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Abstract

In this article we show that the notion of variational sum of maximal
monotone operators, introduced by Attouch, Baillon and Théra in [3] in
the setting of Hilbert spaces, can be successfuly extended to the case of
reflexive Banach spaces, preserving all of its properties. We make then a
comparison with the usual pointwise sum and with the notion of extended
sum proposed in our paper [26].
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1 Introduction

In [3], Attouch, Baillon and Théra introduced a notion of sum of two monotone
operators, called variational sum. This was done in the setting of Hilbert spaces
and the general idea was to use an appropriate approximation (the Yosida reg-
ularization) of a monotone operator in a Hilbert space and to take as a sum of
two operators a suitable limit of the pointwise sum of their approximations. In
several cases this sum appears to be larger than the usual pointwise sum, as for
example in the case of subdifferentials of convex functions.
The need to look for a notion of sum of two monotone operators, which is a gen-
eralization of the usual pointwise sum, is inspired by the fact that sometimes
(as above in the case of subdifferentials) the study of a problem, with monotone
operators involved, leads to an operator that turns out to be larger than the
pointwise sum (see e.g. [3, 4], where problems arising in partial differential equa-
tions possessing this property are studied). Therefore, different authors have
tried to investigate possible generalized notions of sum of monotone operators
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like, the variational sum mentioned above, or the parallel sum used in [16] to
study electrical networks, or a sum based on the Trotter-Lie formula in [17], or
recently an accretive extension of the algebraic sum of two linear operators in
[10].
Our aim in this article is twofold. First, to show that the notion of variational
sum can be naturally extended to the more general setting of reflexive Banach
spaces using the same general idea of approximation. And second, to compare
this sum with a notion of extended sum introduced in our paper [26], based on
another approximation of a given monotone operator–a suitable enlargement of
the operator. Therefore, in the rest of the paper we proceed as follows: after
some necessary preliminaries given in Section 2, in Section 3 we present the idea
of the extended sum from [26]. Further, in Section 4 we show how the concept of
variational sum can be extended to the case of a reflexive Banach space. We see
that the generalized notion keeps its properties from Hilbert space setting. We
prove also that, when the variational sum of two maximal monotone operators is
maximal monotone, it contains the extended (and hence the pointwise) sum of
the operators and all the three concepts coincide if we suppose the maximality of
the pointwise sum. In the last Section 5, we see that another important property
from the Hilbert space setting–the fact that the subdifferential of the sum of two
convex proper lower semicontinuous functions is equal to the variational sum
of their subdifferentials–is also preserved in the new setting. In particular, we
obtain that the two concepts–the variational sum and the extended sum–agree
also for the case of subdifferentials of convex functions.

2 Some preliminaries

Throughout this article we will assume that X is a reflexive real Banach space
with continuous dual X∗. The norms in X and X∗ will be designated by ‖ · ‖,
w will mean the weak topology in X and X∗. For the usual pairing between X
and X∗ we use the symbol 〈·, ·〉.
Due to a result of John and Zizler [14], we may think that X is endowed with
a Fréchet differentiable (away from the origin) locally uniformly rotund norm
whose dual is also Fréchet differentiable except the origin and locally uniformly
rotund. In particular (see e.g. Diestel [11]), these norms are not only strictly
convex, but also satisfy the Kadec-Klee property:

if xn → x weakly in X and ‖xn‖ → ‖x‖, then xn → x strongly in X,

and

if x∗n → x∗ weakly in X∗ and ‖x∗n‖ → ‖x∗‖, then x∗n → x∗ strongly in X∗.

Evereywhere in the sequel, we will assume that the norms in X and X∗ are as
above.
Given a (multivalued) operator A : X −−→−→ X∗, as usual the graph of A will be
denoted by

Gr(A) := {(x, x∗) ∈ X ×X∗ : x∗ ∈ Ax}
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and the domain and the range of A by

Dom(A) := {x ∈ X : Ax 6= ∅}

and
R(A) :=

⋃
{Ax : x ∈ Dom(A)}.

The inverse operator of A : X −−→−→ X∗ is A−1 : X∗ −−→−→ X:

A−1x∗ := {x ∈ X : x∗ ∈ Ax}, x∗ ∈ X∗.

Obviously Dom(A−1) = R(A).
The operator A is called monotone if the following condition is fulfilled:

〈y − x, y∗ − x∗〉 ≥ 0 for every two pairs (x, x∗), (y, y∗) ∈ Gr(A).

Let us mention that if A is monotone, then its inverse A−1 is also monotone
from X∗ into X.
For an operator A : X −−→−→ X∗, denote by coA (resp. by Ā) the operator
(coA)x := co(Ax) (resp. Āx := Ax), x ∈ X. Here co means convex hull,
while the overbar has the meaning of the closure of a set with respect to the
norm topology in X∗. Obviously, Dom(A) = Dom(Ā) = Dom(coA) and if A is
monotone then so are Ā and coA.
A monotone operator A : X −−→−→ X∗ is said to be maximal if its graph is not
contained properly in the graph of any other monotone operator from X to X∗.
In other words, A is maximal, if and only if, whenever one has 〈x−y, x∗−y∗〉 ≥ 0
for every (y, y∗) ∈ Gr(A), it follows that (x, x∗) ∈ Gr(A). It is easily seen that, if
A is a maximal monotone operator, then the operators A, Ā, coA, coA coincide.
Evidently, if A is maximal monotone then A−1 is also a maximal monotone
operator between X∗ and X. Finally, it is easily checked that if A is a maximal
monotone operator then its graph Gr(A) is a closed subset with respect to the
product of the norm topologies in X ×X∗.
Among the most important examples of maximal monotone operators are the
subdifferentials of convex functions. Let f : X → R ∪ {+∞} be an extended
real-valued proper lower semicontinuous convex function in X (proper means
that the domain of f , dom f := {x ∈ X : f(x) < +∞} is nonempty). Given
ε ≥ 0, the ε-subdifferential of f is defined at x ∈ domf by:

∂εf(x) := {x∗ ∈ X∗ : f(y)− f(x) ≥ 〈y − x, x∗〉 − ε for every y ∈ X},

and ∂εf(x) := ∅, if x /∈ domf . It is known that Dom(∂εf) = domf for every
ε > 0. When ε = 0, ∂0f is the subdifferential ∂f of f (the latter can be empty
at some points of domf). Obviously, one has ∂f(x) ⊂ ∂εf(x) for every x ∈ X
and ε > 0.
The following result, which has been also a motivation for our investigations,
was proved by Hiriart-Urruty and Phelps:
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Theorem 2.1 (Hiriart-Urruty and Phelps [12]) Let f, g : X → R∪{+∞}
be two proper lower semicontinuous convex functions. Then for every x ∈
domf ∩ domg one has:

∂(f + g)(x) =
⋂
ε>0

∂εf(x) + ∂εg(x).

The result is true in a general Banach space, in which case the closure in the
right hand side is taken with respect to the weak star topology in X∗.

3 The concept of extended sum

The notion of approximate subdifferential has inspired the search of similar
enlargements for monotone operators. The following one has been studied in-
tensively in the last years:
Given a monotone operator A : X −−→−→ X∗ and ε ≥ 0, the ε-enlargement of A is
the operator Aε : X −−→−→ X∗, determined by

Aεx := {x∗ ∈ X : 〈y − x, y∗ − x∗〉 ≥ −ε for any (y, y∗) ∈ Gr(A)}.

This concept was observed by several authors (see e.g. [19]). But for the first
time a detailed study was provided in [8] in finite dimensions, with applications
to approximate solutions of variational inequalities, and in [9] with applications
to finding a zero of a maximal monotone operator. Similar notions could be
found in [18, 21, 22, 25, 34].
It is seen that Aε is with closed convex images for any ε ≥ 0. Due to the
monotonicity of A, one has Ax ⊂ Aεx for every x ∈ X and every ε ≥ 0. I.e. Aε

is indeed an enlargement of A. If A and B are two monotone operators such
that A ⊂ B (equivalently Gr(A) ⊂ Gr(B)) then Bε ⊂ Aε for every ε ≥ 0! In
the particular case when A = ∂f one has ∂εf ⊂ (∂f)ε and the inclusion can
be strict (for instance for the function f(x) = x2, x ∈ R, cf. e.g. [19]). Let
us mention that a Brøndsted-Rockafellar lemma is true for these enlargements
(see Torralba [33] for the case of reflexive spaces (cf. also [9] where the Hilbert
space setting is considered) and our paper [26] for a generalization outside these
settings). For other properties of this notion we refer to [8, 9, 26].
Let A,B : X −−→−→ X∗ be two monotone operators. As usual the operator A+B :
X −−→−→ X∗ means the pointwise sum of A and B:

(A + B)x = Ax + Bx, x ∈ X.

A + B is a monotone operator with domain Dom(A + B) = DomA ∩ DomB.
But it is well known that if A and B are maximal monotone operators, then, in
general, their sum A + B need not be a maximal monotone operator. A very
well-known case of this phenomenon is the sum of the subdifferentials of two
convex proper lower semicontinous functions which can be strictly less than the
subdifferential of the sum of the functions. Other counterexamples for this, as
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well as sufficient conditions for the maximality of the pointwise sum, could be
found in the monographs of Phelps [24] and Simons [28].
As we pointed out, the above phenomenon motivated the study of possible
generalized sums of monotone operators. One is the variational sum which will
be considered in the next section. Another one was proposed in our paper [26]
using the above enlargements:
The extended sum of two monotone operators A, B : X −−→−→ X∗ at the point
x ∈ X is defined in [26] by

A +
ext

B(x) =
⋂
ε>0

Aεx + Bεx.

In the general case of an arbitrary Banach space, the closure on the right hand
side is taken in [26] with respect to the weak star topology in X∗ (which, of
course, in our setting coincides with the norm closure, due to the reflexivity of
the space and convexity of the images of the enlargements). Obviously, A+B ⊂
A + B ⊂ A +

ext
B and hence, Dom(A) ∩Dom(B) ⊂ Dom(A +

ext
B). Moreover,

the extended sum is commutative. As it is shown in [26], in several important
cases the extended sum is a maximal monotone operator: e.g.:

Theorem 3.1 ([26], Theorem 3.1 and Corollary 3.2). Let A + B (resp.
A + B) be a maximal monotone operator. Then, A + B = A +

ext
B (resp.

A + B = A +
ext

B).

Moreover, the subdifferential of the sum of two convex proper lower semicon-
tinuous functions is equal to the extended sum of their subdifferentials ([26],
Theorem 3.3; see also the particular case of this result at end of this paper).

4 Variational sum of monotone operators

In this section we see how the notion of variational sum of maximal monotone
operators introduced in the setting of Hilbert spaces by Attouch, Baillon and
Théra in [3], can be extended to the case of reflexive Banach spaces, keeping its
properties. We compare it then with the pointwise and extended sum.
For the extension of the variational sum to the more general setting we will
follow the same scheme of approximations used in [3]. For this we need first to
introduce the well-known duality mapping J between X and X∗, defined by:

Jx := {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}, x ∈ X.

J is the subdifferential of the convex function f(x) = (1/2)‖x‖2, x ∈ X (see
e.g. Phelps [24], Example 2.26), i.e. it is a maximal monotone operator with
Dom(J) = X. Remember that we consider norms in X and X∗ which are
Fréchet differentable away from the origin and locally uniformly routund, in par-
ticular with the Kadec-Klee property. In such a situation, the duality mapping
J between X and X∗ is one-to-one, surjective and norm-to-norm continuous.
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Before giving the regularization scheme, let us recall a well-known result due to
Rockafellar [27], Proposition 1 (which is also a generalization of the classical re-
sult of Minty for Hilbert spaces): in our setting of reflexive Banach spaces, with
the norms we consider, if A : X −−→−→ X∗ is a maximal monotone operator then
for any λ > 0 one has R(A + λJ) = X∗ and (A + λJ)−1 is a single-valued max-
imal monotone operator which is norm-to-weak continuous (the latter notion is
termed also demi-continuous).
We proceed by introducing the elements of the regularization scheme. Given
a maximal monotone operator A : X −−→−→ X∗ and a positive λ, there are two
equivalent ways to define the well-known Yosida regularization (or Yosida ap-
proximation) of A of order λ: the first one is naturally motivated by the special
case of subdifferentials of convex functions; one defines first the resolvent JA

λ of
A for λ > 0, as the operator from X into X determined by: for any x ∈ X, JA

λ x
is the unique (by the result of Rockafellar above) solution xλ of the inclusion:

(4.1) 0 ∈ J(xλ − x) + λAxλ.

Then, the Yosida regularization Aλ : X −−→−→ X∗ of A is defined by

(4.2) Aλx :=
1
λ

J(x− xλ), x ∈ X.

One easily sees that for each λ > 0

(4.3) JA
λ x = x− λJ−1Aλx for every x ∈ X.

The second equivalent way to define the above regularization is purely analytical:

(4.4) Aλ := (A−1 + λJ−1)−1, λ > 0.

By the result of Rockafellar above, for any λ > 0, the Yosida regularization
Aλ is an everywhere defined single-valued maximal monotone operator which is
demi-continuous.
When X is a Hilbert space, then J is the identity and the above formulae reduce
to Aλ = (J − JA

λ )/λ and JA
λ = (J + λA)−1.

Observe that (4.1) and (4.2) above show that, in particular, for any λ > 0:

(4.5) Aλx ∈ A(JA
λ x) for every x ∈ X.

Let us list several well-known properties of the Yosida regularizations due to
Brezis, Crandall and Pazy [6]. In what follows, given a maximal monotone
operator A : X −−→−→ X∗ and x ∈ Dom(A), by Aminx we denote the unique
element of Ax which has minimal norm in Ax (the existence of such an element
is guaranteed by the reflexivity of X and the maximality of A (Ax is closed and
convex), while its uniqueness follows by the fact that the norm in X∗ is strictly
convex).

Proposition 4.1 (see [6], Lemma 1.3) Let A be a maximal monotone oper-
ator between the reflexive Banach space X and its dual X∗ and the norm in X
and the dual norm in X∗ are locally uniformly rotund. Then
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(a) for every λ > 0 the Yosida regularization Aλ maps bounded sets into bounded
sets;

(b) for every λ > 0 and x ∈ Dom(A) we have ‖Aλx‖ ≤ ‖Aminx‖;
(c) for every x ∈ Dom(A), JA

λ x strongly converges to x as λ ↓ 0 and Aλx
strongly converges to Aminx as λ ↓ 0.

In fact, the second statement in (c) above is not proved in [6], Lemma 1.3, but
can be derived from the asertions (d) and (e) of the same Lemma 1.3, using the
fact that the norm in X∗ satisfies the Kadec-Klee property. Indeed, in order
to prove that Aλx strongly converges to Aminx as λ ↓ 0, it is enough to show
that any subsequence Aλn

x such that λn ↓ 0 has a further subsequence which
strongly converges to Aminx. Let Aλnx be such that λn ↓ 0. By (b) above there
exists a subsequence Aλnk

x which converges weakly, say to y∗. By condition (e)
of Lemma 3.1 from [6] (x, y∗) ∈ A and hence, again by (b) above, y∗ = Aminx.
Now, using (b) above and the (weak) lower semicontinuity of the norm in X∗

we have

‖Aminx‖ ≥ lim sup
k

‖Aλnk
x‖ ≥ lim inf

k
‖Aλnk

x‖ ≥ ‖Aminx‖.

Therefore, limk ‖Aλnk
x‖ = ‖Aminx‖ and by the Kadec-Klee property we con-

clude that Aλnk
x strongly converges to Aminx.

Let now I := {(λ, µ) ∈ R2 : λ ≥ 0, µ ≥ 0, λ + µ 6= 0}. Given two maximal
monotone operators A,B : X −−→−→ X∗, the idea of the variational sum is to
consider the operators of the type Aλ + Bµ for (λ, µ) ∈ I and to take as a sum
of A and B an appropriate limit of the above perturbations. Here for convention
A0 = A. Observe that, since λ+µ 6= 0, Aλ +Bµ is always a maximal monotone
operator due to a classical result of Browder [7]. Let F be the filter of all
neighborhoods of the zero in I. Then writing limF we will have in mind the
limit when λ → 0, µ → 0, (λ, µ) ∈ I.
A natural idea related to convergence of operators, that has turned out to be
useful in different investigations, is the idea of graph convergence (see Attouch
[2]). This simply means that one identifies the operators with their graphs
in X × X∗ and considers on the latter the Painlevé-Kuratowski convergence
determined by an appropriate convergence in the Cartesian product X ×X∗.
Given a family of operators {Cλ,µ : (λ, µ) ∈ I} between X and X∗, let us remind
the definitions of lower and upper limit of this family in the sense of Painlevé-
Kuratowski, when we consider in X × X∗ the product topology generated by
the strong topologies in X and X∗.
The lower limit of the family {Cλ,µ : (λ, µ) ∈ I} in the sense of Painlevé-
Kuratowski is the following set:

‖·‖×‖·‖−lim infF Cλ,µ := {(x, x∗) ∈ X×X∗ : for every ‖·‖×‖·‖-neighborhood
U of (x, x∗) there exists F ∈ F such that U∩Gr(Cλ,µ) 6= ∅ for every (λ, µ) ∈ F},
while its upper limit in the same sense is:
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‖ · ‖ × ‖ · ‖ − lim supF Cλ,µ := {(x, x∗) ∈ X × X∗ : for every ‖ · ‖ × ‖ · ‖-
neighborhood U of (x, x∗) and for every F ∈ F there exists (λ, µ) ∈ F such that
U ∩Gr(Cλ,µ) 6= ∅}.
The family of monotone operators {Cλ,µ : (λ, µ) ∈ I} graph-converges to the
monotone operator C : X −−→−→ X∗ if

Gr(C) = ‖ · ‖ × ‖ · ‖ − lim inf
F

Cλ,µ = ‖ · ‖ × ‖ · ‖ − lim sup
F

Cλ,µ.

With slight abuse of notation we will omit in the above equality the symbol Gr
and will write C = ‖ · ‖ × ‖ · ‖ − limF Cλ,µ.
It is easily seen that equivalent sequential definitions of the above notions are:
(x, x∗) ∈ ‖·‖×‖·‖−lim infF Cλ,µ exactly when for every sequence {(λn, µn)} ⊂ I
such that λn, µn → 0, there exists a sequence (xn, x∗n) ∈ Cλn,µn such that
(xn, x∗n) → (x, x∗) strongly; (x, x∗) ∈ ‖ · ‖ × ‖ · ‖ − lim supF Cλ,µ iff there exists
a sequence {(λn, µn)} ⊂ I with λn, µn → 0 and such that there is a sequence
(xn, x∗n) ∈ Cλn,µn for which (xn, x∗n) → (x, x∗) strongly.
Using the latter definitions, one can define ‖·‖×seq.−w–(lower, upper) limit of a
family of operators, when one considers on X∗ the sequential weak convergence.
In this case, one gets formally bigger sets as limits. But as we will see below, in
the case of maximal monotone operators we have the same limits.
The next proposition is well-known (see e.g. [3]).

Proposition 4.2 Let X be a reflexive Banach space and C, {Cλ,µ : (λ, µ) ∈ I}
be maximal monotone operators between X and X∗. Then

(a) C = ‖ · ‖ × ‖ · ‖ − limF Cλ,µ if and only if C ⊂ ‖ · ‖ × ‖ · ‖ − lim infF Cλ,µ;

(b) C = ‖·‖×seq.−w−limF Cλ,µ if and only if C ⊂ ‖·‖×seq.−w−lim infF Cλ,µ.

An obvious corollary from the above is:

Corollary 4.3 Let X be a reflexive Banach space and C, {Cλ,µ : (λ, µ) ∈ I} be
maximal monotone operators between X and X∗. Then C = ‖·‖×‖·‖−limF Cλ,µ

implies C = ‖ · ‖ × seq.− w − limF Cλ,µ.

As it is seen from the following proposition, Yosida approximations of a given
maximal monotone operator graph-converge to the operator.

Proposition 4.4 ([2]) Let X be a reflexive Banach space and A : X −−→−→ X∗

be a maximal monotone operator. Then

A = ‖ · ‖ × ‖ · ‖ − lim
λ↓0

Aλ = ‖ · ‖ × seq.− w − lim
λ↓0

Aλ.

Now we pass to the definition of the variational sum. The following notion was
introduced by Attouch, Baillon and Théra in [3] for the setting of Hilbert spaces.
We give here its natural extension for the case of a reflexive Banach space.
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Definition 4.5 Let A and B be two maximal monotone operators in the reflex-
ive Banach space X. The variational sum between A and B denoted by A +

v
B

is the operator between X and X∗ having the following graph:

A +
v

B := ‖ · ‖ × ‖ · ‖ − lim inf
F

(Aλ + Bµ).

As it was mentioned, an equivalent working definition is: x∗ ∈ (A +
v

B)(x)

exactly when for every sequence {(λn, µn)}∞n=1 ⊂ I with (λn, µn) → 0 there are
xn ∈ X and x∗n ∈ X∗ such that xn → x, x∗n → x∗ and x∗n ∈ Aλnxn + Bµnxn

for every n = 1, 2, . . . It is seen that the definition of the variational sum at a
certain point x ∈ X takes into account the behaviour of the operators also at
nearby points. This differs from the definition of extended sum above which
involves the values of the approximations of the operators only at the point x.
Let us prove some properties of the variational sum which are extensions of the
similar ones established in Proposition 4.2, [3], in the setting of Hilbert spaces.

Proposition 4.6 Let X be a reflexive Banach space and A,B : X −−→−→ X∗ be
maximal monotone operators. Then

(1) Dom(A) ∩Dom(B) ⊂ Dom(A +
v

B);

(2) A +
v

B is a monotone operator;

(3) If A +
v

B is a maximal monotone operator then A +
v

B = ‖ · ‖ × ‖ · ‖ −
limF (Aλ + Bµ) = ‖ · ‖ × seq.− w − limF (Aλ + Bµ);

(4) A +
v

B = B +
v

A.

Proof: (1) Let x ∈ Dom(A)∩Dom(B). Then by Proposition 4.1 we have that
Aλx ‖ · ‖-converges to Aminx as λ ↓ 0 and Bµx ‖ · ‖-converges to Bminx as µ ↓ 0.
Hence (x,Aminx + Bminx) ∈ Gr(A +

v
B). (3) follows by Proposition 4.2 and

Corollary 4.3 and (4) is clear by the definition. As to (2), take (x, x∗), (y, y∗) ∈
Gr(A +

v
B). Let (λn, µn) ∈ I be a sequence so that λn, µn → 0 and λn, µn > 0.

By the definition of the variational sum for every n there are couples (xn, x∗n) ∈
Gr(Aλn + Bµn) and (yn, y∗n) ∈ Gr(Aλn + Bµn) such that (xn, x∗n) → (x, x∗) and
(yn, y∗n) → (y, y∗) strongly. Having in mind this (and that λn, µn > 0) we get

〈x− y, x∗ − y∗〉 = limn〈xn − yn, x∗n − y∗n〉
= limn〈xn − yn, Aλnxn + Bµnxn −Aλnyn −Bµnyn〉
≥ 0,

the last inequality being true because of monotonicity of the Yosida approxima-
tions. The proof is completed.

Before passing to the relation between the variational sum and the extended
one, we need an important auxiliary lemma.
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Lemma 4.7 Let A and B be two maximal monotone operators in the reflexive
Banach space X such that Dom(A) ∩ Dom(B) 6= ∅. Suppose that (x, x∗) ∈
Gr(A +

v
B) and that (x, x∗) = ‖ · ‖ × ‖ · ‖ − limλ,µ↓0(xλ,µ, Aλxλ,µ + Bµxλ,µ).

Then ‖ · ‖ − limλ,µ↓0 λAλxλ,µ = 0 and ‖ · ‖ − limλ,µ↓0 µBµxλ,µ = 0.

Proof: We will use a piece of argument from [3]. Let y ∈ Dom(A) ∩ Dom(B)
and take u∗ ∈ Ay and v∗ ∈ By. Let λ, µ > 0 be fixed. Then using (4.5) and the
monotonicity of A and B we have the following inequalities:

〈y − JA
λ xλ,µ, u∗ −Aλxλ,µ〉 ≥ 0

〈y − JB
µ xλ,µ, v∗ −Bµxλ,µ〉 ≥ 0.

Now by (4.3) we get

〈y − xλ,µ + λJ−1(Aλxλ,µ), u∗ −Aλxλ,µ〉 ≥ 0

〈y − xλ,µ + µJ−1(Bµxλ,µ), v∗ −Bµxλ,µ〉 ≥ 0.

After adding these two inequalities we obtain:

〈y − xλ,µ, u∗ + v∗ − (Aλxλ,µ + Bµxλ,µ)〉+
〈λJ−1(Aλxλ,µ), u∗ −Aλxλ,µ〉+ 〈µJ−1(Bµxλ,µ), v∗ −Bµxλ,µ〉 ≥ 0.

Further, we use the definition of the duality mapping to get that:

(4.6)
〈y − xλ,µ, u∗ + v∗ − (Aλxλ,µ + Bµxλ,µ)〉

+λ‖u∗‖ ‖Aλxλ,µ‖+ µ‖v∗‖ ‖Bµxλ,µ‖
≥ λ‖Aλxλ,µ‖2 + µ‖Bµxλ,µ‖2.

Observe that, for fixed y, u∗, v∗, when λ, µ ↓ 0, the first term on the left hand
side of the above inequality is bounded because of the assumptions of the lemma.
Hence one concludes from the last inequality that there is some constant M > 0
so that λ1/2‖Aλxλ,µ‖ < M and µ1/2‖Bµxλ,µ‖ < M for sufficiently small λ, µ >
0, whence we deduce the assertion of the lemma. The proof is completed.

Remark 4.8 Let us stress, in connection with the proof of Theorem 4.12 below,
that the inequality (4.6) above is true for every y ∈ Dom(A) ∩ Dom(B), every
u∗ ∈ Ay, v∗ ∈ By and xλ,µ, λ, µ > 0, without supposing the convergence of
{(xλ,µ, Aλxλ,µ + Bµxλ,µ)}.
Now we pass to the comparison of the variational sum with the usual pointwise
sum and the extended sum.

Theorem 4.9 Let X be a reflexive Banach space and A,B : X −−→−→ X∗ be two
maximal monotone operators with Dom(A)∩Dom(B) 6= ∅ and such that A +

v
B

is a maximal monotone operator. Then for every x ∈ X we have

(A +
ext

B)(x) ⊂ (A +
v

B)(x).
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Proof: Let x∗ ∈ (A +
ext

B)(x) =
⋂
ε>0

Aε(x) + Bε(x) for some x ∈ X. We will

show that

(4.7) 〈x− y, x∗ − y∗〉 ≥ 0 for every (y, y∗) ∈ Gr(A +
v

B).

This, together with maximality of the variational sum, will imply that x∗ ∈
(A +

v
B)(x).

To this end, take an arbitrary (y, y∗) ∈ Gr(A +
v

B) and fix it. Let ε > 0 be

an arbitrary fixed positive number. Since x∗ belongs to the norm-closure of
Aε(x) + Bε(x) there exist u∗ε ∈ Aε(x) and v∗ε ∈ Bε(x) so that

(4.8) ‖x− y‖ ‖x∗ − u∗ε − v∗ε‖ ≤ ε.

Fix these u∗ε and v∗ε . Further, for every n = 1, 2, . . ., take λn, µn > 0 so that
limn λn = limn µn = 0. Since (y, y∗) ∈ Gr(A +

v
B) we get the existence of a

sequence {(yn, y∗n)}∞n=1 such that y = ‖ · ‖ − limn yn, y∗ = ‖ · ‖ − limn y∗n and
y∗n = Aλnyn + Bµnyn. Let M > 0 be an upper bound of the norms of the
sequence {y∗n}∞n=1 and n be so large that:

(4.9)
|〈x− y, y∗n − y∗〉| < ε

‖y − yn‖ <
ε

‖u∗ε + v∗ε‖+ M
.

Finally, using Lemma 4.7 we choose further n to be so large that

(4.10)
‖u∗ε‖ ‖λnAλnyn‖ < ε

‖v∗ε‖ ‖µnBµnyn‖ < ε.

Now, having in mind (4.8) and (4.9), we obtain the following chain of inequali-
ties:

〈x− y, x∗ − y∗〉 = 〈x− y, u∗ε + v∗ε − y∗〉+ 〈x− y, x∗ − u∗ε − v∗ε 〉
≥ 〈x− y, u∗ε + v∗ε − y∗n〉+ 〈x− y, y∗n − y∗〉

−‖x− y‖ ‖x∗ − u∗ε − v∗ε‖
≥ 〈x− yn, u∗ε + v∗ε − y∗n〉

+〈yn − y, u∗ε + v∗ε − y∗n〉 − 2ε
≥ 〈x− yn, u∗ε + v∗ε − y∗n〉

−‖yn − y‖ (‖u∗ε + v∗ε‖+ M)− 2ε
≥ 〈x− yn, u∗ε + v∗ε −Aλnyn −Bµnyn〉 − 3ε.

Next we use (4.3) to continue the above chain of inequalities as follows:

〈x− y, x∗ − y∗〉 ≥ 〈x− yn, u∗ε −Aλnyn〉+ 〈x− yn, v∗ε −Bµnyn〉 − 3ε
= 〈x− JA

λn
yn − λnJ−1(Aλnyn), u∗ε −Aλnyn〉

+〈x− JB
µn

yn − µnJ−1(Bµnyn), v∗ε −Bµnyn〉 − 3ε
= 〈x− JA

λn
yn, u∗ε −Aλnyn〉+ 〈x− JB

µ yn, v∗ε −Bλnyn〉
−λn〈J−1(Aλnyn), u∗ε −Aλnyn〉
−µn〈J−1(Bµnyn), v∗ε −Bµnyn〉 − 3ε.
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Remember now that u∗ε ∈ Aε(x) and v∗ε ∈ Bε(x). This together with (4.5) show
that the first two terms on the right hand side of the last equality in the above
chain are greater or equal to −ε. Hence (using also the definition of J−1 and
(4.10)):

〈x− y, x∗ − y∗〉 ≥ −λn〈J−1(Aλn
yn), u∗ε −Aλn

yn〉
−µn〈J−1(Bµn

yn), v∗ε −Bµn
yn〉 − 5ε

= λn‖Aλnyn‖2 − λn〈J−1(Aλnyn), u∗ε〉
+µn‖Bµn

yn‖2 − µn〈J−1(Bµn
yn), v∗ε 〉 − 5ε

≥ −λn‖Aλnyn‖ ‖u∗ε‖ − µn‖Bµnyn‖ ‖v∗ε‖ − 5ε
≥ −7ε.

Consequently, we have proved that

〈x− y, x∗ − y∗〉 ≥ −7ε,

and since ε > 0 was arbitrary, we conclude that

〈x− y, x∗ − y∗〉 ≥ 0,

i.e. (4.7) is true. The proof is completed.

The following corollary is immediate.

Corollary 4.10 Let A, B be two maximal monotone operators in the reflexive
Banach space X such that A +

v
B is a maximal monotone operator. Then

A + B ⊂ A +
v

B.

On the other hand, the inequality (4.7) was proved for arbitrary pairs from
A +

v
B and A +

ext
B. Therefore, we have the following theorem:

Theorem 4.11 Let A, B be two maximal monotone operators in the reflexive
Banach space X with Dom(A)∩Dom(B) 6= ∅ and such that A +

ext
B is a max-

imal monotone operator. Then A +
v

B ⊂ A +
ext

B.

Finally, we prove that when A + B or A + B is maximal, then all the three
concepts of sum coincide. In particular, with this we extend for reflexive spaces
Theorem 6.1 from [3]. Namely, we have:

Theorem 4.12 Let X be a reflexive Banach space and A,B : X −−→−→ X∗ be two
maximal monotone operators such that A + B is a maximal monotone operator.
Then

A + B = A +
ext

B = A +
v

B.
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Proof: Since A + B is maximal monotone, the conclusion of the theorem will
follow by Theorem 4.9 if we prove the inclusion A + B ⊂ A +

v
B. For the

latter, we will develop further an argument from the setting of Hilbert spaces
used in [3].
Let x∗ ∈ A + B(x) for some x ∈ X. Take a sequence {(λn, µn)}∞n=1 ⊂ I, so
that (λn, µn) → (0, 0). We will consider first the case λn, µn > 0 for every
n = 1, 2, . . .
For any n = 1, 2, . . ., let xn be, by virtue of the result of Rockafellar above, the
unique solution of the equality:

(4.11) Jx + x∗ = Jxn + Aλn
xn + Bµn

xn, n = 1, 2, . . .

Take arbitrary y ∈ Dom(A) ∩ Dom(B), u∗ ∈ Ay and v∗ ∈ By. As it was
mentioned in Remark 4.8, the inequality (4.6) is true if we put in the place of
xλ,µ the points xn. Hence, using (4.6), (4.11) and the definition of the duality
mapping we have for every n = 1, 2, . . .

(4.12)
〈y − xn, u∗ + v∗ − Jx− x∗〉+ 〈y, Jxn〉

+λn‖u∗‖ ‖Aλnxn‖+ µn‖v∗‖ ‖Bµnxn‖
≥ λn‖Aλnxn‖2 + µn‖Bµnxn‖2 + ‖xn‖2.

Using the last inequality, one can see that there exists a constant M > 0 so that
‖xn‖ ≤ M ,

√
λn ‖Aλnxn‖ ≤ M and

√
µn ‖Bµnxn‖ ≤ M for every n = 1, 2, . . .

In particular, limn λn‖Aλnxn‖ = limn µn‖Bµnxn‖ = 0.
Since {xn} is bounded, it has at least one weak cluster point, say x̄. Now, since
for every n, ‖xn‖2 = 〈xn, Jxn〉 and since by the monotonicity of J we have
〈xn − y, Jxn〉 ≥ 〈xn − y, Jy〉, we obtain from (4.12) that for every n = 1, 2, . . .

〈y − xn, u∗ + v∗ − Jx− x∗〉+
+λn‖u∗‖ ‖Aλnxn‖+ µn‖v∗‖ ‖Bµnxn‖

≥ 〈xn − y, Jy〉.
¿From here, taking a subsequence of {xn} which weakly converges to x̄ and
passing to the limit we get:

〈y − x̄, u∗ + v∗ − Jx− x∗〉 ≥ 〈x̄− y, Jy〉,
or equivalently,

〈y − x̄, Jy + u∗ + v∗ − Jx− x∗〉 ≥ 0.

Since u∗ ∈ Ay and v∗ ∈ By were arbitrary, we conclude that

〈y − x̄, Jy + w∗ − Jx− x∗〉 ≥ 0

for every w∗ ∈ A + B(y). Now, remember that A + B was maximal, hence
the same is true for J + A + B. Therefore, since y was also arbitrary, the last
inequality entails that Jx + x∗ ∈ Jx̄ + A + B(x̄). Finaly, since x∗ ∈ A + B(x),
the result of Rockafellar above implies that x̄ = x, from where we conclude that
the whole sequence {xn} converges weakly to x.
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Further, we show that ‖xn‖ → ‖x‖. First, since J is the subdifferential of the
function (1/2)‖x‖2 we have for every n = 1, 2, . . .

〈x, Jxn〉 ≤ 〈xn, Jxn〉+
1
2
‖x‖2 − 1

2
‖xn‖2 =

1
2
‖x‖2 +

1
2
‖xn‖2.

Whence, using (4.12) with y = x we easily get that lim supn ‖xn‖2 ≤ ‖x‖2.
Therefore, using this and also the weak lower semicontinuity of the norm in X
we obtain:

‖x‖2 ≤ lim inf
n

‖xn‖2 ≤ lim sup
n

‖xn‖2 ≤ ‖x‖2,

i.e. ‖xn‖2 → ‖x‖2, whence ‖xn‖ → ‖x‖ and by the Kadec-Klee property we
obtain that {xn} converges to x strongly. By (4.11) and the norm-to-norm
continuity of J we deduce that Aλnxn + Bµnxn converges strongly to x∗.
In order to conclude that (x, x∗) ∈ A +

v
B, it remains also to consider operators

of the type Aλn + B or A + Bµn . But in this last case one uses the well-known
results of Brezis, Crandall and Pazy [6], Theorem 2.1, to see that (x, x∗) is a
norm-limit of a sequence from Aλn + B or A + Bµn . The proof is completed.

The following theorem is an immediate corollary from the above theorem:

Theorem 4.13 Let X be a reflexive Banach space and A,B : X −−→−→ X∗ be two
maximal monotone operators such that A+B is a maximal monotone operator.
Then

A + B = A +
ext

B = A +
v

B.

5 Lower semicontinuous convex functions and
sums of operators

In this section we see that the variational sum keeps another important property
from the original setting of Hilbert spaces–namely, when the case of subdiffer-
entials of convex functions is considered, we have that the subdifferential of the
sum of two convex proper lower semicontinuous functions is equal to the vari-
ational sum of their subdifferentials. As a consequence we get that in the case
of subdifferentials the extended and the variational sum are the same.
Let f : X → R∪{+∞} be a proper lower semicontinuous convex function. The
well-known Moreau-Yosida regularization of f of order λ > 0 is given by the
formula:

fλ(x) := inf
y∈X

{f(y) +
1
2λ
‖y − x‖2}, x ∈ X.

It is also well-known that for a given λ > 0 the relation between the subdif-
ferential of fλ and the Yosida approximation of this subdifferential of order λ
considered in the previous section is:

(5.1) ∂(fλ) = (∂f)λ.
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Before giving the next result, let us remind the definition of Mosco convergence
of convex functions ([20]): It is said that the sequence {fn}∞n=1 of proper lower
semicontinuous convex functions in X Mosco-converges to f0 if for every x ∈ X
the following two conditions are fulfilled:

(i) for every sequence {xn} ⊂ X which converges weakly to x we have f(x) ≤
lim infn→∞ fn(xn);

(ii) there exists a sequence {xn} ⊂ X which strongly converges to x and such
that lim supn→∞ fn(xn) ≤ f(x).

The following fact was observed in [3], Theorem 7.2, for the setting of Hilbert
spaces. We give its natural extension for the case of reflexive spaces we consider.
In this last setting, the result has also been obtained directly by Jourani [15],
using Ekeland variational principle. Other sequential formulae for the subdiffer-
ential of the sum of two convex functions can be found in the papers of Thibault
[29, 32]. For similar results in the case of a general Banach space the reader
is refered to the paper of Hiriart-Urruty and Phelps [12], the survey [13], the
papers of Penot [23], Thibault [30, 31] and of the authors [26].

Theorem 5.1 Let f, g : X → R ∪ {+∞} be two proper convex lower semi-
continuous functions in the reflexive Banach space X such that domf ∩domg 6=
∅. Then

∂(f + g) = ∂f +
v

∂g.

Moreover,
∂(f + g) = ‖ · ‖ × ‖ · ‖ − lim

F
(∂fλ + ∂gµ).

Proof: Since domf ∩ domg 6= ∅ we see that ∂(f + g) is a maximal monotone
operator. The function fλ for λ > 0 (or gµ for µ > 0) is everywhere defined and
continuous. Hence, by the classical result of Moreau-Rockafellar ∂fλ + ∂gµ =
∂(fλ + gµ) for every (λ, µ) ∈ I. Therefore, by (5.1) we conclude that

(5.2) (∂f)λ + (∂g)µ = ∂(fλ + gµ) for all (λ, µ) ∈ I.

On the other hand, by a result from [5], Theorem 3.20, we deduce that the
family {fλ + gµ : (λ, µ) ∈ I} Mosco converges to f + g as (λ, µ) converges to
(0, 0). Now, an already classical result of Attouch [1] allows to derive from the
latter that ‖ · ‖ × ‖ · ‖ − limF ∂(fλ + gµ) = ∂(f + g). It remains to take into
account (5.2) above and the definition of the variational sum.

The following is an immediate corollary from the above theorem, Theorem 4.9
and the formula of Hiriart-Urruty and Phelps (Theorem 2.1). It shows that in
the case of subdifferentials of convex functions the variational and the extended
sum coincide.

Corollary 5.2 Let f, g : X → R ∪ {+∞} be two proper convex and lower
semicontinuous functions in the reflexive Banach space X such that domf ∩
domg 6= ∅. Then:

∂(f + g) = ∂f +
v

∂g = ∂f +
ext

∂g.
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In fact, the subdifferential of the sum of two convex proper lower semicontinuous
functions is equal to the extended sum of their subdifferentials in the more
general setting of an arbitrary Banach space as shown in our paper [26].
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d’Etat, Université Paris VI, 1986).
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