy (2) 25, (2)] dw} =0
Thus we have the contradiction. |

There is a very interesting particular case of (P) where Theorem 4.1 has a stronger
formulation.

THEOREM 4.3. Assume that L(z,y,u) = Lo(z,y) + Nu?/2, with N > 0. If i is
a feasible control of problem (P), i is the associated state, (@, i) € Wy (Q) x M(K),
foralll < s <nf/(n—1), and (§,a,p, i) satisfies (3.2)~(3.4) and (4.5), then there
exist € > 0 and 6 > 0 such that for every admissible control u of problem (P) the
following inequality holds:

., 0 . _
(4.27) J@) + Slu—l3aq) <T@ ol <

We have already mentioned in Remark 4.2 that the first-order optimality condi-
tions along with (4.5) are sufficient for optimality when L(x,y,u) = Lo(z,y) + Nu?/2,
with N > 0. But the above theorem includes more very important information. Re-
lation (4.27) says that 4 is a strict local minimum of (P) in L?(2). The fact that
the control appears linearly in the state equation and quadratically in the cost func-
tional allows us to get sufficient optimality conditions for a local minimum not only
in L>°(Q) but also in L?(2). This fact is very important in the analysis of stability
and convergence of numerical algorithms to solve (P). The proof of Theorem 4.3 fol-
lows the same arguments and steps as those given in the proof of Theorem 4.1. The
essential fact is that the functional J is of class C? in L?(Q); see Remark 2.8.
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5. Bilateral state constraints. In this section we will consider the extension
of the control problem to the case of bilateral state constraints. More precisely we
formulate the control problem as follows:

min J(u) = /QL(x,yu(m),u(ac)) dx
(P) subject to (yu,u) € (C(Q) N HY(Q)) x L=(Q),
a(z) <u(r) < B(x) forae xzeQ,

9a(@) < g(2,yu(2)) < go(x) Vo € K,

where g4, gy : K — R are continuous functions and g, (x) < g(z) for every x € K. We
assume the same hypotheses as in the previous sections. All of the previous theorems
remain valid with some obvious modifications that we are going to mention. The
Slater assumption required in Theorem 3.5 is now formulated as follows:

Jug € L™(N), with a(z) < wup(z) < B(z) for a.e. z € Q, such that
9a(2) < g(z,75(x)) + == (2, §(2)) 2ug—a(r) < gp(x) Vze K.

Under this assumption, Theorem 3.1 remains valid except for (3.3), which is
written now in the following way:

(5.2) /K(z(x))—g(x,yj(z))dﬁ(x) <0Vz e C(K), with g4(z) < z(z) < gp(z) Va € K.

From (5.2) we deduce that i is concentrated at the set of points Ky where the
state constraint is active:

Ko=K_ UK, = {r € K : g(a,7(x)) = ga(a)} U {w € K : g(2,5(x)) = go(a)}.

Now the Lagrange multiplier iz is not necessarily a positive measure. However, its
Jordan decomposition into nonnegative measures i, i~ is as follows:

ot

=gt —p, with supp(it) C K4 and supp(n~) C K_.

The cone of critical directions Cj is formed by the functions h € L?() satisfying
(4.1) and

(5.3) g—jw(x))zh(m <0 i gl 7(2)) = p(a),
(5.4) gfgw(x»zhm >0 if gz, (@) = gala),
(5.5) / \gj@,m))zh(x) dlil(z) = 0,

where |ii| = gt + p~. Then Theorem 4.1 is still true, and the only changes of the
proof appear in Steps 1 and 2. In particular, (4.8) can be rewritten with the help
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of (3.3) in the following way:
. __p - _ . 12
L(a, m) + 3 llur = allz2(0) = Kg(xvy(ﬂ?)) di(z) = J(@) + Lllur = a2 (q)

>ﬂwgzamﬂw1@¢ammmmmzzwhm7

and the proof can continue as in Theorem 4.1.
On the other hand, relation (4.11) in Step 2 must be replaced by

69 _ é 0 Vic S K+7
(5.6) gy(xvy(x))zh(x) - { >0 VeeK_.

Relations (4.12) and (4.13) remain valid. Finally, by using (4.10) and (5.6) we deduce
the identity (5.5) as follows:

dg

99,  _ . = = 1o\l —
/K ‘ay(x,y(x))zh(x) d|jil(z) = —/Ka—y(:c,y(z))Zh(z) dp(z) = J'(u)h = 0.

6. Elliptic boundary control.

6.1. Problem statement. The method of the preceding sections can be ex-
tended to other types of equations in a straightforward way. Here we discuss the case
of boundary control, while the next section is devoted to a one-dimensional distributed
parabolic control problem. Instead of (2.1), we consider now

’ dy+yy=u onl,

where 0, denotes the conormal-derivative associated with A and v € L*°(T") is non-
negative with v # 0. In contrast to section 1, we assume here that n = 2. We need this
stronger assumption, since now the control-to-state mapping G must be twice contin-
uously differentiable from L%(T) to C(f2); cf. Remark 2.5. The differential operator
A is defined as in section 1.

We consider the optimal boundary control problem

winJ(w) = [ L)) do+ [ ola). o) ds(o)

(6.2) (PB) { subject to (yu,u) € (C(Q) NH(Q)) x L=(T),
a(z) <wu(z) < p(z) forae xel,
g(z,yu(z)) <0 Vo e K.

Here v and (3 are now functions from L*°(T'), with a(z) < g(z) for a.a. z € T, ds
denotes the surface measure on I', y,, is the solution of (6.1) associated with u € L*(T),
and K C () is again a compact set.

The following assumptions are imposed on the data: We assume (A1)—(A3) on
fy L, and g (where, of course, the dependence of L on w in (A2) is redundant).
Moreover, we require the following.

(A4) The function £ : T' x (R x R) — R satisfies assumption (A2) with ¢ substi-
tuted for L and I' substituted for €.
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Remark 6.1. We confine ourselves to a linear boundary condition. An extension
to a nonlinear condition of the type 9,y + b(x,y) = w is possible under associated
assumptions on b. On the other hand, the assumption « # 0, that allows us to deduce
the existence of a unique solution of (6.1), can be replaced by

0
8—f($7t) >0 forallz € FandteR,
Y

where F is a measurable subset of 2 with a strictly positive measure.

The proof of the next theorems is completely analogous to that of Theorems 2.2
and 2.4; see Alibert and Raymond [1].

THEOREM 6.2. Suppose that (A1) holds. Then, for every u € L*(T), the state
equation (6.1) has a unique solution y, € C(Q) N HY(Q). Furthermore, if ux — u
weakly in L*(T), then y., — yu strongly in C(2) N HY(Q).

Notice that controls of L?(T") are transformed continuously to states in the Holder
space C%*(Q), with some 0 < x < 1; cf. Stampacchia [23, Thm. 14.2]. The second
part of the statement is an immediate conclusion.

THEOREM 6.3. Assume that (A1)—(A4) are fulfilled, the function € is convex with
respect to the third component, and the set of feasible controls is nonempty. Then the
control problem (PB) has at least one solution.

The proof can be performed by standard methods.

6.2. Necessary optimality conditions. We first state results on the first-
and second-order derivatives of the control-to-state mapping G(u) = y, and of the
reduced objective functional J. The results are analogous to Theorems 2.6-2.7 so that
we only collect them without proof, since the associated modifications are obvious.
Under assumptions (A1)-(A4), all mappings listed below are of class C? from L>°(T")
to their respective image spaces. The associated derivatives can be obtained as follows.

We define, for v € L*(T'), the function z, as the unique solution to

of .
Az, + = (z,yy)zy, =0 in Q,
(6.3) oy =¥

Opzy + 72y =v on .

Then G’ is given by G'(u)v = z,. Moreover, for v1, vo € L?(I'), we introduce z,, =
G'(u)v;, t = 1,2, and obtain G (u)v1va = 24, v,, Where z,,,, is the solution to

of o*f .
Azyy v, + Fy(xvyu)zmm + Tyg(xvyu)zmzvz =01in Q,

OpZuyvy + Y 20y, =0 on I'.

(6.4)

The adjoint state @o, € H}(Q) associated with u and J is introduced as the unique
solution to

) oL .

AT+ i(wm)w = —(z,yu) inQ,
oy dy

(6.5)

or
Op+vp= gy(w,yu,U) on I'.
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It holds that

(6:6) P = [ (et +on ) v

02L 92
J" (u)vyve =/Q {ayQ(%yu,U)zvlQO —¢0u8y‘§($7yu)zvlzv2] dx

b oz + o s ) Gt )
(6.7) 92 Ty Yu, U) 2oy Zog dyou T, Yu, W) (20, V2 + 20, V1

0%
+ w(m, Yuy W)V V2 ] ds.

Under (A1) and (A3), the mapping F : L?(I') — C(K), defined by F(u) =
g(-,yu(+)), is of class C2. For every u,v,vi,ve € L*(T), its first- and second-order
derivatives are given again by (2.7) and (2.8), respectively.

Now we introduce the Hamiltonian H by

H(‘xayauv@) :€($7y’u) +¢[u_7y]

The first-order necessary conditions admit the following form.

THEOREM 6.4. Let u be a local solution of (PB). Suppose that assumptions (Al)-
(A4) hold, and assume the linearized Slater condition (3.5) with some uy € L*(T'),
alx) < wug(z) < B(x) for a.e. x € T. Then there exist a measure i € M(K) and a
function g € WH3(Q) for all 1 < s <n/(n—1) such that

. Of, .. 9oL, __ 99, .
Ao+ l(w,y(x))w = 2@, g,0) + 22 (2, (2))fiy, in Q,
' d
P+ = 8—Z(x,y($))mr onT,

(6.9) /K(z(x) —g(z,g(x)))da(z) <0 Vze C(K) such that z(z) <0 Vz € K,

(6.10) H(z,g(x),u(z),p(x)) = el I(%ng o) H(z,y(z),t,p(x)) fora.e xzel,
where o, and B, are defined similarly as in Theorem 3.1 and ji), and [i|. denote
the restrictions of u to 0 and T, respectively.

At the optimal point, the derivatives of H fulfill the relations (3.6)—(3.10) with
an obvious modification: We have to substitute = € I" for x € Q2. Moreover, we have
to replace (3.8) by

o 0°H
(611) W('xa?ﬁu) - W(J"vyaua(p)'

The Lagrangian function £ : L (T") x M(K) — R associated to problem (PB) is
defined by

E(u,,u):/QL(x,yu(x))das—l—/Fﬁ(sc,yu(:v%u(m))ds—i—/Kg(x,yu(a?))du(x).
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By using (6.6) we deduce that

(6.12) %(u,ﬂ)v = /FHU(x)v(ac) ds,
where
(6.13) Hu(w) = S0 (. y(a),ul), oul@))

and ¢,, is obtained from the adjoint equation (6.8), where y,, is substituted for g, u for
u, and p for fi, respectively. We finally indicate the expression for the second-order
derivative of L:

0L 8L 9?2
W(U,#)Ulw Z/Q |:(13y2(x7yu)zvlz112 —quyéc($7yu)Zulzvz dx

—l—/ 872[@ U) 2y, 2 +872€($ w)(2y, V2 + 24,01)

r ayQ 7yu7 V1 ~U2 ayau 7yu7 v, V2 vp U1
2%(

+ aug(x7yuvu’)vlv2:| ds

2
(6.14) + /K gfygmm»zm (2) 20y () (),

where ¢, is defined as after (6.13).

6.3. Second-order sufficient optimality conditions. Let u be a feasible con-
trol of problem (PB) and § be the associated state. We assume that there exist
e M(K)and g € Wy*(), 1 < s < n/(n — 1), such that the first-order necessary
conditions (6.8)—(6.10) are satisfied. Associated with @, we introduce the function

() = St (o, ), 1), 9(2)

and define the cone of critical directions by
(6.15) Cy = {h € L*(T) : h satisfies (4.1)-(4.3) with 2 € T'}.

Notice that this cone is only formally the same as in (4.1)—(4.3), since x varies here
through T". The second-order sufficient condition admits now the following form.
THEOREM 6.5. Assume that n = 2, and let @ be a feasible control of problem
(PB), § the associated state, and (@, i) € WH4(Q) x M(K), for all1 < s <n/(n—1),
satisfying (6.8)—(6.10). Let there exist two constants w > 0 and T > 0 such that

(6.16) g—ig(x,g(m),ﬂ(x)) >w if |Hy(z)| <7 forae zeT,
(6.17) azﬁ(a, @)h? >0 VYhe Cy\ {0},

2
where Cy is defined in (6.15) and 9*°L/0u? is taken from (6.14), with u := @ and
M= [

Then there exist € > 0 and 6 > 0 such that, for every admissible control u of
problem (PB), the following inequality holds:

1 ) _
(6.18) J(@) + Sl = allfey < J(@) if fu—aller) <e
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Proof. The proof is almost identical with the one of Theorem 4.1. Therefore, we
mention only where essential changes occur.

Throughout the proof, we have to perform the obvious modification that L?(T),
L>(T), and H' () must be substituted for L2(Q2), L>=(Q), and H} (), respectively.
Moreover, in some integrals, 2 must obviously be replaced by I'. Then Steps 1 and 2
can be adopted without further changes.

Step 3: The arguments up to (4.18) do not need changes. Next, we modify Q27 by

I"={z el : [Hy(z)| >7}.

Hereafter, Q and Q7 are replaced by I" and I'7, respectively. In (4.22), ¢ must be
substituted for L, and in (4.23) we add the integral over 9*L/0u? to arrive at

2T 0L
— . ( )cls—&-a 5

-/ (2;+Huu< >> () ds+/F\FTHuu< D)2 (z) ds

4 [ 2y @), (halo) + By ()3, (0)] s
T

(619)  + Kg—yi<x,g<x>>z2k<w>dn<x>+ Q%mwnzzk@mx.

(@, fi)hi;

Analogously, this term must be added to the left-hand side of (4.26). -
Step 4: First, we conclude from hy — 0 in L?(T") that zj,, — 0 strongly in C(Q).
Proceeding as in the former Step 4, we finally conclude with

9°L 9L
T2 (a, ) — 3 —— (Wi, [i)

k—o0

0 < limsu {2 ‘
g B(L?(I)
- [ G a@)d @ i) - [ G pw)t, @) do

B /Q [2Huy () 21, (@) R () + Hyy(x)zlek ()] de} = 0. O

7. The parabolic case.

7.1. Problem statement. Finally we prove that our method can also be ex-
tended to one-dimensional parabolic problems with distributed control. This ex-
tension is addressed here. To define the parabolic problem, we consider the one-
dimensional domain Q = (a,b) and the time interval [0, 7] for given T > 0. We fix
an initial value yo € Cf[a,b] and introduce the set Q@ = (a,b) x (0,T). Moreover, we
introduce the space W(0,T) = {y € L2(0,T; H'(Q)) : % € L2(0,T; H'(?))}.

Remark 7.1. Again, the restriction on the dimension of {2 comes from the re-
quirement that the control-to-state mapping is of class C? from L?(Q) to C(Q). This
holds true only for n = 1. We should mention here that boundary controls cannot be
handled by our approach. Neumann boundary data from L?(0,T) are not, in general,
transformed into continuous states.
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The parabolic equation is defined by

%—FAZ/—!—f(x,t,y):u in (a,b) x (0,7),
(7.1) —0zy(a,t) =0 in (0,T),
O,y(b,t) =0 in (0,7),
y( 70) = Yo in (aab)7

where J, denotes the partial derivative with respect to x. The associated optimal
control problem is

T b b
minJ(u):/O / L(m,t,yu(x,t),u(x,t))dwdt+/ r(z,y(x,T)) dx

T T
+ / Ca(t, yala, 1)) dt + / 0y(t, (b, 1)) dt

subject to (yy,u) € (C(Q)NW(0,T)) x L=(Q),
a(z,t) <wu(z,t) < B(z,t) forae. (x,t)€Q,
g(x,t,yu(z,t)) <0 VY(x,t) € K.

(7.2) (PP)

Here o and 3 are functions from L>®(Q), with a(z,t) < 8(z,t) for a.a. (z,t) € Q, y,
is the solution of (7.1) associated with u € L?(Q), and K C @ is a compact set.

The following assumptions are required.

(A5) The function f: @ x R — R satisfies the modification of assumption (A1)
that is obtained by substituting @ for  and (z,t) for x, respectively.

(A6) The function L : @ x (R x R) — R satisfies the modified assumption (A2)
obtained by substituting @ for Q and (x,t) for x, respectively.

(A7) The function g : K x R — R is continuous and is of class C? with respect
to the second variable, and d,g and 8739 are also continuous functions in K x R.
Moreover, the strict inequality

(7.3) 9(x,0,y0(z)) <0

holds for every z € K N Q.

(A8) The functions ¢, : [0,T] x R — R, k € {a, b}, are Carathéodory functions
of class C? with respect to the second variable with ¢4 (-,0) € L(0,T). For all M > 0,
there exist a constant Cpy > 0 and a function 15; € L%(0,7) such that

ot
1) < oo, |

020, 020y,
’ayQ( yY2) — Tyg(tayl)

024y,
Oy?

(tay)‘ S CM7

< Cwmly2 — 1

holds for k € {a,b} for a.e. t € [0,T] and |y|, |y;| < M, i=1,2.

Analogously, r : [a,b] x R — R is a Carathéodory function of class C? with
respect to the second variable with r(-,0) € L*(a,b). It satisfies the assumptions on
), above with £ replaced by r, (a,b) substituted for (0,7T), and x substituted for .
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For the parabolic equation, the following result on existence and regularity holds
true.

THEOREM 7.2. Suppose that (A5) is satisfied. Then, for every u € L*(Q), the
state equation (7.1) has a unique solution y, € C(Q) "YW (0,T). If up — u weakly in
L3(Q), then yu, — yu. strongly in C(Q).

The proof of the theorem is postponed to section 7.4.

THEOREM 7.3. Assume that (A5)—(A8) are fulfilled, the function L is convex with
respect to the third component, and the set of feasible controls is nonempty. Then the
control problem (PP) has at least one solution.

This theorem is a standard consequence of Theorem 7.2.

7.2. Necessary optimality conditions. Also here, the control-to-state map-
ping G(u) = yu, G : L}(Q) — C(Q) N W(0,T), and the reduced objective functional
J are of class C? from L*(Q) to their image spaces, provided that assumptions (A5)—
(A8) are satisfied. Since this is known (see [5]) we state the associated derivatives for
convenience below.

We define, for v € L?(Q), the function z, as the unique solution to

dz, af B .
p + Az, + a—y(x,t,yu)zv =wv in Q,

(7.4) —0pzy(a,t) =0 in (0,7),
0:2y(b,t) =0 in (0,7),
y(xz,0) =0 1in (a,b).

Then G’'(u), G : L*(Q) — C(Q) N W (0,T), is given by G'(u)v = z,. Moreover, for
v1, v2 € L?(Q), we introduce z,, = G'(u)v;, i = 1,2, and obtain G” (u)v1v2 = 2y, 4,5
where z,,,, is the solution to

dzy, v af 0% f .
7d?1f 2 + Azmvz =+ @(I,t, yu)zmvz + Tyg(‘rvtyu)zmzw =0 in Q’
(7.5) =0z Zpy0,(a,t) =0 1in (0,7T),
Oz Zvyv, (b,t) =0 in (0,7),

Zuyve (£,0) =0 in (a,b).

The adjoint state g, € W(0,T) associated with u and J is introduced as the unique
solution to

A e O oL .
b, .
_axw(avt) = ) (t7yu(aa t)) m (O7T)a
(7.6) y
oty .
Oz (b, t) = 8—y(t, Yu(b, 1)) in (0,7,
or .
Qp(va) = @(x7yu(va)) m (Cl,b).
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(7.7) J'(u)v = / (aL(x,t,yu,u) + 4,00u) v dzdt,
Q 8u
0%’L 0%’L
J" (u)vy vy :/Q [8 5 (T, Yu, U) 2,y 20, + 9900 ——— (2, b, Yo, 0) (20, V2 + 24y 01)

82 ?
8 a3 (x,t, Yu, u)v102 — <P0u8 ]20(33 t yu)zvlzq,z} dzdt

024,
79 T R SN T

2
+ /0 % 5 (8 yu (b, 1)) 20, (b, 1) 20, (b, 1) di

82
o Oy 92
We require the following linearized Slater condition: There exists ug € L*°(Q)
with a(z,t) < ug(z,t) < B(x,t) for a.e. (x,t) € @ such that
0
(7.9) g(@,t,y(z,t)) + 8*5(%@ y(@,1))zu—a(z,t) <0 V(z,t) € K.

Notice that we have assumed (7.3), since this is needed to satisfy (7.9). The Hamil-
tonian H is defined by

H(Jc,t,y,u,g@) = L(xﬂtvyvu) +o ['U/ - f(xvtay)]a
and the first-order necessary conditions admit the following form (see Casas [5]).
THEOREM 7.4. Let u be a local solution of (PP). Suppose that assumptions (A5)—
(A8) hold, and assume the Slater condition (7.9) with some ug € L>(Q), a(z,t) <
uo(x,t) < B(x,t) for a.e. (x,t) € Q. Then there exist a measure /2 € M(K) and a
function @ € L™(0, T; W2 (Q)), for all 7, o € [1,2), with 1 + > 7, such that
(7.10)

(@, yu(2, T)) 20, (2, T) 20, (2, T) dav.

o . Of __ oL, . _ . 09, . _
5.3 0L, dg _ _
- w(p(a,t) = aiy(tvyu(avt)) + @(a7t7y(a’t))ul{a}x(o‘mv
_ oy 9g _ _
6;850(1)’ t) = (Q)iy(t, y(b7 t)) + %(bat7y(bv t))/"‘l{b}x(oy'j‘)?
_ _or, Jdg _ _
QD(I,T) - @(xvy(xaT)) + @(x7T7y($7T))u‘Qx{T}

for a.a. x € (a,b), t € (0,T), where [i,, Bliaysory Pl xor: ond Blg, o, denote
the restrictions of p to @, {a} x (0,T), {b} x (0,T), and Q x {T'}, respectively,

(7.11) /K(z(x,t)—g(x,t,gj(x,t)))d/j(x,t) <0Vze C(K), with z(x,t) <0V(z,t) € K,

and, for almost all (z,t) € Q,

(7.12)  H(z,t,y(=z,t),u(z,t), oz, t) = min H(z,t,y(x,t), s, ¢(x,1)),
s€lacy (z,t),Be 4 (z,t)]

where o, and B, are defined along the lines of Theorem 3.1.
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The Lagrange function is defined in a standard way by
T
Lluan) = [ Loty 0)ula ) dade + [ (e o) de
Q 0

T
+/0 éb(t,yu(b,t))dﬂr/Kg(x,tyu(x,t))dﬂ(x,t)-

For convenience, we establish only the second-order derivative of L:
(7.13)

52

ou a2 (U ,[L)Ull)g

0L 0L 9L
—/ [8 5 (T, Yu, U) 20, 20, + 90 o (T, Yu, ) (20, V2 + 20,v1) + ™ =5 (T, t, Yu, u) V102

- ﬁ(x ty Yu) 2o, 2 dxdt—i—/ &(sc (z,7)) 2y, (2, T) 2y, (2, T) dzx
@uayQ U Yu )2y 2oy 092 » Yul, v\ L) v2 \ )

T ro%, %0,
b |Gt 0120 (000 000) + G002, (00120, 000

2
+ [ Gt )z @) ) dia ),

where ¢, is the solution of (7.10), where u is taken for @, y, instead of g, and p for
.

7.3. Second-order sufficient optimality conditions. With the prerequisites
of the preceding section at hand, the extension of the second-order sufficient optimality

conditions to the parabolic case is straightforward. We define the cone of critical
directions associated with u by

> a(z,t),
(7.14) h(z,t) = ¢ <O0ifu(x,t) = B(z,1),

— 0if Hy(z,t) #0,
(7.15) g—z(x,t,g(x,t))zh(x,t) <0 if g(x,t,gy(x,t) =0,
(7.16) /K g—z(m,t,g(x,t))zh(x,t) dii(z,t) = 0.

The sufficient second-order optimality conditions for @ are stated in the following
result.

THEOREM 7.5. Let @ be a feasible control of problem (PP) that satisfies, together
with the associated state § and (@, ji) € L™ (0, T; W7 (Q))x M (K) for all T, o € [1,2),
with L +1 > 3 the first-order conditions (7.10)~(7.12). Assume in addition that there
ezist two constants w > 0 and 7 > 0 such that

(7.17) gjf;(z tyg(x,t),u(x,t)) > w if |Hu(x,t)| <7 for ae (z,t) €Q,
0L
(7.18) W(a,ﬁ)hz >0 VheCy\{0}.
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Then there exist € > 0 and 6 > 0 such that, for every admissible control u of problem
(PP), the following inequality holds:

0 _ . _
(7.19) J(@) + S llu—allfeg) < J(w) if fu—alleg) <e

The proof is analogous to the one of Theorem 4.1. We have to perform obvious
modifications that are along the line of the ones explained in the proof of Theorem
6.5. Therefore, we skip these details.

7.4. Proof of Theorem 7.2. To prepare the proof of Theorem 7.2, we first
state some results on maximal parabolic regularity of the elliptic differential operator
A. In the one-dimensional case we study here, A admits the form

A:a% [““()aﬂ

Let us consider A on its natural domain

ow ow
Py— —_— 2 — =
(7.20) D := D(A) = {w € HX(Q) : F(a) = - (0) 0}
that is dense in L?(€2). It is known that, for all 7 € (0, 1),
ow ow

2T — s 3
D(AT) = H (Q)ﬁ{w : 83:( a) = —8z(b) 0} if 7> 4,
H?*(Q), if 7 < 3;

cf. [24]. In particular, we have Q(A%) = H'(Q). To shorten the notation, we write
below S := (0,T) with closure S. Moreover, for a Banach space X C L!'(Q) and
1 < p < o0, we introduce the space

whr(S X) = {y € LP(S,X) : % € LP(S,X)}.

It is known that, for all 1 < p < oo, A exhibits maximal parabolic LP(S, LP(Q2))-
regularity. This means that, for all f € LP(S,LP(Q2)), there is a unique solution
y € WhP(S, LP(2)) N LP(S, D(A)) of
9y
ot
where the differential equation is to be understood in the distributional sense; cf. [13].
Here the definition of D(A) must be adapted by replacing WP (Q) for H?(12) in (7.20).
In all that follows, we apply this result with p = 2 for X = H := L?(Q). Therefore,
for all f € L3(S, H) = L?*(Q), there is a unique solution y € W12(S, H) N L*(S, D)
of (7.21). The mapping f +— y is surjective and hence continuous.

Our proof relies on the following result.

LEMMA 7.6. For all0 <7 <n<1andk = ’72_—“7,
injection W12(S, H) N L?(S, D) — C*(S, H™(Q)).

Proof. We show first that W2(S,H) < C2(S,H). To this aim, let y €
Wh2(S, H) and t,s € S be given. Then

it~ = | [ vorae] / I/ (0l do
(/ Iy (p IIHdp) (/ dp)2§||y||wl,2(S7H)|t5|;

(7.21) +Ay=finS, y(0)=0,

there holds the continuous
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verifies the injection claimed above. Next, we prove the statement of the lemma. We
denote by [-, -] the complex interpolation functor; see Triebel [24]. It follows from [2,
Chap. III, Thm. 4.10.2] and [24, Chap. 1.8] that the continuous injection

(722) W1’2(S, H) N L2(Sa D) — C(Sa [Hv D]l/?) = C(Sle(Q))

takes place. The interpolation identity [H, D];/; = H 1(Q) is well known and can be
found, for instance, in [24].

We fix now 7 and n by 0 < 7 <1 < 1/2 and put A = 7/n. Then we obtain with
a generic constant ¢ that

ly(@®) = y(llpoy, Ny = y() i, 01,05

7.23
(7.23) It —s[z0=2  — |t —s|2(1-Y)
ly(t) — y(s)|l g
c . s|%(1_;§ y(t) — y(s)H[AH,D]y,
ly(®) = y(s)lla '
(7.24) <o A ly() = y(s) |17y,
[t — s> !

where we have applied the complex reiteration theorem, [24, Chap. 1.9.3]. In the last
estimate, the first factor is bounded, since W2(S, H) < Cz(S, H). In view of the
injection (7.22) and [H, D], = H*"(Q), with 0 < 2n < 1, the second factor can be
estimated by

A
I5(®) = 9, < € 19) = 95 ancey < (2 Mollos.manca)

A
< (C||y||c(5,H1(sz))) < cllyllty1.2s,myn 225, 0)-

In the last estimate, we have used the embedding (7.22). Moreover, we took advantage
of the equivalence of the norms of [H, D], and H?"(f2). Therefore, the second factor
in (7.24) is bounded, too. The statement of the lemma follows now from (7.24) after
inserting 7 := 27, ) := 2, [H, D], = H*"(Q), and x = (1 — A) into (7.23). |

Proof of Theorem 7.2. The existence result of Theorem 7.2 is well known; we refer
to Casas [5]. Therefore, we show only that weakly converging sequences of controls
are transformed to strongly converging sequences of states.

Let a sequence (uy) be given that converges weakly in L?(Q) to u. Consider the
equation for y and wuy:

0 .

%+Ayk+f($vyk)zuk in Q,
Oy _ .
%(ai) =0 inS,
Yk _ .
%(IL t) =0 m S,

y(0) =yo in Q.

Standard arguments show that y, — y in W(0,T7) N C(Q), where y = y,. The
functions v, are uniformly bounded in C(Q), hence the sequence (d(-, yk)) is bounded
in L2(Q), and we can select a weakly converging subsequence indexed by k;. We write
fx = uk — d(-, yx) and split yx = v + wy, where wy, solves

WﬂLAwk:fk
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with homogeneous inital and boundary conditions, while v solves

v

— +Av=0

ot + Av
with inhomogeneous initial condition v(0) = yo and homogeneous boundary condi-
tions. Thanks to Lemma 7.6, the sequence (wy,) converges weakly in C*(S, H(Q)),
where k > 0 and 7 > 1/2 can be chosen. Therefore, the functions wy, belong to a

space C?(Q) with some positive o so that, by compact embedding into C(Q), the se-

quence converges strongly in C(Q). Consequently, yx, = v+wy, converges strongly in
C(Q) towards y. Moreover, it follows by standard arguments that y = y,. Since this
holds for all subsequences with the same limit y, the whole sequence (yi) converges

uniformly to y,,. ]

Acknowledgment. The authors are grateful to J. Rehberg (Weierstrass Insti-
tute Berlin (WIAS)) for pointing out the proof of Lemma 7.6.
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