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Abstract

In this paper we study two important notions related to monotone operators.
One is the concept of enlargement of a given monotone operator which has turned
out to be a useful tool in the analysis of approximate solutions to problems involving
monotone operators. The second one is the notion of sum of monotone operators.
For the latter we introduce and study a kind of extended sum of two monotone
operators, which, in several important cases, turns out to be a maximal monotone
operator.
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1 Introduction

In the recent years two notions related to monotone (in general set-valued) operators have
turned out to be very useful in the study of various problems involving such operators.
The first one, which is inspired by the notion of ε-subdifferential of a convex function,
is the concept of enlargement of a given operator (see e.g. [BuISv, BuSSv, MaT]). It
allows to make a quantitative analysis in different problems involving monotone operators,
like for example variational inequalities, inclusions etc. The second notion is the one
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of generalized sum of two maximal monotone operators (i.e. monotone operators whose
graphs are maximal elements, with respect to the inclusion order, among the graphs of
all monotone operators). It is well-known that the usual pointwise sum of two maximal
monotone operators is not, in general, a maximal monotone operator. A typical example
for the latter is the sum of the subdifferentials of two convex proper lower semicontinuous
functions which may differ from the subdifferential of their sum. There are also other
examples (i.e. in partial differential equations, see [ABT1, ABT2]), in which the resolution
of a problem leads to an operator which appears to be larger than the sum of two maximal
monotone operators. This motivated different authors to look for a generalized notion of
sum of two operators, like e.g. the variational sum introduced by Attouch, Baillon and
Théra in [ABT1] in the setting of Hilbert spaces, the parallel sum (see the study of
electrical networks based on this notion in [K]), or sum based on the Trotter-Lie formula
(see [Lap]).

This article is devoted to the study of the two notions mentioned above. For the notion
of enlargement we consider a concept intensively studied recently in [BuISv, BuSSv], while
for the notion of sum we will introduce an extended sum generated by the enlargements of
the operators. The comparison of the latter concept with the variational sum of Attouch,
Baillon and Théra, in the particular case of a reflexive Banach space, is treated in [RT2]
(the announcement of the results is in [RT1]). Related to this comparison study, here we
only mention the following: the extended sum is defined in this paper in a general Banach
space while it seems the variational sum can be successfully extended only to the setting of
reflexive Banach spaces (as shown in [RT2]). This is so since the variational sum between
two maximal monotone operators is defined as an appropriate limit of the pointwise sum
of certain (Yosida) approximations of the initial operators and these approximations are
well-defined only in reflexive Banach spaces. The second remark concerns the relation
between the extended and variational sum in reflexive Banach spaces (see again [RT2]):
the maximality of one of them entails that it contains the other and vice versa; The two
notions coincide, for example, in the case of maximality of the pointwise sum, and in
the case of subdifferentials of convex functions (related to the latter, see also Theorem
4.4 below which shows that, without any qualification conditions and in any Banach
space, the extended sum of the subdifferentials of two convex functions is equal to the
subdifferential of their sum).

The paper is organized as follows. Section 2 provides some necessary preliminaries. In
Section 3 we present and study the concept of ε-enlargement of a given maximal monotone
operator. We show how, in the case of open domain of a given monotone operator A,
one can obtain the unique maximal monotone operator (in the same domain) containing
A by the enlargements of A. We establish further, for the class of monotone operators
of type (D) introduced by Gossez [Go1], a Brøndsted-Rockafellar type theorem which
holds also in non reflexive Banach spaces. Doing so we extend a previous unpublished
result of Torralba [To] proved in reflexive Banach spaces. In the final Section 4 we intro-
duce the notion of extended sum and study the relationship with the pointwise sum of
maximal monotone operators. It is proved in particular, that when the pointwise sum of
two monotone operators is a maximal monotone operator, the latter coincides with the
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extended sum of the two operators. Finally, we show that the subdifferential of the sum
of two proper convex lower semicontinuous functions is exactly the extended sum of their
subdifferentials.

2 Some preliminaries

Let X be a real Banach space with continuous dual X∗. The norm in X and X∗ will be
denoted by || · ||, w and w∗ will stand for the weak and weak star topology in X and X∗

correspondingly. The symbol 〈·, ·〉 will be used for the usual pairing between X and X∗.
Let A be (in general, set-valued) operator between X and X∗. The graph of A will be

denoted by
Gr(A) := {(x, x∗) ∈ X ×X∗ : x∗ ∈ Ax}

and the sets
Dom(A) := {x ∈ X : Ax 6= ∅}

and
R(A) :=

⋃{Ax : x ∈ Dom(A)}
stand as usual for the domain and the range of A respectively. The inverse operator of
A : X → X∗ will be designated by A−1 : X∗ → X. It is defined by:

A−1x∗ := {x ∈ X : x∗ ∈ Ax}, x∗ ∈ X∗,

and obviously has as domain the range of A.
Recall that the operator A is called monotone if the following condition is fulfilled:

〈y − x, y∗ − x∗〉 ≥ 0 for every two couples (x, x∗), (y, y∗) ∈ Gr(A).

Observe that if A is monotone, then so is its inverse A−1.
Given an operator A : X → X∗, by coA, Ā and Ã we will denote the following

operators:
(coA)x := co(Ax), x ∈ X,

Āx := Ax
w∗

, x ∈ X,

and
Ã is such that Gr(Ã) = Gr(A)

||·||×w∗
.

In the operations above co means convex hull while given D ⊂ X∗ and H ⊂ X ×X∗ the

notations D
w∗

and H
||·||×w∗

are the closures of the sets D and H with respect to the weak
star topology in X∗ and with respect to the product of the norm and weak star topology
in X ×X∗ correspondingly.

Obviously for the domains of the above operators we have Dom(coA) = Dom(Ā) =
Dom(A) ⊂ Dom(Ã), while for their graphs it is clear that Gr(A) ⊂ Gr(Ā) ⊂ Gr(Ã) and
Gr(A) ⊂ Gr(coA) ⊂ Gr(coA) ⊂ Gr(c̃oA).

The following remark contains well-known facts, which will be used in the sequel.
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Remark 2.1

• if A is monotone then so are Ā, coA and coA;
• if A is monotone, then so is Ã, provided A is locally bounded (cf. e.g. [DrLa, Ph1]).

Recall that A is locally bounded if for each point x from the norm-closure of Dom(A) there
is a neighborhood U of x such that A(U) is a norm-bounded subset in X∗.

A monotone operator A : X → X∗ is said to be maximal if its graph is a maximal
element in X×X∗, with respect to the inclusion order, among the graphs of all monotone
operators between X and X∗. I.e. A is maximal if the graph of A is not contained as a
proper subset in the graph of any other monotone operator from X to X∗. Equivalently,
A is maximal, if whenever one has 〈x−y, x∗−y∗〉 ≥ 0 for every (y, y∗) ∈ Gr(A), it follows
that (x, x∗) ∈ Gr(A).

It is clear from the above remarks that if A is a maximal monotone operator, then the
operators A, Ā, coA, coA coincide, and if A is maximal monotone and locally bounded,
then A coincides also with Ã and c̃oA. Let us also mention the obvious fact that if A is
maximal monotone then A−1 is also a maximal monotone operator between X∗ and X.

A typical example of a maximal monotone operator is the subdifferential of a proper
lower semicontinuous convex function f : X → R ∪ {+∞}. The term proper f means
as usual that the set dom f := {x ∈ X : f(x) < +∞} (which is the domain of f) is
nonempty. For a given ε ≥ 0 the ε-subdifferential of f is defined as follows:

∂εf(x) := {x∗ ∈ X∗ : f(y)− f(x) ≥ 〈y − x, x∗〉 − ε for every y ∈ X},
if x ∈ domf , and ∂εf(x) := ∅, if x /∈ domf . For every ε > 0, ∂εf is always non-empty
valued at the points of domf , i.e. Dom∂εf = domf . When ε = 0, ∂0f is exactly the
subdifferential ∂f of f (the latter can be empty at some points of domf).

Finally, we formulate a result due to Hiriart-Urruty and Phelps [HUPh] which we will
need later and which was one of the starting points for our study:

Theorem 2.2 (Hiriart-Urruty and Phelps [HUPh]) Let f, g : X → R ∪ {+∞} be
two proper lower semicontinuous convex functions. Then for every x ∈ domf ∩domg one
has:

∂(f + g)(x) =
⋂

ε>0

∂εf(x) + ∂εg(x)
w∗

.

The sum under the bar in the right hand side of the above equality is the usual
Minkowski pointwise sum of sets. Various similar formulas (also for other operations on
functions) can be found in the survey [HUMSV].

3 Enlargements of monotone operators

Let A be a given monotone operator acting between X and X∗. Given ε ≥ 0, by an
ε-enlargement of the operator A we mean the operator Aε : X → X∗ defined by

(3.1) Aεx := {x∗ ∈ X : 〈y − x, y∗ − x∗〉 ≥ −ε for any (y, y∗) ∈ Gr(A)}.
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This notion was mentioned in [MaT] but not studied. Systematically, the above con-
cept has been studied in finite dimensions in [BuISv] with the purpose of examining
approximate solutions of variational inequalities, and in [BuSSv] in connection with find-
ing a zero of a maximal monotone operator. Another type of enlargement of a monotone
operator in Hilbert spaces is considered in [Ni]. Operators satisfying a similar condition
as above have been investigated in [Ve]. Similar ideas for enlargements were used ear-
lier in [LP, R] to define approximate solutions of variational inequalities determined by
monotone operators.

It is seen from (3.1) that the operator Aε is always with convex and w∗-closed images
for any ε ≥ 0 and that indeed, due to the monotonicity of A, it is an enlargement of A,
i.e. Ax ⊂ Aεx for every ε ≥ 0 and x ∈ X. For each x ∈ X it is true also that Aε1x ⊂ Aε2x
provided 0 ≤ ε1 ≤ ε2. But observe, in contrast of what is expected, that if A and B are
two monotone operators such that A ⊂ B (equivalently Gr(A) ⊂ Gr(B)) then Bε ⊂ Aε

for every ε ≥ 0.
The idea of the above enlargement is to approximate the initial operator and clearly

is inspired by the notion of ε-subdifferential of a proper lower semicontinuous convex
function f : X → R ∪ {+∞}. In the case when A = ∂f the enlargement given in (3.1) is
larger than the ε-subdifferential, i.e. ∂εf ⊂ (∂f)ε, and there are examples showing that
this inclusion can be strict ([MaT], i.e. X = R, f(x) = x2).

The natural question that appears is: given A, how good an approximation of A is the
operator Aε, ε > 0. We will see at the end of this section that a Brøndsted-Rockafellar
type theorem is true for a class of operators, extending a previous unpublished result of
Torralba [To], proved in the setting of reflexive Banach spaces. Before that we need some
properties of the enlargements.

Given a monotone operator A : X → X∗, it is readily seen that the operator A0 :
X → X∗ (i.e. the enlargement in the partial case ε = 0) is obtained by intersecting all
Aε, i.e.

A0x :=
⋂{Aεx : ε > 0}, x ∈ X.

As we have remarked A ⊂ A0. Recall that (see e.g. [Ph2]) a pair (x, x∗) ∈ X × X∗

is said to be monotonically related to Gr(A) if 〈y − x, y∗ − x∗〉 ≥ 0 for every couple
(y, y∗) ∈ Gr(A). It is seen that Gr(A0) is exactly the set of all pairs in X × X∗ which
are monotonically related to Gr(A). The operator A0 need not be monotone (see below).
But if A is maximal monotone the following proposition is immediate:

Proposition 3.1 Let A be a maximal monotone operator. Then A = A0.

Hence we have the following corollary:

Corollary 3.2 Let f : X → R∪{+∞} be a proper lower semicontinuous convex function.
Then

∂f =
⋂

ε>0

(∂f)ε.
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As we mentioned, in general, A0 need not be monotone. But there is a class of
monotone operators A for which A0 is monotone (moreover, in this case A0 is also maximal
monotone). These are the so-called monotone operators of type (D) which were introduced
by Gossez [Go1] for the purpose of extending to non-reflexive spaces some of the important
properties of the maximal monotone operators in reflexive Banach spaces.

Identifying the Banach space X with its canonical embedding X̂ in the second dual
X∗∗ and having a monotone operator A : X → X∗, let Â denote the operator A considered
as a mapping from X∗∗ into X∗, i.e. Gr(Â) = {(x̂, x∗) : (x, x∗) ∈ Gr(A)}. A is called of
type (D) ([Go1]) if for every couple (x∗∗, x∗) ∈ X∗∗×X∗ which is monotonically related to
Gr(Â) there exists a net {(xα, x∗α)} ⊂ Gr(A) such that x̂α → x∗∗ in the weak star topology
in X∗∗, {xα} is bounded and x∗α → x∗ in the norm. It can be verified (see e.g. [Ph2])
that if A is monotone of type (D) then the operator Â0 : X∗∗ → X∗, which (as we have
seen) has as a graph all monotonically related to Gr(Â) pairs in X∗∗ × X∗, is maximal
monotone (hence the same is true for A0). But in general, Â0 need not be monotone
([Go2]). Obviously, in reflexive Banach spaces (because of X̂ = X∗∗) the class of maximal
monotone operators coincides with the class of maximal monotone operators of type (D).
Finally, the subdifferential ∂f of every proper convex lower semicontinuous function f in
X is a maximal monotone operator of type (D) ([Go1]).

Further, we investigate what are the relations between the enlargements of a given
monotone operator and the enlargements of its natural extensions considered in the pre-
vious section.

Proposition 3.3 Let A : X → X∗ be monotone. Then for every ε ≥ 0

(i) Aε = Āε;

(ii) if A is locally bounded, then Aε = Ãε;

(iii) if A is monotone of type (D) and the symbol Âε denotes the ε-enlargement of A,
when the latter is considered as a mapping from X∗∗ to X∗, then (Â0)ε = Âε.

Proof: Fix some ε ≥ 0. By the remarks after the definition of ε-enlargements Āε ⊂ Aε

and Ãε ⊂ Aε. Conversely, suppose that x∗ ∈ Aεx for some x ∈ X. Then

(3.2) 〈y − x, y∗ − x∗〉 ≥ −ε for any (y, y∗) ∈ Gr(A).

Take (z, z∗) ∈ Gr(Ā). Then z∗ ∈ Āz and consequently z∗ = w∗ − limα z∗α, where {z∗α} is
some net in Az. Since by (3.2)

〈z − x, z∗α − x∗〉 ≥ −ε for any α,

we get by taking the limit that

〈z − x, z∗ − x∗〉 ≥ −ε.

Hence, x∗ ∈ Āεx.
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To finish the proof of (ii) suppose further that A is locally bounded. Let (z, z∗) ∈
Gr(Ã). Then (z, z∗) = || · || ×w∗− limα(zα, z∗α), where {(zα, z∗α)} is a net from Gr(A). By
the choice of (x, x∗) and (3.2) we have

〈zα − x, z∗α − x∗〉 ≥ −ε for any α.

Therefore,

〈z − x, z∗ − x∗〉 = 〈zα − x, z∗α − x∗〉+ 〈z − zα, z∗α − x∗〉+ 〈z − x, z∗ − z∗α〉
≥ −ε + 〈z − zα, z∗α − x∗〉+ 〈z − x, z∗ − z∗α〉

Now using the fact that A is locally bounded we see that z∗α are norm-bounded for α large
enough, whence passing to the limit we get

〈z − x, z∗ − x∗〉 ≥ −ε.

Therefore, x∗ ∈ Ãεx.
The proof of (iii) follows exactly the same pattern as the proof of (ii). The proof is

complete.

Similarly to Proposition 3.3 we have

Proposition 3.4 Let A be a monotone operator between X and X∗. Then Aε = (coA)ε

for every ε ≥ 0.

Proof: Let ε ≥ 0. Since (coA)ε ⊂ Aε is true, we will show the inverse inclusion.
Let x∗ ∈ Aεx for some x ∈ X (observe that the couple (x, x∗) satisfies (3.2)). Take
(z, z∗) ∈ Gr(coA). Then z∗ ∈ (coA)z = co(Az) and consequently z∗ =

∑n
i=1 tiz

∗
i for some

ti ≥ 0,
∑n

i=1 ti = 1 and some z∗i ∈ Az. Then we get (using also (3.2)) that

〈z − x, z∗ − x∗〉 = 〈z − x,
∑n

i=1 tiz
∗
i − x∗〉

=
∑n

i=1 ti〈z − x, z∗i − x∗〉
≥ ∑n

i=1 ti(−ε) = −ε,

which shows that x∗ ∈ (coA)ε(x).

The following is an immediate corollary from the previous propositions and the fact
that if A is locally bounded then so is coA.

Corollary 3.5 Let A : X → X∗ be a monotone operator. Then for every ε ≥ 0 one has:

(i) Aε = Āε = (coA)ε = (coA)ε;

(ii) if A is locally bounded, then Aε = Ãε = (c̃oA)ε = [co(Ã)]ε.

When the domain of A is open, the ε-enlargements can be used to obtain the unique
maximal monotone operator in the domain which contains A. Namely, we have
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Corollary 3.6 Let A be a monotone operator between X and X∗ such that Dom(A) is an
open set in X. Then the restriction A0|Dom(A) is the unique maximal monotone operator

in Dom(A) containing A. Moreover, A0|Dom(A) = co(Ã|Dom(A)).

Proof: It is a classical result of Rockafellar [Ro1] that every monotone operator
A : X → X∗ is locally bounded provided Dom(A) is open. By a result of Drewnowski
and Labuda [DrLa], Theorem 3.7, when Dom(A) is open, the operator co(Ã|Dom(A)) is
the unique maximal monotone operator in Dom(A) containing A. On the other hand, by
the previous corollary, A0|Dom(A) =

⋂

ε>0

[co(Ã|Dom(A))]
ε = co(Ã|Dom(A)), where the latter

equality follows from the maximality of co(Ã|Dom(A)) in Dom(A) and Proposition 3.1.

We end this section by showing that a Brøndsted-Rockafellar type theorem is true in
general Banach spaces for the maximal monotone operators of type (D). Before that let
us introduce a well-known object: denote by J the usual duality mapping between X and
X∗ defined by:

Jx := {x∗ ∈ X∗ : 〈x, x∗〉 = ||x||2 = ||x∗||2}, x ∈ X.

This mapping is in fact the subdifferential of the convex function f(x) = (1/2)||x||2, x ∈ X
(see e.g. Phelps [Ph1], Example 2.26). Hence it is a maximal monotone operator. The
domain of J is the whole space X. The duality mapping associated to the dual space X∗

(with values in X∗∗) will be denoted by J∗.
In what follows, remember that for an operator A between X and X∗, Â0 is the opera-

tor between X∗∗ and X∗ having as a graph all pairs in X∗∗×X∗ which are monotonically
related to Â. The following result is due to Gossez and is a further generalization of
the classical result of Minty: Let X be a Banach space and A : X → X∗ be a maximal
monotone operator of type (D). Then for every λ > 0 we have R(Â0 +λ(J∗)−1) = X∗. As
it is well-known the same result for reflexive spaces is due to Rockafellar [Ro2].

Now we are ready to prove the following type of Brøndsted-Rockafellar theorem for
ε-enlargements which is true in a general Banach space. When X is a reflexive Banach
space, this result is proved by Torralba in his PhD thesis [To], Proposition 6.17 (c.f. also
[BuSSv] where the setting of Hilbert spaces is treated). In the theorem below we have
an approximation (in norm) of a couple from the enlargement of a given operator A by
a couple from the graph of the operator Â0 of the monotonically related (to Â) points in
X∗∗ ×X∗:

Theorem 3.7 Let X be a Banach space and A : X → X∗ be a maximal monotone
operator of type (D). Then for every ε > 0, for every (x, x∗) ∈ Gr(Aε) and every λ > 0
there exists (x̄∗∗, x̄∗) ∈ Gr(Â0) such that ||x̄∗∗ − x̂|| ≤ λ and ||x̄∗ − x∗|| ≤ ε/λ.

Proof: The proof follows the scheme based on the generalization of the Minty theorem
for monotone operators of type (D) formulated above.

Let ε > 0, (x, x∗) ∈ Gr(Aε) and λ > 0 be fixed. It is easily verified that the operator
B(·) := A(· + x) is also a maximal monotone operator of type (D) such that B̂0(·) =
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Â0(· + x̂). Take t = ε/λ2. By the Gossez generalization of the Minty theorem we have
R(Â0(· + x̂) + t(J∗)−1) = X∗. Hence, there exist x̄∗∗ ∈ X∗∗, x̄∗ ∈ Â0x̄∗∗ and y∗ ∈
(J∗)−1(x̄∗∗ − x̂) so that

(3.3) x∗ = x̄∗ + ty∗.

By Proposition 3.3 (iii), (x̂, x∗) ∈ Gr((Â0)ε). Using this fact, the definition of J∗ and (3.3)
we obtain:

−t||x̄∗∗ − x̂||2 = −〈ty∗, x̄∗∗ − x̂〉 = 〈x̄∗ − x∗, x̄∗∗ − x̂〉 ≥ −ε.

Since t = ε/λ2 we conclude that ||x̄∗∗ − x̂|| ≤ λ. On the other hand, by this inequality,
the definition of J∗ and (3.3) we have

||x̄∗ − x∗|| = t||y∗|| = t||x̄∗∗ − x̂|| ≤ tλ = ε/λ.

The proof is complete.

In the particular case of a reflexive Banach space one has Â0 = Â and hence the couple
(x̄∗∗, x̄∗) which approximates the original one is from the graph of the operator A. This
is the result of Torralba mentioned above.

In the general case (of an arbitrary Banach space), if we want to have some approx-
imation of a given pair from the enlargement of A by a pair from the graph of the very
operator A, we have the following corollary in which the approximation in one of the
coordinates is weaker than the norm-approximation:

Corollary 3.8 Let A be a maximal monotone operator of type (D) between the Banach
space X and its dual X∗. Then for every ε > 0 and for every (x, x∗) ∈ Gr(Aε) there exists
(xε, x

∗
ε) ∈ Gr(A) such that:

(i) ||x∗ε − x∗|| ≤ 2
√

ε; and

(ii) |〈xε − x, x∗ε − x∗〉| ≤ 2ε.

Proof: Fix some ε > 0 and (x, x∗) ∈ Gr(Aε). By the theorem above (with λ =
√

ε)
there is a couple (x̄∗∗, x̄∗) ∈ Gr(Â0) such that:

(1) ||x̄∗∗ − x̂|| ≤ √
ε; and

(2) ||x̄∗ − x∗|| ≤ √
ε.

Since A is of type (D) there exists a net {(xα, x∗α)} ⊂ Gr(A) such that {x̂α} is norm-
bounded and converges to x̄∗∗ in the weak star topology of X∗∗, while {x∗α} norm-converges
to x̄∗ in X∗. Let α be so large that:

(a) |〈xα − x, x∗α − x̄∗〉| ≤ ε/2;

(b) |〈x̂α − x̄∗∗, x̄∗ − x∗〉| ≤ ε/2;
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(c) ||x∗α − x̄∗|| ≤ √
ε.

Condition (b) is a consequence of the weak star convergence of {x̂α} to x̄∗∗, condition
(c)–from the norm-convergence of {x∗α} to x̄∗, while condition (a) follows by the norm-
convergence of {x∗α} to x̄∗ and the fact that {x̂α} is norm-bounded. Fix now some α
as above and put xε = xα and x∗ε = x∗α. The condition (i) of the corollary is a direct
consequence of (2) and (c) above. As to (ii) using (1),(2), (a) and (b) we have:

|〈xε − x, x∗ε − x∗〉| = |〈xα − x, x∗α − x∗〉|
≤ |〈xα − x, x∗α − x̄∗〉|+ |〈xα − x, x̄∗ − x∗〉|
≤ ε

2
+ |〈x̂α − x̄∗∗, x̄∗ − x∗〉|+ |〈x̄∗∗ − x̂, x̄∗ − x∗〉|

≤ ε

2
+

ε

2
+ ||x̄∗∗ − x̂|| ||x̄∗ − x∗||

≤ ε +
√

ε
√

ε = 2ε.

The proof is complete.

4 Extended sum of monotone operators

Given two monotone operators A, B : X → X∗, let us define the operator A+B : X → X∗

as the usual pointwise sum of A and B:

(A + B)x = Ax + Bx, x ∈ X.

This sum is always a monotone operator with domain Dom(A + B) = DomA ∩ DomB.
But if A and B are maximal monotone operators, it does not follow, in general, that their
sum A + B is a maximal monotone operator. Some counterexamples are given in [Ph1]
p. 54. Starting with the classical results of Browder [Br] and Rockafellar [Ro2], there
have been a number of papers giving sufficient conditions when the sum of two maximal
monotone operators is again a maximal monotone operator (see e.g. [A, ART, Ch, Si]
just to mention a few).

As we mentioned in the introduction, the lack of maximal monotonicity for A + B
was a reason for different authors to look for a generalized notion of sum of monotone
operators. Our aim here is to introduce a type of sum of A,B based on their enlargements.
We define an extended sum of two monotone operators A,B : X → X∗ at the point x ∈ X
by the formula

A +
ext

B(x) =
⋂

ε>0

Aεx + Bεx
w∗

.

Obviously, A + B ⊂ A + B ⊂ A +
ext

B and hence, Dom(A) ∩ Dom(B) ⊂ Dom(A +
ext

B).

Observe also that the sum is commutative: A +
ext

B = B +
ext

A. We see below that in

several important cases the extended sum is a maximal monotone operator.

10



Theorem 4.1 Let A,B : X → X∗ be two maximal monotone operators such that A + B
is a maximal monotone operator. Then for any x ∈ X

A + B(x) = A +
ext

B(x)

Proof: The left hand side is always included in the right hand side because of the
definition. So we have to prove only the inverse inclusion. In order to show this we easily
see first that for any x ∈ X and any ε > 0 we have:

(4.1) Aεx + Bεx ⊂ (A + B)2εx.

Indeed, fix some x ∈ X and ε > 0 and let x∗ ∈ Aεx+Bεx. Then x∗ = u∗+v∗ for some
u∗ ∈ Aεx and v∗ ∈ Bεx. Take now an arbitrary couple (z, z∗) from Gr(A + B). Hence
z∗ ∈ (A + B)(z) and consequently there are z∗1 ∈ Az and z∗2 ∈ Bz so that z∗ = z∗1 + z∗2 .
Now we have

〈x− z, x∗ − z∗〉 = 〈x− z, u∗ + v∗ − z∗1 − z∗2〉
= 〈x− z, u∗ − z∗1〉+ 〈x− z, v∗ − z∗2〉
≥ −ε− ε = −2ε.

The above chain of inequalities shows that x∗ ∈ (A+B)2ε(x). In this way (4.1) is proved.

Now Proposition 3.3 shows that (A + B)2ε = A + B
2ε

. Hence by (4.1) we get

Aεx + Bεx ⊂ A + B
2ε

(x),

which on its turn gives that

Aεx + Bεx
w∗ ⊂ A + B

2ε
(x).

Therefore,

A +
ext

B(x) =
⋂

ε>0

Aεx + Bεx
w∗ ⊂ ⋂

ε>0

A + B
2ε

(x) = A + B(x).

The last equality is due to Proposition 3.1. The proof is complete.

Corollary 4.2 Let A,B : X → X∗ be maximal monotone operators such that A + B is a
maximal monotone operator. Then for any x ∈ X

(A + B)(x) =
⋂

ε>0

(Aεx + Bεx) = A +
ext

B(x).

Proof: We will prove the first equality. The second is then a consequence of the
previous theorem. To establish the first equality we have only to prove that its right hand
side is included in the left hand side of the same equality. From (4.1) above we have

⋂

ε>0

(Aεx + Bεx) ⊂ ⋂

ε>0

(A + B)2ε(x) = (A + B)(x),

11



the last equality being true by virtue of Proposition 3.1. Whence the desired inclusion.
The proof is complete.

From the above corollary we get the following kind of Hiriart-Urruty and Phelps
formula for the subdifferential of the sum of two proper convex lower semicontinuous
functions with the new type of enlargements, when the w∗-closures can be removed.

Corollary 4.3 Let f, g : X → R ∪ {+∞} be two proper lower semicontinuous convex
functions, such that the sum of their subdifferentials ∂f + ∂g is a maximal monotone
operator (which amounts to saying that ∂f + ∂g = ∂(f + g)). Then for every x ∈ X

∂(f + g)(x) =
⋂

ε>0

[
(∂f)εx + (∂g)εx

]
= ∂f +

ext
∂g(x).

A sufficient condition for the maximality of the pointwise sum of the two subdiffer-
entials is the so-called Robinson-Rockafellar condition, which requires the origin to be in
the algebraic core of the difference of the domains of f and g (see e.g. [Th1], Lemma 5
and Corollary 6).

More general (and more important) than the above particular corollary, is that, with-
out any additional assumptions, the subdifferential of the sum of two proper convex lower
semicontinuous functions is equal to the extended sum of their subdifferentials. Before
giving this result, we recall an interesting representation of the subdifferential of the sum
of two proper convex lower semicontinuous functions (see Penot [Pe] and Thibault [Th2]):
Let X be a Banach space and f, g : X → R∪{+∞} be proper convex lower semicontinuous
functions. Then (y, y∗) ∈ ∂(f + g) if and only if there are two nets {(yα, y∗α)} ⊂ ∂f and
{(zα, z∗α)} ⊂ ∂g, such that {yα} and {zα} converge strongly to y, y∗ = w∗ − lim(y∗α + z∗α),
〈yα− y, y∗α〉 → 0 and 〈zα− y, z∗α〉 → 0. In fact, one has in addition that f(yα) → f(y) and
g(zα) → g(y). The result above is a refinement of a previous similar one due to Thibault
[Th1], Theorem 3. For brevity, here (and below) we use the convenience (x, x∗) ∈ ∂f
instead of (x, x∗) ∈ Gr(∂f)

Now we are ready to prove that the subdifferential of the sum of two convex proper
lower semicontinuous functions is exactly the extended sum of their subdifferentials. In
this way we have a kind of Hiriart-Urruty and Phelps formula with the new enlargements.
This result, together with the above Theorem 4.1 and Corollary 4.2, show that in several
important cases the extended sum is a maximal monotone operator. Observe that, in
particular, the theorem below shows that the subdifferential of the sum and the extended
sum of the subdifferentials have the same domain.

Theorem 4.4 Let X be a Banach space and f, g : X → R ∪ {+∞} be two proper lower
semicontinuous convex functions such that domf ∩ domg 6= ∅. Then for every x ∈ X one
has:

∂(f + g)(x) = ∂f +
ext

∂g(x).

12



Proof: By the Hiriart-Urruty and Phelps result (Theorem 2.2) and the remarks after
the definition of the ε-enlargements, it is clear that the left hand side of the above equation
is included in the right hand side. Therefore, it remains only to prove the inverse inclusion.

Take some x ∈ X and suppose that x∗ ∈ ∂f +
ext

∂g(x). We will show that the pair

(x, x∗) is monotonically related to ∂(f+g). In view of the maximal monotonicity of ∂(f+g)
this will imply x∗ ∈ ∂(f + g)(x). So, take some arbitrary couple (y, y∗) ∈ ∂(f + g) and
fix it. We will prove that 〈x − y, x∗ − y∗〉 ≥ 0. To this end let δ > 0 be an arbitrary
fixed positive number. Choose ε > 0 in such a way that ε ≤ δ/8 and fix it as well. Since

x∗ ∈ (∂f)εx + (∂g)εx
w∗

we can find u∗ε ∈ (∂f)εx and v∗ε ∈ (∂g)εx such that:

(4.2) |〈x− y, x∗ − u∗ε − v∗ε〉| ≤
δ

8
.

Fix these u∗ε and v∗ε . On the other hand, by the result of Thibault [Th2] formulated above,
there are two nets {(yα, y∗α)} ⊂ ∂f and {(zα, z∗α)} ⊂ ∂g, such that {yα} and {zα} converge
strongly to y, y∗ = w∗ − lim(y∗α + z∗α), 〈yα − y, y∗α〉 → 0 and 〈zα − y, z∗α〉 → 0. Let α be so
large that:

(4.3)

(i) ||y − yα|| ||u∗ε|| ≤
δ

8
, ||y − zα|| ||v∗ε || ≤

δ

8

(ii) |〈x− y, y∗α + z∗α − y∗〉| ≤ δ

8

(iii) |〈y − yα, y∗α〉| ≤
δ

8
, |〈y − zα, z∗α〉| ≤

δ

8

Now by (4.2) we have:

〈x− y, x∗ − y∗〉 = 〈x− y, u∗ε + v∗ε − y∗〉+ 〈x− y, x∗ − u∗ε − v∗ε〉
≥ 〈x− y, u∗ε + v∗ε − y∗〉 − δ

8
.

Further, having in mind (4.3) (ii), we obtain that for large α:

〈x− y, x∗ − y∗〉 ≥ 〈x− y, u∗ε + v∗ε − y∗〉 − δ

8

= 〈x− y, u∗ε + v∗ε − y∗α − z∗α〉+ 〈x− y, y∗α + z∗α − y∗〉 − δ

8

≥ 〈x− y, u∗ε − y∗α〉+ 〈x− y, v∗ε − z∗α〉 −
2δ

8

= 〈x− yα, u∗ε − y∗α〉+ 〈x− zα, v∗ε − z∗α〉

+〈yα − y, u∗ε − y∗α〉+ 〈zα − y, v∗ε − z∗α〉 −
2δ

8

= 〈x− yα, u∗ε − y∗α〉+ 〈x− zα, v∗ε − z∗α〉

+〈yα − y, u∗ε〉+ 〈y − yα, y∗α〉+ 〈zα − y, v∗ε〉+ 〈y − zα, z∗α〉 −
2δ

8
.

13



The first two terms on the right hand side of the last equality are greater or equal of ε
because of the fact that (x, u∗ε) ∈ (∂f)ε, (yα, y∗α) ∈ (∂f), (x, v∗ε) ∈ (∂g)ε and (zα, z∗α) ∈
(∂g). Therefore, taking into account (4.3) (i) and (4.3) (iii) we can continue the above
chain of inequalities as follows:

〈x− y, x∗ − y∗〉 ≥ −2ε− ||y − yα|| ||u∗ε|| −
δ

8
− ||y − zα|| ||v∗ε || −

δ

8
− 2δ

8

≥ −2ε− δ

8
− δ

8
− 4δ

8
= −2ε− 6δ

8
≥ −δ.

In the last inequality we have used that ε ≤ δ/8. Consequently, we have proved that

〈x− y, x∗ − y∗〉 ≥ −δ

and since δ was arbitrary, this entails that 〈x− y, x∗ − y∗〉 ≥ 0. The proof is complete.
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