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cLACO UMR 6090, Université de Limoges 12 Avenue A Thomas, 87060 Limoges, France

Received 30 October 2001; revised 8 July 2002; accepted 12 October 2002

Abstract

This paper proposes a regularized notion of a composition of a monotone operator with a

linear mapping. This new concept, called variational composition, can be shown to be

maximal monotone in many cases where the usual composition is not. The two notions

coincide, however, whenever the latter is maximal monotone. The utility of the variational

composition is demonstrated by applications to subdifferential calculus, theory of measurable

multifunctions, and elliptic PDEs with singular coefficients.
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1. Introduction

Throughout this paper, U and X will be real reflexive Banach spaces and Un and

Xn their duals, unless otherwise specified. Recall that a set-valued mapping

T : U4Un is called monotone if

un

1ATðu1Þ; un

2ATðu2Þ ) /u1 � u2; u
n

1 � un

2SX0;

where /�; �S denotes the pairing between U and Un: If a monotone mapping cannot

be properly extended to another monotone mapping from U to Un; it is called
maximal monotone. An important example is the subdifferential

@f ðuÞ ¼ funAUn j f ðvÞXf ðuÞ þ/v � u; unS 8vAUg; uAU ;

of a convex function f : U-R,fþNg: It has been shown by Rockafellar [30], in the

Banach space setting, that @f : U4Un is maximal monotone, whenever f is proper
and lower semicontinuous, that is, when the epigraph epi f ¼ fðu; aÞAU �
R j f ðuÞpag is nonempty and closed.

Let A : X-U be linear and continuous with adjoint An : Un-Xn: It is easily

checked that the composite mapping AnTA : X4X n; given by AnTAðxÞ :¼
,fAnun j unATðAxÞg; is monotone. This kind of operators appear, for example,
in partial differential equations in divergence form, and they also contain the
pointwise sum of two or more operators as a special case. Without further

conditions, however, AnTA may fail to be maximal monotone; see [22,28,35] for

sufficient conditions. It is then a natural idea to try to approximate AnTA by a

mapping which is guaranteed to be maximal monotone. A good candidate is AnTlA;
where Tl is the Yosida regularization of T with parameter l > 0: Indeed, since (after
renorming of the space, if necessary) Tl is a monotone continuous mapping, the

same is then true of AnTlA; which guarantees the maximality. If one now takes the

limit of AnTlA as lr0; in the sense of graphical convergence, it turns out that one
obtains a mapping that is more likely to be maximal monotone than the pointwise

composition AnTA: This limit mapping, denoted here ðAnTAÞv (to be given a precise

definition in the next section) is what we call the variational composition of A and T :
The purpose of this paper is to study the relation between AnTA and ðAnTAÞv; to

give sufficient conditions for maximality of ðAnTAÞv; and to give applications of this

new concept.
Variational composition is a natural extension of the idea presented in Attouch

et al. [3], where the notion of a variational sum was introduced. Their motivation was
to define a new notion of a sum of two mappings, that is more likely to be maximal
monotone than the usual pointwise sum. They studied the general properties of
variational sums and showed how they arise quite naturally in practice. More
applications and further study of this concept can be found in [4,14,26]. Note that if

T1 and T2 are set-valued mappings from X to Xn; their pointwise sum can be

expressed in the composite form AnTA; by defining U ¼ X � X ; Ax ¼ ðx; xÞ; and
Tðx1; x2Þ ¼ T1ðx1Þ � T2ðx2Þ: Indeed, then Anðxn

1 ; xn
2Þ ¼ xn

1 þ xn
2 ; and so AnTAðxÞ ¼
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T1ðxÞ þ T2ðxÞ: This fact will allow us to draw connections between the variational
composition and the variational sum.

The applications of the variational composition are similar to those of the
variational sum. Whereas the variational sum gave an expression for the
subdifferential of the sum of two convex functions [3, Theorem 7.2], the variational
composition gives us a formula for the subdifferential of the composition f 3A of a
linear continuous mapping A : X-U and a convex function f on U (Theorem 4.1).
Much as [3, Theorem 7.2] was used to study the Schrödinger equation with singular
potentials, we use our Theorem 4.1 to study elliptic PDEs with singular coefficients.
In particular, we obtain an existence result for linear elliptic PDEs in divergence
form in the case of locally integrable (instead of the usual essentially bounded)
coefficients.

The precise definition of the variational composition will be given in the next
section, after recalling some basic facts about monotone operators and their
graphical convergence. In Section 3, we will study the relation between the pointwise
and the variational compositions. Section 4 studies the special case of subdifferential
mappings, and we obtain a new expression for the subdifferential of the composition
of a convex function with a linear mapping. The last two sections are devoted to
applications. In Section 5, we derive conditions for measurability of a family of
composite mappings, and in Section 6, we use the variational composition to
compute the subdifferential of an energy function associated with a partial
differential equation with singular coefficients.

2. Preliminaries

We begin with some notations and basic facts about monotone operators. For
more comprehensive introduction to the subject, see for example [11,24,38] or [35,

Chapter 12]. The inverse T�1 : Un4U of a set-valued mapping T : U4Un is given

by T�1ðunÞ ¼ fuAU j unATðuÞg: The graph of T is the set gph T ¼ fðu; unÞAU �
Un j unATðuÞg; and the domain dom T and the range rge T of T are defined as the

projections of gph T to U and Un; respectively.
For simplicity of notation, the norms on U and Un will both be denoted by jj � jj: It

will be clear from the context which norm is meant. The duality mapping is

JU : U4Un; defined by JU ¼ @f; where fðuÞ ¼ 1

2
jjujj2; uAU : This is a maximal

monotone mapping with dom JU ¼ U ; and it can be expressed as

JUðuÞ ¼ funAUn j/u; unS ¼ jjujj2 ¼ jjunjj2g; uAU :

Furthermore, we have J�1
U ¼ JUn ; the duality mapping on Un associated with the

dual norm. Due to a well-known renorming result of Troyanski (see e.g. [15]) we can

(and will) assume that the norms on U and Un are locally uniformly rotund. This
implies that these norms satisfy the Kadec–Klee property:
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un-u weakly and jjunjj-jjujj imply un-u strongly;

and then the duality mappings JU and J�1
U are single valued and norm-to-norm

continuous.
As usual, the following Minty–Rockafellar criterion for maximal monotonicity

will be crucial; see [29, Proposition 1].

Theorem 2.1. A monotone mapping T : U4Un is maximal if and only if for every

l > 0; rgeðT þ lJUÞ ¼ Un: In this case, the inverse ðT þ lJUÞ�1
is a single-valued

maximal monotone operator which is norm to weak continuous.

It follows from this and the properties of the chosen norms that, if T is maximal
monotone, then for any l > 0; the Yosida regularization

Tl ¼ ðT�1 þ lJ�1
U Þ�1

of T is single valued, strongly continuous and maximal monotone with dom Tl ¼ U ;
see for example [2, Proposition 3.56]. The following is well known (see for example
[5, p. 63]), but for the convenience of the reader, we provide the simple proof.

Corollary 2.1. Let T be maximal monotone.

(a) We have unArge T if and only if the family ful j l > 0g of solutions to

TðuÞ þ lJUðuÞ U un

remains bounded as lr0: When this happens, jjuljjpjj %ujj for all l > 0; where %u is

the minimum norm solution of TðuÞ U un; and as lr0; ul converges strongly to %u:
(b) We have uAdom T if and only if the family fTlðuÞ j l > 0g remains bounded as

lr0: When this happens, jjTlðuÞjjpjj %unjj for all l > 0; where %un is the minimum

norm solution of TðuÞ U un; and as lr0; TlðuÞ converges strongly to %un:

Proof. Part (a): By Theorem 2.1, the point ul is uniquely defined for every l > 0: If
ful j l > 0g is bounded, it has a weak cluster point %u; and lJUðulÞ-0 strongly. Since

un � lJUðulÞATðulÞ; we must have unATð %uÞ; by the maximal monotonicity of T :

This proves the ‘‘if’’ part. Now let %u be the minimum norm element of T�1ðunÞ;
which exists and is unique, since T�1ðunÞ is closed and convex by the maximal
monotonicity of T : Then, by monotonicity of T ;

0p/ul � %u; un � JUðulÞ � unSp� jjuljj2 þ jj %ujj jjuljj;

which implies jjuljjpjj %ujj; proving the ‘‘only if’’ part. Combining the above
arguments, we see that, whenever fulg is bounded, it satisfies jjuljjpjj %ujj and all
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its weak cluster points are in T�1ðunÞ: From this it follows that the whole sequence
fulgmust converge weakly to %u; and by the Kadec–Klee property, the convergence is

strong. Part (b) follows by applying (a) to T�1: &

In order to give the precise definition of variational composition, we need to recall

the notion of graphical convergence of a family fCl : U4Ungl>0 of operators. The

idea of graphical convergence is to identify the operators with their graphs and to
consider Painlevé–Kuratowski convergence on them. We will denote by

g-lim inflr0 Cl the mapping whose graph is the set of points ðu; unÞ such that for

every sequence lnr0 there is a sequence ðun; un
nÞ-ðu; unÞ with un

nACln
ðunÞ: Similarly,

g-lim suplr0 Cl is the mapping whose graph is the set of points ðu; unÞ such that there

exist sequences lnr0 and ðun; un
nÞ-ðu; unÞ with un

nACln
ðunÞ: If g-lim inflr0 Cl ¼

g-lim suplr0 Cl; one says that the family fClgl>0 graph-converges to the common

limit which is denoted by g-limlr0 Cl: For reference on the general theory of
convergence of sets and graph-convergence of operators, see for example [2,9,35].

We will need the following facts from Attouch [2, Chapter 3].

Theorem 2.2. Let fClgl>0 and C be maximal monotone mappings. Then

(a) g-lim inflr0 Cl is monotone;
(b) g-limlr0 Cl ¼ C if and only if g-lim inflr0 Cl*C;
(c) g-limlr0 Cl ¼ C if and only if

lim
lr0

ðCl þ JUÞ�1ðunÞ ¼ ðC þ JUÞ�1ðunÞ 8unAUn:

Now, let X ;X n be another dual pair of reflexive Banach spaces, endowed with
locally uniformly rotund norms, and let A : X-U be linear and continuous. Since

the Yosida regularization Tl : U4Un of a maximal monotone T is single valued and

continuous for every l > 0; so is the composition AnTlA : X4X n: From the

monotonicity of Tl it then follows that AnTlA is maximal monotone for every l > 0;
see for example [38]. This, and the fact that g-limlr0 Tl ¼ T ; suggest the following.

Definition 2.1. Let A : X-U be continuous and linear, and let T : U4Un be

maximal monotone. The variational composition ðAnTAÞv : X4Xn of A and T is the

set-valued mapping

ðAnTAÞv ¼ g- lim inf
lr0

AnTlA:
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By Theorem 2.2(a), ðAnTAÞv is monotone, and by (b),

ðAnTAÞv ¼ g-lim
lr0

AnTlA;

whenever ðAnTAÞv is maximal monotone.

The idea of replacing AnTA by AnTlA; and taking the limit as lr0; has been
already used (in the finite-dimensional setting) in the proof of [35, Theorem 12.43],
where a sufficient constraint qualification condition was found in order to assure that

the family fAnTlAg graph-converges to AnTA (which in this case guarantees the

maximality of AnTA).
The variational composition is closely related to the variational sum of two

monotone mappings T1 and T2 from X to Xn defined in [3]:

ðT1 þ
v

T2Þ :¼ g-lim inf
l;mr0; lma0

ðT1
l þ T2

mÞ: ð1Þ

If in Definition 2.1, we let U ¼ X � X ; Ax ¼ ðx; xÞ; and Tðx1; x2Þ ¼ T1ðx1Þ �
T2ðx2Þ; we obtain

ðAnTAÞv ¼ g-lim inf
lr0

ðT1
l þ T2

l Þ;

so that gphðT1 þv T2ÞCgphðAnTAÞv: Thus, ðAnTAÞv equals T1 þv T2; whenever the
latter is maximal monotone (which is the interesting case).

3. Comparison of the pointwise and the variational composition

The following simple inequality turns out to be useful in comparing AnTA and

ðAnTAÞv:

Lemma 3.1. If T is monotone, then unATðuÞ and vn ¼ TlðvÞ imply

/u � v; un � vnSX� l
4
jjunjj2:

Proof. Since vn ¼ TlðvÞ means that v � lJ�1
U ðvnÞAT�1ðvnÞ; the monotonicity of T

implies /u � v þ lJ�1
U ðvnÞ; un � vnSX0; and so,
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/u � v; un � vnSX l/J�1
U ðvnÞ; vn � unS

X lðjjvnjj2 � jjunjj jjvnjjÞ

X l min
aAR

fa2 � jjunjjag ¼ �l
jjunjj2

4
: &

In general, we cannot guarantee that gphðAnTAÞCgphðAnTAÞv; but the following
is true.

Proposition 3.1. Let A : X-U be continuous and linear, and let T : U4Un be

maximal monotone. Then domðAnTAÞCdomðAnTAÞv; and if ðAnTAÞv is maximal

monotone, then gphðAnTAÞCgphðAnTAÞv:

Proof. If x0AdomðAnTAÞ; then Ax0Adom T ; so by Corollary 2.1(b), TlðAx0Þ
converges strongly to the minimum norm element of TðAx0Þ; say un

0: Thus, by

continuity of An; ðAnTlAÞðx0Þ converges strongly to Anun
0: Then, by definition,

Anun
0AðAnTAÞvðx0Þ; so x0AdomðAnTAÞv:

To prove the second part, let l > 0; ðx; xnÞAgphðAnTAÞ and

ðxl; xn
lÞAgphðAnTlAÞ be arbitrary, and let unATðAxÞ and un

lATlðAxlÞ be such that

xn ¼ Anun and xn
l ¼ Anun

l : Then by Lemma 3.1,

/x � xl; xn � xn

lS ¼/x � xl;Anun � Anun

lS

¼/Ax � Axl; un � un

lSX� l
4
jjunjj2:

Since any point ðx̃; x̃nÞAgphðAnTAÞv can be written as a limit of ðxl; xn
lÞ as lr0;

we must have

/x � x̃; xn � x̃nSX0 8ðx̃; x̃nÞAgphðAnTAÞv:

Since ðx; xnÞAgphðAnTAÞ was arbitrary, this implies

gphðAnTAÞCgphðAnTAÞv;

when ðAnTAÞv is maximal monotone. &

We next consider a particular case where gphðAnTAÞCgphðAnTAÞv does hold,

and the variational composition can be seen to have a regularizing property. Our
approach is obtained by modifying the one used in [3,26].

Given a set-valued mapping S : U4Un; we define %S : U4Un by gph %S ¼
clðgph SÞ: Obviously, if S is monotone, the same is true of %S:
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Theorem 3.1. If the mapping AnTA is maximal monotone, then

ðAnTAÞv ¼ AnTA:

Proof. Let ynAXn be arbitrary. For l > 0 denote by xl the unique solution of the
equation

JX ðxÞ þ ðAnTlAÞðxÞ ¼ yn:

By Theorem 2.2(c), it suffices to show that as lr0; xl converges strongly to the
unique solution of

JX ðxÞ þ ðAnTAÞðxÞ U yn:

Let ðx; xnÞAgphðAnTAÞ be arbitrary, and let unATðAxÞ be such that xn ¼ Anun:
By Lemma 3.1,

�l
4
jjunjj2p/Ax � Axl; un � TlðAxlÞS ¼ /x � xl;Anun � ðAnTlAÞðxlÞS;

so by the definition of xl;

/x � xl; xn þ JX ðxlÞ � ynSX� l
4
jjunjj2: ð2Þ

This implies in particular that

�jjxljj2 � ðjjxjj þ jjxn � ynjjÞjjxljjX�/x; xn � ynS� l
4
jjunjj2;

so fxlg must be bounded, and it has a weak cluster point %x:
By monotonicity of JX ; /x � xl; JX ðxÞSX/x � xl; JX ðxlÞS; so (2) gives

/x � xl; xn þ JX ðxÞ � ynSX� l
4
jjunjj2:

Passing to the limit,

/x � %x; xn þ JX ðxÞ � ynSX0:

Since ðx; xnÞAgphðAnTAÞ was arbitrary, this implies

/x � %x; xn þ JX ðxÞ � ynSX0 8ðx; xnÞAgph ðAnTAÞ:

Because ðAnTAÞ is maximal monotone, the same is true of JX þ ðAnTAÞ; so we must

have ð %x; ynÞAgphðJX þ ðAnTAÞÞ; or in other words,

JX ð %xÞ þ ðAnTAÞð %xÞ U yn: ð3Þ
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Since the latter inclusion determines the point %x uniquely, the whole family fxlg
must converge weakly to %x:

Going back to (2), and using the inequality /JX ðxlÞ; xSp1
2
jjxjj2 þ 1

2
jjxljj2; we get

1

2
jjxljj2p

1

2
jjxjj2 þ/x � xl;x

n � ynSþ l
4
jjunjj2;

from which

lim sup
lr0

jjxljj2pjjxjj2 þ 2/x � %x; xn � ynS:

Since ðx; xnÞAgphðAnTAÞ was arbitrary, and since by (3), ð %x; yn �
JX ð %xÞÞAcl gphðAnTAÞ; we must have

lim sup
lr0

jjxljj2pjj %xjj2;

so by the Kadec–Klee property, xl- %x strongly. &

The following immediate consequence can be viewed as a consistency result for

ðAnTAÞv:

Corollary 3.1. If the mapping AnTA is maximal monotone, then

ðAnTAÞv ¼ AnTA:

Sufficient conditions for maximal monotonicity of the pointwise composition

AnTA have been given in [22,28,33]. In particular, AnTA is maximal monotone
whenever 0Ariðrge A � dom TÞ [22, Corollary 4.4]. Here ‘‘ri’’ means the relative

interior of a set.

For any number m of monotone mappings T1;y;Tm from X to Xn; one could

define a ‘‘variational sum’’ by g-lim inflr0 ðT1
l þ?þ Tm

l Þ:

Corollary 3.2. Let T1;y;Tm be maximal monotone mappings from X to X n: If the

mapping T1 þ?þ Tm is maximal monotone, then

g-lim
lr0

ðT1
l þ?þ Tm

l Þ ¼ T1 þ?þ Tm:

Proof. Let U be the space X �?� X equipped with the norm jjðx1;y; xmÞjj2U ¼
jjx1jj2X þ?þ jjxmjj2X ; so that JU ¼ ðJX ;y; JX Þ: If we define Tðx1;y; xmÞ ¼
T1ðx1Þ �?� TmðxmÞ; and Ax ¼ ðx;y;xÞ; then Tl ¼ T1

l �?� Tm
l ; and
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AnTA ¼ T1 þ?þ Tm;

AnTlA ¼ T1
l þ?þ Tm

l :

The result thus follows from Theorem 3.1. &

Corollary 3.2 is reminiscent of [3, Theorem 6.1], which states that the variational
sum of two maximal monotone mappings equals the closure of their pointwise sum,
whenever the latter is maximal monotone.

4. A subdifferential chain rule without constraint qualifications

If f : U-R,fþNg is convex and lower semicontinuous, and A : X-U is
continuous and linear, then the composition f 3A is also convex and lower
semicontinuous. Furthermore, by the chain rule of convex analysis,

@ðf 3AÞ*An@fA;

where equality holds whenever the ‘‘constraint qualification’’ 0Aintðrge A � dom f Þ
is satisfied [32] (here dom f ¼ fuAU j f ðuÞoþNg as usual). Without the constraint
qualification, however, the inclusion may be strict. The purpose of this section is to
give a more general formula for @ðf 3AÞ in terms of the variational composition.

For l > 0; the Moreau–Yosida regularization fl of f is the function defined by

flðuÞ ¼ inf
vAU

f ðvÞ þ 1

2l
jjv � ujj2

� �
:

It is well known (see for example [8]) that fl is a convex C1-function on U ; with

rfl ¼ ð@f Þl:

Recall that a sequence ffngNn¼1 of proper lower semicontinuous convex functions is

said to Mosco-converge [19] to f ; denoted by fn -
M f ; if for every uAU the following

two conditions are fulfilled:

(i) if un-u weakly, then f ðuÞplim infn-N fnðunÞ;
(ii) there is a strongly converging sequence un-u; with

lim sup
n-N

fnðunÞpf ðuÞ:

By the well-known result of Attouch [2, Theorem 3.66], we have fn -
M f if and only

if g-lim @fn ¼ @f and a certain normalization condition holds.
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Theorem 4.1. Let A : X-U be linear and continuous, and let f be a proper lower

semicontinuous convex function on U : If domðf 3AÞa|; then

@ðf 3AÞ ¼ ðAn@fAÞv:

Proof. By definition,

ðAn@fAÞv ¼ g-lim infðAnð@f ÞlAÞ

¼ g-lim infðAnrflAÞ ¼ g-lim infðrðfl3AÞÞ;

where the last equality follows from the chain rule which applies by continuity of fl:
As lr0; the functions fl3A monotonically increase to f 3A; which by Attouch [2,

Theorem 2.40] implies fl3A-M f 3A: Then by the Attouch criterion,

g-limrðfl3AÞ ¼ @ðf 3AÞ:

This completes the proof. &

Theorem 4.1 gives an exact expression for @ðf 3AÞ; but it may be harder to evaluate

than the pointwise composition An@fA: In Section 6, we give an example of a
problem for which the constraint qualification 0Aintðrge A � dom TÞ fails, but
where the variational composition can be computed. Theorem 4.1 resembles the
results in [16–18,23,26,27,36,37], where subdifferential rules without constraint
qualifications were given, e.g. in terms of limits of epsilon-subdifferentials and
epsilon enlargements of subdifferentials.

5. Measurability of composite mappings

In this section, we will use the variational composition to study measurability
properties of parameterized families of composite mappings. Throughout the
section, O denotes a measurable space, and all the other spaces are separable Hilbert
spaces.

Given a family of set-valued mappings fTðoÞ : H4HgoAO; define the mapping

L2½T � : L2ðO;HÞ4L2ðO;HÞ (the canonical extension of T) by

L2½T �ðvÞ ¼ fvnAL2ðO;HÞ j vnðoÞATðoÞðvðoÞÞ a:e: on Og:

In this context, the measurability properties of the mapping o/gph TðoÞ are
crucial.

Definition 5.1. A set-valued mapping S :O4H is measurable if for any open CCH;
the set
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S�1ðCÞ ¼ foAO j SðoÞ-Ca|g

is measurable. A family of set-valued mappings fTðoÞ : H4HgoAO is measurable if

the set-valued mapping o/gph TðoÞ is measurable.

Measurability of set-valued mappings has been studied extensively by many
authors; see for example [1,12,33,35, Chapter 14]. It is particularly important when
studying monotone mappings. If TðoÞ is monotone a.e. on O; L2½T � is monotone.
The following result (see for example [11, Example 2.3.3]) gives a simple condition
for maximality.

Theorem 5.1. Let fTðoÞgoAO be a measurable family of maximal monotone mappings

on H: If domL2½T �a| then L2½T � is maximal monotone.

The above result is closely related to the theory of convex normal integrands [31].
A function f on O� H is said to be a convex normal integrand if the mapping
o/epi f ðo; �Þ is measurable with closed and convex values. If f is a convex normal
integrand, then the integral functional

If ðuÞ ¼
R
O f ðo; uðoÞÞ do if f ð�; uð�ÞÞAL1ðOÞ;
þN otherwise;

(

is a convex and lower semicontinuous function on L2ðO;HÞ: By Attouch [1,
Theorem 2.3], f is a convex normal integrand if and only if f@f ðo; �ÞgoAO is a

measurable family of maximal monotone mappings on H; and there is a measurable
function u :O/H such that f ð�; uð�ÞÞ is measurable. The formula

@If ¼ L2½@f �

is valid for any convex normal integrand provided domL2½@f �a| [33]. This can also
be seen as a consequence of Theorem 5.1 and the easily verified fact that
@If *L2½@f �:

It is clear that L2½T ��1 ¼ L2½T�1�; where T�1ðoÞ ¼ TðoÞ�1; and that

L2½S� þL2½T �CL2½S þ T �; ð4Þ

where ðS þ TÞðoÞ ¼ SðoÞ þ TðoÞ: Equality holds in (4), if TðoÞ and SðoÞ are
monotone and L2½S� þL2½T � is maximal monotone. Since the identity mapping on

L2ðO;HÞ can be written as JL2ðO;HÞ ¼ L2½JH �; we have in particular that

L2½T �l ¼ L2½Tl�;

where TlðoÞ ¼ TðoÞl; provided L2½T � is maximal monotone (see Theorem 5.1).

The following can be found in [1].
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Theorem 5.2. Let ðO; mÞ be a positive s-finite complete measure space, and consider a

family fTðoÞgoAO of maximal monotone mappings in H: The following are equivalent:

(a) fTðoÞgoAO is measurable;

(b) Tð�ÞlðvÞ is measurable for every vAH and l > 0;
(c) There are measurable families fTnðoÞgoAO; n ¼ 1; 2;y; of maximal monotone

mappings such that

TðoÞ ¼ g-lim
n-N

TnðoÞ a:e: on O:

These conditions hold if, in particular,
(d) Tð�ÞðvÞ is measurable for each vAH; and TðoÞð�Þ is continuous for each oAO

(such a T is called a Carathéodory mapping).

Combining the measurability criteria of Theorem 5.2 with the general properties
of variational composition, we obtain the following.

Theorem 5.3. Let ðO; mÞ be a positive s-finite complete measure space, let fTðoÞgoAO
be a measurable family of maximal monotone mappings on U ; and let A be a

Carathéodory mapping with AðoÞð�Þ : X-U linear for every oAO:

(a) If the mapping AðoÞnTðoÞAðoÞ is maximal monotone a.e. on O; then

fAðoÞnTðoÞAðoÞgoAO

is a measurable family.
(b) If TðoÞ ¼ @f ðo; �Þ for a convex normal integrand f ; that satisfies

dom f ðo; �Þ3AðoÞa| a.e. on O; then

f@ðf ðo; �Þ3AðoÞÞgoAO

is a measurable family, and f ðo; �Þ3AðoÞ is a convex normal integrand.

Proof. By Theorem 5.2, the mapping Tl is Carathéodory for every l > 0: Since A is

Carathéodory, the same is then true of An; and hence, of the family

fAðoÞnTðoÞlAðoÞgoAO: Part (a) now follows by using criteria (d) and (c) of

Theorem 5.2 with Theorem 3.1. The first half of part (b) follows similarly through
Theorem 4.1. The claim that f ðo; �Þ3AðoÞ is a normal convex integrand, follows from
[1, Theorem 2.3], since o/f ðo;AðoÞxðoÞÞ is measurable for any measurable x; by
the fact that f is a convex normal integrand. &
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In the case U ¼ X � X ; TðoÞðx1; x2Þ ¼ T1ðoÞðx1Þ � T2ðoÞðx2Þ; and AðoÞðxÞ ¼
ðx; xÞ; we recover the following result due to Attouch.

Corollary 5.1 (Attouch [1, Theorem 2.4]). Let ðO; mÞ be a positive s-finite complete

measure space, and let T1ðoÞ and T2ðoÞ be measurable families of maximal monotone

mappings on U : If for every o the mapping T1ðoÞ þ T2ðoÞ is maximal monotone, then

the family fT1ðoÞ þ T2ðoÞgoAO is measurable.

It is interesting to note that the original proof of [1, Theorem 2.4] was based on
properties that are characteristic of the variational sum introduced later in [3]. The
proof of Theorem 5.3 is a natural extension of this approach.

6. Elliptic PDEs with singular coefficients

It was demonstrated in [3], with an example from quantum mechanics, how the
variational sum can be useful in identifying the subdifferential of the sum of two
discontinuous convex functions. Similarly, the expression

@ðf 3AÞ ¼ ðAn@fAÞv

from Theorem 4.1 can be used to find @ðf 3AÞ; in cases where the chain rule

@ðf 3AÞ*An@fA fails to hold as an equality. The purpose of this section is to derive
an expression for the subdifferential of a discontinuous ‘‘energy functional’’ through
the computation of a variational composition.

Let OCRN be open and let Q :O/RN�N be measurable with QðxÞ symmetric and

positive semidefinite a.e. on O: Consider the function g : H1
0 ðOÞ-R,fþNg defined

by

gðuÞ ¼
1
2

R
O ruðxÞ � QðxÞruðxÞ dx if ru � QruAL1ðOÞ;

þN otherwise:

(

Such functions arise frequently, e.g. in physics, and the fundamental problem is to

minimize g �/�; unS for some unAH1
0 ðOÞ

n over uAH1
0 ðOÞ; or equivalently, to solve

the inclusion @gðuÞ U un: It is often useful to have an explicit expression for @g:
Note that we can express g in the composite form g ¼ If 3r; with the continuous

linear map r : H1
0 ðOÞ-L2ðO;RNÞ; ru ¼ f @u

@xi
gN

i¼1; and the convex normal integrand

f ðx; vÞ ¼ 1
2

v � QðxÞv: It follows that g is convex and lower semicontinuous since If is

such. Also, since g is quadratic, dom g is a linear space. Because @f ðo; �Þ ¼ QðoÞ; we
have 0AL2½@f �ð0Þ and @If ¼ L2½@f �:

In cases where the constraint qualification 0Aintðrger� dom If Þ holds, e.g. when
QðxÞALNðO;RN�NÞ so that dom If ¼ L2ðO;RNÞ; the classical chain rule gives the

simple formula @g ¼ rnL2½Q�r; where rn ¼ �div (the divergence), that is,
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dom @g ¼ fuAH1
0 ðOÞ j QruAL2ðO;RNÞg;

@gðuÞ ¼ �divðQruÞ:

We will next use Theorem 4.1 to derive a formula for @g in the case

QAL1ðO;RN�NÞ: In this situation, dom If aL2ðO;RNÞ; so the condition

0Aintðrger� dom If Þ may fail. We will need the following two lemmas.

Lemma 6.1. Given any two norms j � j and jj � jj on RN and RN�N ; respectively, there is

a constant C such that for every symmetric positive semidefinite matrix MARN�N

1. jMvjpCðjjMjj þ v � MvÞ 8vARN ;

2. jMvjpC
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjMjjv � Mv

p
8vARN :

Proof. Let M ¼ QnLQ; with L ¼ diagðl1;y; lNÞ; be the spectral decomposition of

M; and denote the p-norm on RN by j � jp: Since M is positive semidefinite liX0; and

we get

jMvj2 ¼ jLQvj2p cjLQvj1

¼ c
XN

i¼1

lijðQvÞij
 !

p c
XN

i¼1

li þ
XN

i¼1

liðQvÞ2i

 !

p c NrðMÞ þ
XN

i¼1

liðQvÞ2i

 !
;

where rðMÞ is the spectral radius of M: Part 1 follows by noting that the spectral

radius is a norm on symmetric matrices, and that
PN

i¼1 liðQvÞ2i ¼ ðQvÞ � LðQvÞ ¼
v � Mv: Applying part 1 to lv with an arbitrary l > 0 we get

jMvjpC inf
l>0

jjMjj
l

þ lv � Mv

� �
¼ 2C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjMjjv � Mv

p
;

so the result follows by changing constants. &

Lemma 6.2. Let jn;j :O- %R be measurable functions such that jn-j a.e. on O: If

there exist a cAL1ðOÞ and a continuous function r : ½0;NÞ-½0;NÞ such that rð0Þ ¼ 0
and
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Z
E

jjnjor
Z

E

jcj
� �

8n; ð5Þ

for every measurable ECO; then jn;jAL1ðOÞ and jjjn � jjjL1ðOÞ-0:

Proof. It is clear that (5) implies jnAL1ðOÞ: It thus suffices by Vitali’s theorem (see
for example [25, Section 4.3, Theorem 11]) to check that

1. For each e > 0 there is a d > 0 such that

measðEÞpd )
Z

E

jjnðxÞj dxpe 8n;

2. For each e > 0 there is an EeCO such that measðEeÞoN andZ
O\Ee

jjnjoe 8n:

Let e > 0: By continuity of r; there is an Z > 0; such that rðxÞpe for all xA½0; Z�: On
the other hand, by integrability of c; we can find d > 0; such that

measðEÞpd )
Z

E

jcjpZ:

Condition 1 thus holds.
To show that the second condition holds, let fEkgkAN; be such that EkCEkþ1;

measðEkÞoN; and ,Ek ¼ O: Then, by the monotone convergence theorem,Z
Ek

jcj ¼
Z
O
jcjwEk

s

Z
O
jcj

so that
R
O\Ek

jcj-0: The second condition thus follows from (5) and the continuity

of r: &

Recall that the divergence is defined (in the distribution sense) for any vector-

valued distribution, and that the dual H�1ðOÞ of H1
0 ðOÞ is embedded in the space of

distributions. In what follows, CN

c ðOÞ denotes the test functions on O; /�; �S denotes

the duality pairing between H1
0 ðOÞ and H�1ðOÞ; and J the duality mapping from

H1
0 ðOÞ to H�1ðOÞ:
Note also that rw � QruAL1ðOÞ whenever w; uAdom g: Indeed, by Cauchy–

Schwarz inequality,

jrw � Qrujrjrw � Qrwj
1
2jru � Qruj

1
2;
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and then by Hölder inequality,

Z
O
jrw � Qrujp

Z
O
rw � Qrw

� �1
2
Z
O
ru � Qru

� �1
2
¼ 2gðwÞ

1
2gðuÞ

1
2:

We are now ready to state the main result of this section.

Theorem 6.1. If QAL1
locðO;RN�NÞ; then CN

c ðOÞCdom g; QruAL1
locðO;RNÞ for all

uAdom g; and

dom @g ¼ uAH1
0 ðOÞ j uAdom g; divðQruÞAH�1ðOÞ

�
;

/w;�divðQruÞS ¼
Z
O
rw � Qru 8wAdom g

�
; ð6Þ

@gðuÞ ¼ �divðQruÞ: ð7Þ

Proof. If wACN

c ðOÞ; then rwACN

c ðO;RNÞ and so rw � QrwAL1ðOÞ: Thus,

CN

c ðOÞCdom g: By Lemma 6.1(1), we have for any uAH1
0 ðOÞ;

jQðxÞruðxÞjpCðjjQðxÞjj þ ruðxÞ � QðxÞruðxÞÞ;

so if uAdom g; we get QruAL1
locðO;RNÞ:

To derive the subdifferential formula, we will denote by G the mapping given by

(6) and (7). Because 0Adom g; we have @g ¼ ðrnL2½Q�rÞv by Theorem 4.1. By

maximal monotonicity of @g; it thus suffices to show that G is monotone and

ðrnL2½Q�rÞvCG: Since for every u1; u2Adom G

/u1 � u2;Gðu1Þ � Gðu2ÞS ¼/u1;�divðQru1ÞS�/u1;�divðQru2ÞS

� /u2;�divðQru1ÞSþ/u2;�divðQru2ÞS

¼
Z
O
ru1 � Qru1 �

Z
O
ru1 � Qru2

�
Z
O
ru2 � Qru1 þ

Z
O
ru2 � Qru2

¼
Z
O
rðu1 � u2Þ � Qrðu1 � u2Þ;

the monotonicity follows from the positive semidefiniteness of QðxÞ: Note that

ðrnL2½Q�rÞvCG is equivalent to

½J þ ðrnL2½Q�rÞv�
�1ðunÞCðJ þ GÞ�1ðunÞ 8unAH�1ðOÞ
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where by Theorems 4.1 and 2.2

½J þ ðrnL2½Q�rÞv�
�1ðunÞ ¼ lim

lr0
½J þrnL2½Q�lr��1ðunÞ:

To complete the proof it thus suffices to show that for each unAH�1ðOÞ; the limit %u

of the strongly convergent family fulgCH1
0 ðOÞ defined through

JðulÞ þ ðrnL2½Q�lrÞðulÞ ¼ un ð8Þ

is a solution of

JðuÞ þ GðuÞ ¼ un: ð9Þ

First, since %uAdomðrnL2½Q�lrÞv ¼ dom @g; by Theorem 4.1, we have %uAdom g:

Because L2½Q�l ¼ L2½Ql�; where QlALNðO;RN�NÞ; (8) means that

/w; JðulÞSþ
Z
O
rw � Qlrul ¼ /w; unS ð10Þ

for every wAH1
0 ðOÞ: In particular, with w ¼ ul we get

jjuljj2H1
0
ðOÞ þ

Z
O
rul � QlrulpjjuljjH1

0
ðOÞjjunjjH�1ðOÞ;

which implies Z
O
rul � Qlrulp

1

4
jjunjj2H�1ðOÞ 8l > 0: ð11Þ

Now take wAdom g in (10), and let

jl ¼ rw � Qlrul and j ¼ rw � Qr %u:

We will show that the conditions of Lemma 6.2 are satisfied. Since QðxÞl-QðxÞ for
all xAO; and rul-r %u strongly in L2ðO;RNÞ; we have (by passing to a subsequence
if necessary) that jl-j a.e. in O: By Cauchy–Schwarz inequality

jjlðxÞjp½rwðxÞ � QðxÞlrwðxÞ�
1
2 ½rulðxÞ � QðxÞlrulðxÞ�

1
2;

where

rwðxÞ � QðxÞlrwðxÞprwðxÞ � QðxÞrwðxÞ;

since for each x; the function flðvÞ :¼ v � QðxÞlv is the Moreau–Yosida regulariza-

tion of fðvÞ :¼ v � QðxÞv: Thus by Hölder’s inequality, we have for every measurable
ECO;
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Z
E

jjlðxÞj dxp
Z

E

rul � Qlrul

� �1
2
Z

E

rw � Qrw

� �1
2

p
1

2
jjunjjH�1ðOÞ

Z
E

rw � Qrw

� �1
2
;

where the second inequality follows from (11). Since wAdom g; we have rw �
QrwAL1ðOÞ; so the assumptions of Lemma 6.2 are in force. Thus,

R
O jl-

R
O j; and

passing to the limit in (10) gives

/w; Jð %uÞSþ
Z
O
rw � Qr %u ¼ /w; unS 8wAdom g: ð12Þ

Because CN

c ðOÞCdom g; by the first part of the theorem, (12) implies that

Jð %uÞ � divðQr %uÞ ¼ un ð13Þ

in the sense of distributions. But since Jð %uÞ; unAH�1ðOÞ; (13) must hold also in

H�1ðOÞ; with divðQr %uÞAH�1ðOÞ: We thus have for every wAdom g;

/w;�divðQr %uÞS ¼/w; unS�/w; Jð %uÞS

¼
Z
O
rw � Qr %u;

where the second equality follows from (12). In summary, %u solves (9). &

Combining Theorem 6.1 with general results of convex analysis, one can derive
existence criteria for PDEs associated with the operator @g: The following gives a
simple example.

Corollary 6.1. Let O be bounded, a > 0; and let QAL1ðO;RN�NÞ be such that v �
QðxÞvXajvj2 for all vARm and for a.e. xAO: Then for each unAH�1ðOÞ; there exists a

unique uAH1
0 ðOÞ such that

� divðQruÞ ¼ un;

ru � QruAL1ðOÞ; QruAL1ðO;RNÞ;

and

/w;�divðQruÞS ¼
Z
O
rw � Qru

for all wAH1
0 ðOÞ such that rw � QrwAL1ðOÞ:
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Proof. Let g be as in Theorem 6.1. Then by our assumptions on Q and by Poincaré’s
inequality, we can find c > 0 such that

gðuÞXa
2

Z
O
jruðxÞj2 dxXcjjujj2H1

0
ðOÞ 8uAH1

0 ðOÞ:

Thus, g is coercive and so is then g �/�; unS: This implies that g �/�; unS has a

unique minimizer, or equivalently, that the inclusion @gðuÞ U un has a unique
solution. The result thus follows from Theorem 6.1. &

Combining Theorem 6.1 with the results of [13], one can derive existence results
for evolution equations associated with the operator @g: Similarly, a combination of
Theorems 6.1 and 5.3 could be used to study time-dependent evolution equations.
Using the above techniques, one could also study nonlinear PDEs, where the linear
operator QðxÞ is replaced by @f ðx; �Þ for a more general convex normal integrand f :
Results in this direction have been obtained, e.g. in [6] in a slightly different setting.
Our approach is also related to [20] where the convergence of sequences of Dirichlet
forms related to composite media was studied. Interesting links can also be found
with energy functionals with respect to measures [10], generalized quadratic forms
and the second-order nonsmooth calculus of Rockafellar [34]; see also [21].
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(1979) 35–111.

[2] H. Attouch, Variational Convergence for Functions and Operators, Applicable Mathematics Series,

Pitman, London, 1984.
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[4] H. Attouch, J.-B. Baillon, M. Théra, Weak solutions of evolution equations and variational sum of

maximal monotone operators, Southest Asian Bull. Math. 19 (2) (1995) 117–126.

[5] H. Attouch, Z. Chbani, A. Moudafi, Recession operators and solvability of variational problems in

reflexive Banach spaces, in: Calculus of Variations, Homogenization and Continuum Mechanics

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

T. Pennanen et al. / Journal of Functional Analysis ] (]]]]) ]]]–]]]20

YJFAN : 4071



UNCORRECTED P
ROOF

(Marseille, 1993), Series Advanced in Mathematical and Applied Sciences, Vol. 218, World Scientific

Publishing, River Edge, 1994, pp. 51–67.

[6] H. Attouch, A. Damlamian, Application des méthodes de convexité et monotonie à l’étude de
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