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Abstract

This paper proposes a regularized notion of a composition of a monotone operator with a
linear mapping. This new concept, called variational composition, can be shown to be
maximal monotone in many cases where the usual composition is not. The two notions
coincide, however, whenever the latter is maximal monotone. The utility of the variational
composition is demonstrated by applications to subdifferential calculus, theory of measurable
multifunctions, and elliptic PDEs with singular coefficients.
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1. Introduction

Throughout this paper, U and X will be real reflexive Banach spaces and U* and
X* their duals, unless otherwise specified. Recall that a set-valued mapping
T: U3 U* is called monotone if

uieT(u), useT(w) = {uy —up,uj —uj ) >0,

where (-, -) denotes the pairing between U and U*. If a monotone mapping cannot
be properly extended to another monotone mapping from U to U¥, it is called
maximal monotone. An important example is the subdifferential

of (u) = {u*eU* | f(v)=f(u) + {v—u,u*) YveU}, uel,

of a convex function f : U—Ru {+ o0 }. It has been shown by Rockafellar [30], in the
Banach space setting, that §f : U= U* is maximal monotone, whenever f is proper
and lower semicontinuous, that is, when the epigraph epif = {(u,0)eU x
R|f(u)<a} is nonempty and closed.

Let A: X - U be linear and continuous with adjoint 4*: U*— X*. It is easily
checked that the composite mapping A*TA: X3 X* given by A*TA(x) =
u{A*u* |u*e T(Ax)}, is monotone. This kind of operators appear, for example,
in partial differential equations in divergence form, and they also contain the
pointwise sum of two or more operators as a special case. Without further
conditions, however, 4*TA may fail to be maximal monotone; see [22,28,35] for
sufficient conditions. It is then a natural idea to try to approximate A*TA by a
mapping which is guaranteed to be maximal monotone. A good candidate is A*T; A,
where T is the Yosida regularization of T with parameter 4 > 0. Indeed, since (after
renorming of the space, if necessary) 7, is a monotone continuous mapping, the
same is then true of 4*T; 4, which guarantees the maximality. If one now takes the
limit of A*T; A as A\O0, in the sense of graphical convergence, it turns out that one
obtains a mapping that is more likely to be maximal monotone than the pointwise
composition A*TA. This limit mapping, denoted here (4*TA4), (to be given a precise
definition in the next section) is what we call the variational composition of A and T.
The purpose of this paper is to study the relation between A*T4 and (A*TA),, to
give sufficient conditions for maximality of (4*TA4),, and to give applications of this
new concept.

Variational composition is a natural extension of the idea presented in Attouch
et al. [3], where the notion of a variational sum was introduced. Their motivation was
to define a new notion of a sum of two mappings, that is more likely to be maximal
monotone than the usual pointwise sum. They studied the general properties of
variational sums and showed how they arise quite naturally in practice. More
applications and further study of this concept can be found in [4,14,26]. Note that if
Ty and T, are set-valued mappings from X to X* their pointwise sum can be
expressed in the composite form 4*TA4, by defining U = X x X, Ax = (x, x), and
T(x1,x2) = T1(x1) x Ta(x2). Indeed, then A*(xF,x%) = x¥ 4+ %, and so A*TA(x) =
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T1(x) 4+ T»(x). This fact will allow us to draw connections between the variational
composition and the variational sum.

The applications of the variational composition are similar to those of the
variational sum. Whereas the variational sum gave an expression for the
subdifferential of the sum of two convex functions [3, Theorem 7.2], the variational
composition gives us a formula for the subdifferential of the composition foA of a
linear continuous mapping 4 : X — U and a convex function f on U (Theorem 4.1).
Much as [3, Theorem 7.2] was used to study the Schrédinger equation with singular
potentials, we use our Theorem 4.1 to study elliptic PDEs with singular coefficients.
In particular, we obtain an existence result for linear elliptic PDEs in divergence
form in the case of locally integrable (instead of the usual essentially bounded)
coefficients.

The precise definition of the variational composition will be given in the next
section, after recalling some basic facts about monotone operators and their
graphical convergence. In Section 3, we will study the relation between the pointwise
and the variational compositions. Section 4 studies the special case of subdifferential
mappings, and we obtain a new expression for the subdifferential of the composition
of a convex function with a linear mapping. The last two sections are devoted to
applications. In Section 5, we derive conditions for measurability of a family of
composite mappings, and in Section 6, we use the variational composition to
compute the subdifferential of an energy function associated with a partial
differential equation with singular coefficients.

2. Preliminaries

We begin with some notations and basic facts about monotone operators. For
more comprehensive introduction to the subject, see for example [11,24,38] or [35,
Chapter 12]. The inverse T~': U*3 U of a set-valued mapping 7 : U= U* is given
by T7'(u*) = {ue U |u*eT(u)}. The graph of T is the set gph T = {(u,u*)e U x
U*|u*e T(u)}, and the domain dom T and the range rge T of T are defined as the
projections of gph T to U and U¥*, respectively.

For simplicity of notation, the norms on U and U* will both be denoted by || - ||. It

will be clear from the context which norm is meant. The duality mapping is

. 1 o .
Ju: U3 U*, defined by Jy = ¢, where ¢(u) :§||u|\2, ue U. This is a maximal

monotone mapping with dom Jy = U, and it can be expressed as
Ju(u) = {u* e U* | Cu,u*y = [Ju|* = |[uw¥|]*}, ueU.

Furthermore, we have J;! = Jy«, the duality mapping on U* associated with the
dual norm. Due to a well-known renorming result of Troyanski (see e.g. [15]) we can
(and will) assume that the norms on U and U* are locally uniformly rotund. This
implies that these norms satisfy the Kadec—Klee property:
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u, —u weakly and ||u,||— ||u|| imply u, —u strongly,

and then the duality mappings Jy and J;;' are single valued and norm-to-norm
continuous.

As usual, the following Minty—Rockafellar criterion for maximal monotonicity
will be crucial; see [29, Proposition 1].

Theorem 2.1. A monotone mapping T : U3 U* is maximal if and only if for every

2> 0, rge(T + AJy) = U*. In this case, the inverse (T + Jy)~" is a single-valued
maximal monotone operator which is norm to weak continuous.

It follows from this and the properties of the chosen norms that, if 7" is maximal
monotone, then for any 4 > 0, the Yosida regularization

T, = (T '+ ;0!

of T is single valued, strongly continuous and maximal monotone with dom 7; = U,
see for example [2, Proposition 3.56]. The following is well known (see for example
[5, p. 63]), but for the convenience of the reader, we provide the simple proof.

Corollary 2.1. Let T be maximal monotone.
(a) We have u*erge T if and only if the family {u, | 2 > 0} of solutions to
T(u) + AJy(u)su*

remains bounded as /. ~0. When this happens, ||u,||<||a|| for all A > 0, where @ is
the minimum norm solution of T (u) 3u*, and as 20, u; converges strongly to ii.

(b) We have uedom T if and only if the family {T)(u)| A > 0} remains bounded as
ANO. When this happens, || T;(u)|| < ||@*|| for all 2 > 0, where @* is the minimum
norm solution of T(u)su®, and as 20, T,(u) converges strongly to ii*.

Proof. Part (a): By Theorem 2.1, the point u; is uniquely defined for every 4 > 0. If
{u, | 2 > 0} is bounded, it has a weak cluster point &, and AJy (u;) — 0 strongly. Since
w* — AJy(u;) e T(uy;), we must have u*e T (1), by the maximal monotonicity of 7.
This proves the “if”” part. Now let # be the minimum norm element of 7~!(u*),
which exists and is unique, since 7~!(u*) is closed and convex by the maximal
monotonicity of 7. Then, by monotonicity of 7,

0< Cuy — i, u* = Ju(u) = u* > < — [l |* + ]| [z,

which implies ||u;||<]||@||, proving the “only if” part. Combining the above
arguments, we see that, whenever {u;} is bounded, it satisfies ||u;||<||#|| and all
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its weak cluster points are in 7~!(«*). From this it follows that the whole sequence
{u;} must converge weakly to it, and by the Kadec—Klee property, the convergence is
strong. Part (b) follows by applying (a) to 7-!. O

In order to give the precise definition of variational composition, we need to recall
the notion of graphical convergence of a family {C, : U= U*},_, of operators. The
idea of graphical convergence is to identify the operators with their graphs and to
consider Painlevé—Kuratowski convergence on them. We will denote by
g-liminf, ., C; the mapping whose graph is the set of points (u,u*) such that for
every sequence 4, \ 0 there is a sequence (u,, u) — (u,u*) with u’e C;, (u,). Similarly,
g-lim sup, ., C; is the mapping whose graph is the set of points (u, #*) such that there
exist sequences 4,0 and (uy,u})— (u,u™) with u*eC), (u,). If g-liminf, ,C, =
g-limsup, o C;, one says that the family {C;},., graph-converges to the common
limit which is denoted by g-lim,., C,. For reference on the general theory of
convergence of sets and graph-convergence of operators, see for example [2,9,35].

We will need the following facts from Attouch [2, Chapter 3].

Theorem 2.2. Let {C,},., and C be maximal monotone mappings. Then

(a) g-liminf,., C; is monotone;
(b) g-lim, 4 C, = C if and only if g-liminf, ., C; D C;
(¢) g-llim,, C; = C if and only if

lim (CrtJu) () = (C+ Jy) "' (u*) Vu*eU*,
N

Now, let X, X* be another dual pair of reflexive Banach spaces, endowed with
locally uniformly rotund norms, and let 4 : X - U be linear and continuous. Since
the Yosida regularization T; : U= U* of a maximal monotone 7 is single valued and
continuous for every 1> 0, so is the composition A*T;4: X3 X*. From the
monotonicity of T it then follows that A*T; 4 is maximal monotone for every 4 > 0;
see for example [38]. This, and the fact that g-lim,.,, 7, = 7, suggest the following.

Definition 2.1. Let A: X - U be continuous and linear, and let 7: U3 U* be

maximal monotone. The variational composition (A*TA),: X 3 X* of A and T is the
set-valued mapping

(A*TA), = g-liminf A*T,A.
N0
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By Theorem 2.2(a), (4*T4), is monotone, and by (b),

(A*TA), = g-lim A*T, A,

ANO

whenever (4*TA4), is maximal monotone.

The idea of replacing A*TA by A*T)A, and taking the limit as A\0, has been
already used (in the finite-dimensional setting) in the proof of [35, Theorem 12.43],
where a sufficient constraint qualification condition was found in order to assure that
the family {A4*T,; A} graph-converges to A*TA (which in this case guarantees the
maximality of 4*TA).

The variational composition is closely related to the variational sum of two
monotone mappings 7' and 72 from X to X* defined in [3]:

(T'+T?) = gliminf (T} +T}). (1)
v A,uN0, Au#0

If in Definition 2.1, we let U =X x X, Ax = (x,x), and T(x1,x3) = T1(x1) %
T>(x,), we obtain

(A4*TA), = g-liminf (T} + T3),
ANO

so that gph(T"' +, T?) c gph(A*TA),. Thus, (4*TA4), equals T' +, T?, whenever the
latter is maximal monotone (which is the interesting case).

3. Comparison of the pointwise and the variational composition

The following simple inequality turns out to be useful in comparing 4*TA and
(A*TA),.

Lemma 3.1. If T is monotone, then u*e T (u) and v* = T,(v) imply

;L.
Cu— vt = 0%y > 2|

Proof. Since v* = T;(v) means that v — AJ;'(v*)e T~ (v*), the monotonicity of T
implies (u — v+ AJ ' (v¥),u* — v*) >0, and so,
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Cu—v,u* —v*y = 2T (%), 0% — u*)

2 3
= Z(1 17 = {1 *]1)

2
TR |

>/ min {oa" — ||u*||a} = -2 ——.
aeR

O
4

In general, we cannot guarantee that gph(A4*7TA4) < gph(A*TA),, but the following
is true.

Proposition 3.1. Let A: X — U be continuous and linear, and let T : U3 U* be
maximal monotone. Then dom(A*TA)cdom(A*TA),, and if (A*TA), is maximal
monotone, then gph(A*TA) cgph(A*TA),.

v?

Proof. If xpedom(A*TA), then Axoedom T, so by Corollary 2.1(b), T,(Ax)
converges strongly to the minimum norm element of 7'(4x), say uj. Thus, by
continuity of A% (A4*T;A)(xo) converges strongly to A*uf. Then, by definition,
A*ul e (A*TA),(xo), so xoedom(A*TA),.

To prove the second part, let A>0, (x,x*)egph(4*T4) and
(x7,x%)egph(A*T;A) be arbitrary, and let u*e T'(Ax) and v} e T;(Ax;) be such that
x* = A*u* and x¥ = A*u}. Then by Lemma 3.1,

(x = xp, X" = X5 =(x = x5, A" — A*uT)

A

={Ax — Axj,u* —ufy > — g |[*]?.
Since any point (X, X*) e gph(4*TA4), can be written as a limit of (x;,x%¥) as A\0,
we must have
(x =X, x*"=F*»>0 V(X £*)egph(4*TA),.
Since (x,x*) egph(A4*TA) was arbitrary, this implies
gph(4*TA)=gph(4*TA),,
when (4*TA4), is maximal monotone. [J

We next consider a particular case where gph(A4*7T4)<gph(4*TA), does hold,
and the variational composition can be seen to have a regularizing property. Our
approach is obtained by modifying the one used in [3,26].

Given a set-valued mapping S:U33U*, we define S: U3 U* by gphS=
cl(gph S). Obviously, if S is monotone, the same is true of S.
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Theorem 3.1. If the mapping A*TA is maximal monotone, then
(A*TA), = A*TA.
Proof. Let y*e X* be arbitrary. For 1 > 0 denote by x, the unique solution of the
equation
Jx(x) + (AT, A) (x) = o™

By Theorem 2.2(c), it suffices to show that as 4A\0, x; converges strongly to the
unique solution of

Jx(x) + (A*TA)(x) 3 y*.

Let (x,x*)egph(4*TA) be arbitrary, and let u*e T(Ax) be such that x* = A*u*.
By Lemma 3.1,

—2 ||| < CAx — Axp i — Ty(Ax;) Y = (x — xp, A*u* — (AT 4)(x;) ),
so by the definition of x;,
(x =X 0x () = 7% = = 7|l (2)
This implies in particular that
=[P = (Il + 1% = ¥ DIl 2 = o x® = %) —%Ilu*\lz,

so {x;} must be bounded, and it has a weak cluster point x.
By monotonicity of Jx, {x — x;,Jx(x)> =<{x — x;,Jx(x;) ), so (2) gives

A
(= i+ T (x) = 7ty = =

Passing to the limit,
(x—%,x* +Jx(x) —y*> =0.

Since (x,x*) e gph(A4*T4) was arbitrary, this implies

(x =%, X" +Jx(x) —y*> >0 V(x,x*)egph (4*TA).

Because (4*TA) is maximal monotone, the same is true of Jy + (4*TA4), so we must

have (x,y*)egph(Jy + (4*TA)), or in other words,

Jx (%) + (A*TA)(x) 2 y*. (3)
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Since the latter inclusion determines the point X uniquely, the whole family {x;}
must converge weakly to X.

Going back to (2), and using the inequality {Jx(x;),x) <%||x\|2 + %||xi||2, we get
LIl P <R eI + o= i = 3%y 42
> 2 \2 As 4 )
from which

lim sup |]x;||* <[|x||* +2{x — %, x* — y*>.
N0

Since  (x,x*)egph(4*TA4) was arbitrary, and since by (3), (x,y*—
Jx (%)) ecl gph(4*TA), we must have

lim sup ||x;])* < []%[|%,
ANO

so by the Kadec—Klee property, x, — X strongly. [

The following immediate consequence can be viewed as a consistency result for
(A4*TA),.

Corollary 3.1. If the mapping A*TA is maximal monotone, then

(A*TA), = A*TA.

Sufficient conditions for maximal monotonicity of the pointwise composition
A*TA have been given in [22,28,33]. In particular, 4*T'4 is maximal monotone
whenever Oeri(rge 4 — dom T) [22, Corollary 4.4]. Here “ri” means the relative
interior of a set.

For any number m of monotone mappings 7', ..., 7" from X to X*, one could
define a “‘variational sum” by g-liminf, o (7} + -+ + T}").

Corollary 3.2. Let T', ..., T™ be maximal monotone mappings from X to X*. If the
mapping T' + --- + T™ is maximal monotone, then

glim (T} 4 - + Ty =TT+ - + T
ANO

Proof. Let U be the space X x --- x X equipped with the norm ||(x;, 7xm)||2U =
X113 + - + [|[xml|3, so that Jy = (Jx,...,Jy). If we define T(xy,...,x,) =
T'(x1) x -+ x T™(x»), and Ax = (x, ...,x), then T; = T} x --- x T/", and
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A*TA=T"+ - + T",
A*T,A=T) + - + T
The result thus follows from Theorem 3.1. [
Corollary 3.2 is reminiscent of [3, Theorem 6.1], which states that the variational

sum of two maximal monotone mappings equals the closure of their pointwise sum,
whenever the latter is maximal monotone.

4. A subdifferential chain rule without constraint qualifications

If f:U->RuU{+ow} is convex and lower semicontinuous, and A:X—U is
continuous and linear, then the composition foA4 is also convex and lower
semicontinuous. Furthermore, by the chain rule of convex analysis,

A(foA) > A*0fA,

where equality holds whenever the “constraint qualification” 0eint(rge 4 — dom f)
is satisfied [32] (here dom f = {ue U | f(u) < + oo} as usual). Without the constraint
qualification, however, the inclusion may be strict. The purpose of this section is to
give a more general formula for 9(f<A4) in terms of the variational composition.
For 4 > 0, the Moreau—Yosida regularization f; of f is the function defined by

. 1 2
0 = ing { £0) 4 55 o~ P .
It is well known (see for example [8]) that f; is a convex C'-function on U, with

V= (0f);-

Recall that a sequence {f, },-, of proper lower semicontinuous convex functions is
said to Mosco-converge [19] to f, denoted by f, —™ £ if for every ue U the following
two conditions are fulfilled:

(1) if u, —»u weakly, then f(u)<liminf,_ o, f,(u,);
(i) there is a strongly converging sequence u, — u, with

lim sup f, (u,) <f (u).

n— o0

By the well-known result of Attouch [2, Theorem 3.66], we have f, - f if and only
if g-lim Jf,, = Jf and a certain normalization condition holds.
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Theorem 4.1. Let A: X - U be linear and continuous, and let f be a proper lower
semicontinuous convex function on U. If dom(fA4)#0, then

O(foA) = (A*0fA),.

Proof. By definition,
(A*9fA), = g-lim inf (4*(9f ), 4)
= g-lim inf (A4*Vf; 4) = g-lim inf (V(f;0A4)),

where the last equality follows from the chain rule which applies by continuity of f;.
As AN0, the functions f;°4 monotonically increase to foA4, which by Attouch |2,
Theorem 2.40] implies f;o4 —™ foA. Then by the Attouch criterion,

g-lim V(f;04) = 0(f-A).
This completes the proof. [

Theorem 4.1 gives an exact expression for d(f>4), but it may be harder to evaluate
than the pointwise composition A*0fA4. In Section 6, we give an example of a
problem for which the constraint qualification Oeint(rge A — dom T) fails, but
where the variational composition can be computed. Theorem 4.1 resembles the
results in [16-18,23,26,27,36,37], where subdifferential rules without constraint
qualifications were given, e.g. in terms of limits of epsilon-subdifferentials and
epsilon enlargements of subdifferentials.

5. Measurability of composite mappings

In this section, we will use the variational composition to study measurability
properties of parameterized families of composite mappings. Throughout the
section, 2 denotes a measurable space, and all the other spaces are separable Hilbert
spaces.

Given a family of set-valued mappings {7 (w): H3 H}, g,
P,[T): L¥(Q; H)3 L*(Q; H) (the canonical extension of 7)) by

define the mapping

P [T)(v) = {v*eL*(Q; H) | v*(w)e T(w)(v(w)) a.e. on Q}.

In this context, the measurability properties of the mapping wr gph T(w) are
crucial.

Definition 5.1. A set-valued mapping S: Q3 H is measurable if for any open C< H,
the set
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S7H(C) = {weQ]| S(w)n C#p}

is measurable. A family of set-valued mappings {7T(w): H3 H},, .o is measurable if
the set-valued mapping w gph T(w) is measurable.

Measurability of set-valued mappings has been studied extensively by many
authors; see for example [1,12,33,35, Chapter 14]. It is particularly important when
studying monotone mappings. If 7(w) is monotone a.e. on Q, ¥,[T] is monotone.
The following result (see for example [11, Example 2.3.3]) gives a simple condition
for maximality.

Theorem 5.1. Let {T(w)},, .o be a measurable family of maximal monotone mappings
on H. If dom Z,[T)#0 then £5|T)] is maximal monotone.

The above result is closely related to the theory of convex normal integrands [31].
A function f on Q x H is said to be a convex normal integrand if the mapping
w—epif(w,-) is measurable with closed and convex values. If f is a convex normal
integrand, then the integral functional

I(u) = {fgﬂw’”(w)) do if /(- u()eL'(Q),

+ 00 otherwise,

is a convex and lower semicontinuous function on L?(Q;H). By Attouch [I,
Theorem 2.3], /" is a convex normal integrand if and only if {J9f(w,)},.o IS @
measurable family of maximal monotone mappings on H, and there is a measurable
function u : Q+ H such that f(-,u(-)) is measurable. The formula

oly = £>[0f|

is valid for any convex normal integrand provided dom #,[9f]# 0 [33]. This can also
be seen as a consequence of Theorem 5.1 and the easily verified fact that
oIy > L, [0f].

It is clear that %,[T]' = #,[T'], where T~ (w) = T(w) ', and that

Lo[S]+ LT = L5[S + T, (4)
where (S+ T)(w) = S(w) + T(w). Equality holds in (4), if T(w) and S(w) are
monotone and %;[S] + ¥»[T] is maximal monotone. Since the identity mapping on
L?(Q; H) can be written as Jr2m) = Z2Ju), we have in particular that

DT, = LT,

where T, (w) = T(w),, provided #»[T] is maximal monotone (see Theorem 5.1).
The following can be found in [1].
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Theorem 5.2. Let (2, u) be a positive o-finite complete measure space, and consider a

SJamily {T(w)},, .o of maximal monotone mappings in H. The following are equivalent:

(@) {T(0)},co is measurable;

(b) T(:),(v) is measurable for every ve H and 1. > 0;

(c) There are measurable families {T,(®)},c0, n = 1,2, ..., of maximal monotone
mappings such that

T(w) = g-lim T,(w) a.e. on Q.

n— oo

These conditions hold if, in particular,
(d) T(-)(v) is measurable for each ve H, and T(w)(-) is continuous for each weQ
(such a T is called a Carathéodory mapping).

Combining the measurability criteria of Theorem 5.2 with the general properties
of variational composition, we obtain the following.

Theorem 5.3. Let (2, ) be a positive o-finite complete measure space, let {T'(®)},, <o
be a measurable family of maximal monotone mappings on U, and let A be a
Carathéodory mapping with A(w)() : X - U linear for every weQ.

@) 1f the mapping A(w)*T(w)A(w) is maximal monotone a.e. on Q, then

{A(@)*T(0)A(w)}

weR

is a measurable family.
®) If T(w)=09f(w,:) for a convex normal integrand f, that satisfies
domf(w,-)eA(w)#0 a.e. on Q, then

{00/ (@, )oA(®))}eq

is a measurable family, and f(w,-)oA(w) is a convex normal integrand.

Proof. By Theorem 5.2, the mapping 7 is Carathéodory for every A > 0. Since A4 is
Carathéodory, the same is then true of A4* and hence, of the family
{4(0)*T(w),A(®)},co- Part (a) now follows by using criteria (d) and (c) of
Theorem 5.2 with Theorem 3.1. The first half of part (b) follows similarly through
Theorem 4.1. The claim that f(w, -)eA4(w) is a normal convex integrand, follows from
[1, Theorem 2.3], since w—f(w, A(w)x(w)) is measurable for any measurable x, by
the fact that f is a convex normal integrand. [
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In the case U =X x X, T(w)(x1,x2) = T (w)(x1) X Tr(w)(x2), and A(w)(x) =
(x, x), we recover the following result due to Attouch.

Corollary 5.1 (Attouch [1, Theorem 2.4]). Let (Q,p) be a positive o-finite complete
measure space, and let Ty (w) and T>(w) be measurable families of maximal monotone
mappings on U. If for every w the mapping T)(®) + T>(w) is maximal monotone, then
the family {T)(w) + T2(w)},, .o is measurable.

It is interesting to note that the original proof of [1, Theorem 2.4] was based on
properties that are characteristic of the variational sum introduced later in [3]. The
proof of Theorem 5.3 is a natural extension of this approach.

6. Elliptic PDEs with singular coefficients

It was demonstrated in [3], with an example from quantum mechanics, how the
variational sum can be useful in identifying the subdifferential of the sum of two
discontinuous convex functions. Similarly, the expression

A(foA) = (A*9fA),

from Theorem 4.1 can be used to find J(f-A), in cases where the chain rule
O(foA) > A*0fA fails to hold as an equality. The purpose of this section is to derive
an expression for the subdifferential of a discontinuous “energy functional” through
the computation of a variational composition.

Let Q= R" be open and let Q : Q> RY*Y be measurable with Q(x) symmetric and
positive semidefinite a.e. on Q. Consider the function g : H} (Q) > RuU {+ o0 } defined
by

| 3 JoVu(x) - O(x)Vu(x) dx if Vu-QVueL'(Q),
o = +@ otherwise.

Such functions arise frequently, e.g. in physics, and the fundamental problem is to
minimize g — {-,u*) for some u*e H] (Q)* over ue H} (Q), or equivalently, to solve
the inclusion Og(u)su*. It is often useful to have an explicit expression for dg.

Note that we can express g in the composite form g = I;-V, with the continuous
linear map V : H}(Q) — L*(;RY), Vu = {#}; |, and the convex normal integrand
f(x,v) =3v- Q(x)v. It follows that g is convex and lower semicontinuous since I is
such. Also, since g is quadratic, dom g is a linear space. Because 9f (w, -) = Q(w), we
have 0€ %,[0f1(0) and 01y = £»[0f].

In cases where the constraint qualification O eint(rge V — dom Ir) holds, e.g. when
O(x)e L™ (Q; RM*N) so that dom I = L*(2; R"), the classical chain rule gives the
simple formula dg = V*%,[Q]V, where V* = —div (the divergence), that is,
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dom dg = {ue Hy(Q) | QVue L*(2; RV)},
Og(u) = —div(QVu).

We will next use Theorem 4.1 to derive a formula for dg in the case
QeL'(Q;RYN). 1In this situation, domI;#L*(2;R"), so the condition
Oeint(rge V — dom Ir) may fail. We will need the following two lemmas.

Lemma 6.1. Given any two norms |- | and || - || on RN and RNV | respectively, there is
a constant C such that for every symmetric positive semidefinite matrix M e RNV

1. |Mo|< C(||M|| 4 v - Mv) YoeR",

2. [Mv|<C\/||M]|v- Mv YveR".

Proof. Let M = Q*AQ, with A = diag(4, ..., Ay), be the spectral decomposition of
M, and denote the p-norm on RY by | - |p. Since M is positive semidefinite 4; >0, and
we get

|Mvl, = |AQU|2< C‘AQU|1

where p(M) is the spectral radius of M. Part 1 follows by noting that the spectral
radius is a norm on symmetric matrices, and that Zfil ii(Qv)f = (Qv) - A(Qv) =
v- Mv. Applying part 1 to Av with an arbitrary 4 > 0 we get

MU|<C1nf<|)||—|—l >—2C\/ |M||v- M,

so the result follows by changing constants. [

Lemma 6.2. Let ¢,, ¢ : Q— R be measurable functions such that ¢,— ¢ a.e. on Q. If
there exist a e L' (Q) and a continuous function p : [0, 00) — [0, 00 ) such that p(0) = 0
and
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Liod<o [w1) 5)

for every measurable EQ, then ¢,, pe L' (Q) and ||¢, — ¢l|11(q)—0-

Proof. It is clear that (5) implies ¢, € L'(Q). It thus suffices by Vitali’s theorem (see
for example [25, Section 4.3, Theorem 11]) to check that

1. For each ¢ > 0 there is a 6 > 0 such that

meas(E)<5:>/\(pn(x)|dx<s Vh,
JE

2. For each ¢ > 0 there is an E; = Q such that meas(E,) < co and

/ lp,l<e Vn.
QE

Let ¢ > 0. By continuity of p, there is an n > 0, such that p(&) <e for all £€[0,#]. On
the other hand, by integrability of y, we can find 6 > 0, such that

meas(E)<5:>/W|<11.
E

Condition 1 thus holds.
To show that the second condition holds, let {E}, , be such that Ey < Epy,
meas(Ey) < oo, and U E;, = Q. Then, by the monotone convergence theorem,

L= [ wies [ 1w

so that fQ\ E [/| = 0. The second condition thus follows from (5) and the continuity
of p. O

Recall that the divergence is defined (in the distribution sense) for any vector-
valued distribution, and that the dual H~!(Q) of H}(Q) is embedded in the space of
distributions. In what follows, C (Q) denotes the test functions on Q, {-,-> denotes
the duality pairing between H|(Q) and H~'(Q), and J the duality mapping from
H}(Q) to H(Q).

Note also that Vw - QVueL'(Q) whenever w,uedomg. Indeed, by Cauchy—
Schwarz inequality,

i i
[Vw - OVu|<|Vw - QVw|2|Vu - QVul2,
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and then by Hoélder inequality,

1

1
2 2 1 1
/ [Vw - OVu| < { / Vw - vail { / Vu - QVH:l = 2g(w)2g(u)2.
Q Q Q
We are now ready to state the main result of this section.

Theorem 6.1. If Qe Ll (Q;RVYN), then C*(Q)=domg, QVuelLl (Q;R") for all
uedom g, and

dom dg = {ue Hy(Q) |uedomg, div(QVu)e H '(Q),

{w, —div(QVu) )y = / Vw-QVu VYwedom g}, (6)
Q

0g(u) = —div(QVu). (7)
Proof. If weC*(Q), then VweC*(Q;RY) and so Vw.QVweL!(Q). Thus,

C*(Q)=dom g. By Lemma 6.1(1), we have for any ue H}(Q),

|0(x)Vu(x)|< C(/|Q(x)[| + Vu(x) - Q(x)Vu(x)),
so if uedom g, we get QVue Ll (Q;RY).

To derive the subdifferential formula, we will denote by G the mapping given by
(6) and (7). Because 0edom g, we have dg = (V*%,[Q]V), by Theorem 4.1. By

maximal monotonicity of dg, it thus suffices to show that G is monotone and
(V*Z,|Q]V),=G. Since for every u,u, edom G

Cuy —ua, G(uy) — G(up) ) = uy, —div(QVuy) ) — (uy, —div(QVuy) )
— Lup, —div(QVuy) ) + {uz, —div(QVuz) >
= / Vul . QVLq — / Vu1 . QVuz
Q Q
— / Vu, - QVu, + / Vuy - OVu,
Q Jo
= /QV(ul — ) - OV (u; — uz),

the monotonicity follows from the positive semidefiniteness of Q(x). Note that
(V*£,]0|V), =G is equivalent to

[+ (V222(Q)V), ] () = (T + G) ' () vuFeH'(Q)
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where by Theorems 4.1 and 2.2

[+ (VE[Q)V),] 7 (u¥) = lim [J + V*£5[Q], V] ().

To complete the proof it thus suffices to show that for each u* e H~'(Q), the limit &
of the strongly convergent family {u;} = H}(Q) defined through

J(uz) + (V*25[0], V) (w;) = u* (8)
is a solution of
J(u) + G(u) = u*. 9)

First, since e dom(V*%,[0],V), = dom dg, by Theorem 4.1, we have #edom g.
Because %»[Q], = £»[Q;], where Q; e L* (Q; RV*Y), (8) means that

<wy I (uy) > —|—/QVW~ Q;Vu; = {w,u*) (10)
for every we H} (). In particular, with w = u; we get
ol + | 91+ Q:Fs <l il N
which implies
/va : Q;Vuigiﬂu*”é,](g) Vi > 0. (11)

Now take wedom g in (10), and let
@, =Vw-Q,Vu, and ¢ =Vw-QVi.

We will show that the conditions of Lemma 6.2 are satisfied. Since Q(x), — Q(x) for
all xeQ, and Vu; — Vi strongly in L>(Q; R"Y), we have (by passing to a subsequence
if necessary) that ¢, — ¢ a.e. in Q. By Cauchy—Schwarz inequality

D=

9, (0| < [Vw(x) - Q) V()2 [V (x) - O(x), Vu (x)P2,
where
Vw(x) - O(x),Vw(x) <Vw(x) - O(x)Vw(x),

since for each x, the function ¢,(v) = v- Q(x),v is the Moreau-Yosida regulariza-
tion of ¢(v) = v - Q(x)v. Thus by Hélder’s inequality, we have for every measurable
EcQ,
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1
/E|(p)~(x)| dx< [/E Vuy - Qan]z {/E Vw - va:|

1

1 2

< E ||U*HH—1<Q) |:/ V‘V . QVW’:| ,
E

o=

where the second inequality follows from (11). Since wedomg, we have Vw -
QVweL'(9Q), so the assumptions of Lemma 6.2 are in force. Thus, [, ¢, — [, ¢, and
passing to the limit in (10) gives

<w, J (@) —i—/VW- OVii = {w,u*> VYwedomy. (12)
Q
Because C°(Q)cdom g, by the first part of the theorem, (12) implies that
J(ia) — div(QVi) = u* (13)

in the sense of distributions. But since J(i),u*e H~'(Q), (13) must hold also in
H~1(Q), with div(QVir)e H~'(Q). We thus have for every wedom g,

Cw, =div(QVa) ) = Cw,u*) — <w, J (@) )
= / Vw - QVi,
o
where the second equality follows from (12). In summary, @ solves (9). O
Combining Theorem 6.1 with general results of convex analysis, one can derive
existence criteria for PDEs associated with the operator dg. The following gives a

simple example.

Corollary 6.1. Let Q be bounded, o >0, and let Qe L'(Q;RN*N) be such that v -
O(x)v=0a|v|? for all ve R" and for a.e. xe Q. Then for each u*e H™'(Q), there exists a
unique ue H}(Q) such that

—div(QVu) = u*,
Vu-QVueL'(Q), OVueL'(Q;RY),
and

{w, —div(QVu) ) = / Vw - QVu
Q

Sor all we H}(Q) such that Vw - QVwe L'(Q).
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Proof. Let g be as in Theorem 6.1. Then by our assumptions on Q and by Poincarée’s
inequality, we can find ¢ > 0 such that

o
o3>3 [ [Vu)P de>clullye e HY(®).

Thus, ¢ is coercive and so is then g — (-, u*). This implies that g — {-,u*) has a
unique minimizer, or equivalently, that the inclusion dg(u)su* has a unique
solution. The result thus follows from Theorem 6.1. [

Combining Theorem 6.1 with the results of [13], one can derive existence results
for evolution equations associated with the operator dg. Similarly, a combination of
Theorems 6.1 and 5.3 could be used to study time-dependent evolution equations.
Using the above techniques, one could also study nonlinear PDEs, where the linear
operator Q(x) is replaced by Jf (x, -) for a more general convex normal integrand f.
Results in this direction have been obtained, e.g. in [6] in a slightly different setting.
Our approach is also related to [20] where the convergence of sequences of Dirichlet
forms related to composite media was studied. Interesting links can also be found
with energy functionals with respect to measures [10], generalized quadratic forms
and the second-order nonsmooth calculus of Rockafellar [34]; see also [21].
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