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Abstract. In this paper, we consider the extension of the notion of
well-posedness by perturbations, introduced by Zolezzi for optimization
problems, to other related variational problems like inclusion problems
and fixed-point problems. Then, we study the conditions under which
there is equivalence of the well-posedness in the above sense between
different problems. Relations with the so-called diagonal well-posedness
are also given. Finally, an application to staircase iteration methods is
presented.
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1. Introduction

An initial, already classical, notion of well-posedness for an uncon-
strained minimization problem determined by an extended real-valued func-
tion f: X→�∪{+S}, where X is a Banach space, is due to Tykhonov (Ref.
1). The problem of minimizing f on X is said to be Tykhonov well-posed if
it has unique solution toward which every minimizing sequence of the prob-
lem converges. Clearly, this notion is motivated by the numerical methods
producing optimizing sequences. The idea of the behavior of the minimizing
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sequences was used by different authors to extend this concept to two direc-
tions: first for strengthened notions (also for constrained problems) and
second for the case in which the optimal solutions are not unique (see e.g.
Refs. 2–12). Unfortunately, these notions do not imply always appropriate
continuous dependence of the solution on the data; therefore, in particular,
they are not suitable for numerical methods, where the function f is approxi-
mated by a family or a sequence of functions (Refs. 5, 9, 12–16). For this
reason, new notions of well-posedness have been introduced and studied.
We will mention two: first, the well-posedness by perturbations, introduced
by Zolezzi in Refs. 17–18, which incorporates both the idea of Tykhonov
well-posedness and the continuous dependence of the solution on the data
(the latter is termed often Hadamard well-posedness in optimization); and
second the diagonal well-posedness (see Ref. 13), which relies on the
approximation scheme of a given problem.

The aim of this paper is to study these latter notions, and mostly the
first one, for related variational problems of fixed-points and inclusions and
to investigate their links with minimization problems. For different reasons,
both numerical and theoretical, we will consider the more general case when
the requirement of the uniqueness of the solution is dropped.

In what follows, X will stand for a real Banach space and X*will be its
dual. For the norm in X and X*, the symbol �� · �� will be used. The pairing
between X and X* will be designated by 〈 · , · 〉. Recall also that, given an
extended real-valued function f: X→�∪{CS}, the symbol dom f stands
for the domain of f, i.e., the set

{x∈X: f (x)FS}.

The function f is called proper if its domain is nonempty.
For a subset C⊂X, we denote by d( · , C ) the distance function gener-

ated by C, i.e., the function

d(x, C )_ inf {��xAy��: y∈C}, x∈X.

Given two sets C and D in X, as usual the excess of C over D is

c(C, D)_sup{d(x, D): x∈C},

and the Hausdorff distance between C and D is

haus(C, D)_max{e(C, D), e(D, C )}.

In the rest of the paper we proceed as follows. In Section 2, we intro-
duce well-posedness by perturbations for inclusion problems and fixed-point
problems, having in mind the corresponding notion for minimization prob-
lems. Then, we study the links between these three types of problems for
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this concept. Section 3 is devoted to a brief discussion of the diagonal well-
posedness and its connection with the well-posedness by perturbations.
Finally, Section 4 contains applications to the convergence of staircase iter-
ation methods.

2. Well-Posedness by Perturbations

The idea of well-posedness by perturbations proposed by Zolezzi in
Refs. 17–18 for optimization problems is the following. One embeds the
original problem into a parametrized family of similar problems and then
requires the convergence of appropriately defined optimizing sequences to
the solution of the original problem; for more details and results, see Refs.
17–18. We give below the precise definition of this notion for the case of
nonunique solutions and extend it naturally for two (related) other types of
problems: inclusion problems and fixed-point problems.

In what follows, P is a parameter space. Each p∈P generates through
the particular parametrization scheme a problem with solution set S( p).
The original problem corresponds to a certain fixed parameter. We will
suppose that P is endowed with some convergence structure.

With each sequence of parameters {pn}, we associate a sequence in the
underlying space X, called asymptotically solving sequence. Let us see how
this is done in the three cases which interest us.

2.1. Minimization Problems. See Zolezzi, Refs. 17–18. Let f: X→
�∪{+S} be an extended real-valued function, and let

S_Argmin f_{x∈X: f (x)Ginf{ f (x′ ): x′∈X}G: inf f }

be its set of minimizers in X. In this case, the parametrization scheme is
given by a function f̃: XBP→�∪{+S} such that

f̃( · , p*)Gf, for a certain p*.

We set

S( p)_Argmin f̃( · , p)_{x∈X: f̃(x, p)Ginf f̃( · , p)}.

We will suppose that, for every p∈P, we have inf f̃( · , p)H−S. Given a
sequence of parameters {pn}, the sequence {xn}⊂X is called asymptotically
solving corresponding to {pn} if it is f̃-asymptotically minimizing corre-
sponding to {pn}, which means that

f̃ (xn , pn)Ainf f̃ ( · , pn)→0.
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2.2. Inclusion Problems. Let Y be a real normed vector space with
norm �� · ��Y , and let T: X→→Y be a set-valued mapping between X and Y with
domain

Dom (T )_{x∈X: Tx ≠ ∅}.

We will be interested in the problem of finding a solution to the following
inclusion: find x∈Dom(T ) such that 0∈T(x). The solution set of this par-
ticular problem is

S_T−1(0)G{x∈X: 0∈Tx}.

Here, the parametrization scheme is given by a set-valued mapping
T̃: XBP→Y such that

T̃( · , p*)GT, for some p*.

Let

S( p)_{x∈X, 0∈T̃(x, p)}.

The sequence {xn}⊂X is called asymptotically solving, corresponding
to the sequence of parameters {pn}, if it is T̃-asymptotically stationary corre-
sponding to {pn},

d(0, T̃(xn , pn))→0,

or equivalently,

∀n∈�, ∃yn∈T̃(xn , pn): ��yn ��Y→0.

2.3. Fixed-Point Problems. Here, we are given a single-valued map-
ping F: X→X, and we are looking for the fixed points of F. The particular
solution set associated to F is

S_Fix FG{x∈X: xGFx},

and the parametrization is given by a single-valued mapping F̃: XBP→X
such that F̃( · , p*)GF for a certain p*.

In this case, a sequence {xn}⊂X is called asymptotically solving, corre-
sponding to the sequence of parameters {pn}, if it is F̃-asymptotically regular
corresponding to {pn},

��xnAF̃(xn , pn) ��→0.

Now, we are ready to give a definition of well-posedness by pertur-
bations in the three cases above. As we mentioned for the case of minimiz-
ation problems, this notion was introduced by Zolezzi (Refs. 17–18). Here,
we consider the more general case of nonunique solutions.
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Definition 2.1. Let p*∈P be any particular problem from the above
variational problems. Then, this problem is said to be well-posed by pertur-
bations with respect to the particular perturbation scheme if the following
conditions are satisfied:

(i) S( p*) ≠ ∅,
(ii) if pn→p*, then any asymptotically solving sequence {xn} corre-

sponding to {pn} converges to S( p*) in the sense that

d(xn , S( p*))→0.

Let us remark that, for minimization problems, the above notion, in
which we allow the nonuniqueness of the solution, is termed stability by
perturbations in Ref. 19.

If the perturbed problem is independent of p, the well-posedness by
perturbations for the above problems reduces to the concept of well-
posedness (for the case of nonunique solution) as it is considered in Ref. 8.
The latter or similar kind of well-posedness for minimization problems has
also been studied in Refs. 2–3, 7–8. Of course, the particular case of minim-
ization problems with a unique solution and without parameters is exactly
the classical Tykhonov well-posedness.

Let us mention also that, with YGX, fixed-point well-posedness by
perturbations for F: X→X is nothing but inclusion well-posedness in the
same sense for IAF with the inherited parameterization scheme, where I is
the identity in X.

It is well-known that the minimization of a proper lower-semicontinu-
ous convex function f: X→�∪{CS} in X is equivalent to the inclusion
problem generated by its subdifferential ∂f: X→→X*,

∂f (x)_{x*∈X*: f (y)Af (x)¤ 〈yAx, x*〉,∀y∈X}, x∈dom f,

i.e.,

x∈Argmin f, iff 0∈∂f (x).

We show that this equivalence extends to the case of well-posedness by
perturbations under some conditions. For a bounded from below function
f: X→�∪{CS} and (H0, we use the symbol (-Argmin f to denote the set
of (-minimizers of f, i.e., the set

{x∈X: f (x)⁄ inf fC(}.

Let us recall also the definition of (-subdifferential ∂( f: X →→ X* of a given
proper lower semicontinuous convex function f,

∂( f (x)_{x*∈X*: f (y)Af (x)

¤ 〈yAx, x*〉A(,∀y∈X}, x∈dom f.
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One has always

∂( f (x) ≠ ∅, for every(H0 and x∈dom f.

Now, we are ready to prove the following theorem.

Theorem 2.1. Let X be a real Banach space and, for each p in P, let
f̃( · , p) be a proper lower-semicontinuous convex function in X, where
f̃( · , p*)Gf for some p*∈P. Then, the minimization problem generated by f
is f̃-well-posed by perturbations provided the inclusion problem determined
by ∂f is ∂f̃-well-posed by perturbations. In addition, if the solution set
SGArgmin f is bounded, or if, for every sequence pn→p*, one has

e(S, (1�n)AArgmin f̃( · , pn))→0, as n→S,

then the converse implication is also true.

Proof. Let the inclusion problem for ∂f be ∂f̃-well-posed by pertur-
bations. The solution set S for the inclusion generated by ∂f is the same as
the solution set of the minimization problem generated by f. Hence, we have
to check only that, given a sequence of parameters pn→p*, then every f̃-
asymptotically minimizing sequence {xn} corresponding to {pn} converges
to S. Let us fix such a sequence. Then, there exists a sequence of positive
reals (n→0 so that

f̃(xn , pn)Finf f̃( · , pn)C(n , ∀n∈�,

from where we see that

0∈∂(n f̃( · , pn)(xn), for every n∈�.

By the Brøndsted–Rockafellar theorem (Ref. 20), for each xn there are
x̄n∈X and x*n ∈X* such that

x*n ∈∂f̃(x̄n , pn), ��xnAx̄n ��⁄1(n , ��x*n ��⁄1(n .

In particular, {x̄n} is a ∂f̃-asymptotically stationary sequence for the
inclusion problem for ∂f and thanks to its ∂f̃-well-posedness by pertur-
bations, we get

d(x̄n , S )→0.

Therefore, from the inequality

d(xn , S )⁄ ��xnAx̄n ��Cd(x̄n , S ),

and (n→0, we conclude that d(xn , S )→0. The proof of this implication is
completed.
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For the other implication, suppose that the minimization problem gen-
erated by f is f̃-well-posed by perturbations, and in addition suppose that
the common solution set S of this problem and of the inclusion problem
for ∂f is either bounded or, for every sequence of parameters pn→p*,

e(S, (1�n)AArgmin f̃( · , pn))→0.

Take a particular sequence of parameters pn→p*, and let {xn} be an asymp-
totically stationary sequence corresponding to {pn}. This means that there
exists {x*n }⊂X* so that x*n ∈∂f̃(xn , pn) for every n∈� and in addition
��x*n ��→0. By definition, the former means that, for every n∈�,

f̃(xn , pn)⁄ f̃(x, pn)C〈xnAx, x*n 〉, ∀x∈dom f̃( · , pn). (1)

Now, let {zn} be a sequence from X such that, for every n∈�, we have

zn∈dom f̃( · , pn) and zn∈(1�n)A Argmin f̃ ( · , pn).

The latter means that

f̃(zn , pn)⁄ inf f̃( · , pn)C1�n, ∀n∈�. (2)

According to the supposed conditions, we choose such a sequence as
follows;

Case 1. If S is bounded, the sequence {zn} is arbitrary with the prop-
erty (2).

Case 2. If e(S, (1�n)A Argmin f̃( · , pn))→0, we choose first for every
n∈� a point sn∈S so that

��xnAsn ��⁄d(xn , S )C1�n, (3)

and then for every sn , we take zn∈(1�n)Argmin f̃( · , pn) with the property
that

��snAzn ��⁄d(sn , (1�n)AArgmin f̃( · , pn))C1�n (4)

⁄e(S, (1�n)AArgmin f̃( · , pn))C1�n.

Observe that, in both cases, the sequence {zn} is asymptotically minimizing
corresponding to {pn} and therefore d(zn , S )→0.

Writing (1) for zn and using (2), we have that, for every n∈�,

f̃(xn , pn)⁄ f̃(zn , pn)C〈xnAzn , x*n 〉

⁄ inf f̃( · , pn)C1�nC��x*n �� ��xnAzn ��. (5)

Now, if ��x*n �� · ��xnAzn ��→0, we see that {xn} is asymptotically minimizing
corresponding to {pn}; hence, by the fact that the minimization problem for
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f is f̃-well-posed by perturbations, we conclude that d(xn , S )→0. So, the
proof of the theorem will be complete if we show that

��x*n �� · ��xnAzn ��→0.

Suppose that

��x*n �� ��xnAzn ��→� 0.

We will show that this is not possible by obtaining a contradiction. Indeed,
passing to subsequences if needed and having in mind that ��x*n ��→0, with-
out loss of generality we may think that there exists a∈� so that, for every
n∈�,

��x*n �� ��xnAzn �� ¤ aH0 and ��x*n ��F1.

For every n∈�, let

λnG1��x*n �� a�[��x*n �� · ��xnAzn ��].

Obviously, λn∈(0, 1) for every n∈�. For every n, consider now the segment
[xn , zn ] and the point yn on it defined by

ynGλnxnC(1Aλn)zn , n∈�.

By the convexity of f̃( · , pn) and also using (2), (5), and the definition of λn ,
we get that, for every n,

f̃(yn , pn)⁄λn f̃(xn , pn)C(1Aλn) f̃(zn , pn)

⁄λn inf f̃( · , pn)Cλn�nCλn ��x*n �� ��xnAzn ��

C(1Aλn) inf f̃( · , pn)C(1Aλn)�n

Ginf f̃( · , pn)C1�nCa1��x*n ��.

Since ��x*n ��→0, the last inequality implies that the sequence {yn} is asymp-
totically minimizing corresponding to {pn} and this entails that we would
have d(yn , S )→0. We will get a contradiction with this last conclusion in
the two cases that we consider.

Case 1. S is bounded. Let s∈S be arbitrary. Then, by the definition
of λn , for every n∈� we have

��ynAs�� ¤ ��ynAzn ��A��znAs��

Gλn ��xnAzn ��A��znAs��

Ga�1��x*n ��A��znAs��.

Since S is bounded and d(zn , S )→0, there exists a constant MH0 so that

��znAs��⁄M, for every n∈� and every s∈S.
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This together with the last inequality and the fact that a�1��x*n ��)→S show
that ��ynAs��→S uniformly on s∈S. The last contradicts d(yn , S )→0.

Case 2. e(S, (1�n)AArgmin f̃( · , pn))→0. In this case, we will first
show that

d(yn , S )¤ ��znAyn ��A2�nAe(S, (1�n)AArgmin f̃( · , pn)),

for every n∈�. (6)

Indeed, otherwise for some n∈�, there would exist ûn∈S so that

��ynAûn ��F��znAyn ��A2�nAe(S, (1�n)AArgmin f̃( · , pn)).

Hence, using this last inequality, (3), and (4), we have

d(xn , S )¤ ��xnAsn ��A1�n

¤ ��xnAzn ��A��znAsn ��A1�n

¤ ��xnAzn ��A2�nAe(S, (1�n)AArgmin f̃( · , pn))

G��xnAyn ��C��ynAzn ��A2�nAe(S, (1�n)AArgmin f̃( · , pn))

H��xnAyn ��C��ynAûn ��

¤ ��xnAûn ��;

i.e.,

d(xn , S )H��xnAûn ��,

with ûn∈S, which is a contradiction. Hence, (6) is true.
As a consequence of (6) and the definitions of λn and yn , we obtain

that, for every n∈�,

d(yn , S )¤ ��znAyn ��A2�nAe(S, (1�n)AArgmin f̃( · , pn))

Gλn ��znAxn ��A2�nAe(S, (1�n)AArgmin f̃( · , pn))

Ga�1��x*n ��A2�nAe(S, (1�n)AArgmin f̃( · , pn)),

from where we see that d(yn , S )→S, because ��x*n ��→0 and
e(S, (1�n)AArgmin f̃( · , pn))→0, once again a contradiction.

Therefore, in both cases, we have obtained a contradiction with the
supposition that ��x*n �� ��xnAzn ��→� 0. The proof of Theorem 2.1 is com-
pleted. �

Let us mention that, for the second implication in the above theorem,
the completeness of the space X was not needed.



JOTA: VOL. 115, NO. 2, NOVEMBER 2002354

Remark 2.1. A close look at the proof of the second implication
shows that the condition e(S, (1�n)AArgmin f̃( · , pn))→0 can be replaced by
e(S,(nAArgmin f̃( · , pn))→0 for any sequence {(n} such that (n goes to zero
by strictly positive values.

Remark 2.2. If the family {f̃( · , p)} reduces to a single function f, then
the above result is obtained in Ref. 7, where the proof for the second impli-
cation passes through an intermediate result. Observe that, in this particular
case, we have always the condition e(S, (1�n) AArgmin f̃( · , pn))→0 fulfilled.
Therefore, the result from Ref. 7 is a consequence from the theorem above.

Remark 2.3. It is easy to see that, if the minimization problem for f
is f̃-well-posed by perturbations, then we have always that, for every
sequence of parameters pn→p*, e((1�n)AArgmin f̃( · , pn), S )→0. Hence, our
supposition that

‘‘f is f̃-well-posed by perturbations and for every sequence of
parameters pn→p*, e(S, (1�n)AArgmin f̃( · , pn))→0’’

is in fact equivalent to

‘‘f is f̃-well-posed by perturbations and, for every sequence of
parameters pn→p*, haus (S, (1�n) AArgmin f̃( · , pn))→0.’’

On the other hand, we see from the next example that, in the case of
unbounded set of solutions, the supposition made in the theorem is crucial.

Example 2.1. Let XG�, PG[0, 1], and let the function f̃ be defined as
follows:

f̃(x, p)_�
−xC1, if pG0, x∈(−S, 1),

0, if pG0, x∈[1,+S),

−pxC1, if pH0, x∈(−S, 1�p),

0, if pH0, x∈[1�p,+S).

It is easily seen that

S_S(0)G[1,CS),

inf f̃( · , p)G0, for every p∈P,
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and that the problem generated by f_ f̃( · , 0) is f̃-well-posed by pertur-
bations. On the other hand, if pnG1�n, n∈�, one sees that, for every
n∈�,

∂f̃(x, pn)G{−1�n}, for every x∈(−S, n).

Hence, for example, the constant sequence xnG1�2, n∈�, is a ∂f̃-asymptoti-
cally stationary sequence corresponding to {pn}, which stays away from S.
Therefore, the inclusion problem for ∂f is not ∂f̃-well-posed by pertur-
bations. Observe that here, for every n∈�,

(1�n) AArgmin f̃( · , pn)G[nA1,+S);

consequently, for n¤ 2, we have

e(S, (1�n)AArgmin f̃( · , pn))GnA2→CS;

i.e., the condition from Theorem 2.1 is not fulfilled.
As always, the case of a unique solution is of special importance. The

following is an immediate corollary from Theorem 2.1.

Corollary 2.1. Let X be a real Banach space and, for all p in P, let
f̃( · , p) be a proper lower-semicontinuous convex function on X, where
f̃( · , p*)Gf for some p*. Suppose that f has a unique minimizer. Then, the
minimization problem for f is f̃-well-posed by perturbations if and only if
the inclusion problem for ∂f is ∂f̃-well-posed by perturbations.

Now, we pass to the study of the relation between the well-posedness
of certain inclusion problems and the same notion of appropriately linked
fixed-point problems. More precisely, we will be interested in inclusion
problems generated by monotone operators. Recall that a set-valued opera-
tor A: X →→ X* is said to be monotone if it satisfies the following condition:

〈yAx, y*Ax*〉 ¤ 0, for every (x, x*), (y, y*)∈Gr(A),

where the symbol Gr(A) means the graph of A,

Gr(A)_{(x, x*)∈XBX*: x*∈Ax}.

A monotone operator A: X →→ X* is said to be maximal if its graph is not
contained properly in the graph of any other monotone operator from X to
X*. The subdifferentials of proper convex lower-semicontinuous functions
as well as many differential operators turn out to be maximal monotone.

Further in this section, we will restrict our considerations to the (still
enough general) case of a reflexive real Banach space X. In this case [see
e.g. Diestel (Ref.21)], we may suppose that both the norm in X and the dual
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norm in X* are Fréchet differentiable (except at the origin), locally uni-
formly rotund norms. In particular, these norms are strictly convex and
moreover satisfy the following Kadec–Klee property:

‘‘if xn→x weakly in X and ��xn ��→ ��x��, then xn→x in the norm of X,’’

and the same for the weak turology and the norm topology in X*. In such
a situation, the duality mapping J between X and X*, given by

Jx_{x*∈X*: 〈x, x*〉G��x��2G��x*��2}, x∈X,

which is always a maximal monotone operator with Dom (J )GX, is also
one-to-one, surjective, and norm-to-norm continuous.

Using this mapping, one can define, for every maximal monotone
operator A: X →→ X*, its resolvent JA

λ of order λH0 as the operator from X
into X in the following way: for any x∈X, JA

λ x is the unique [by the classical
results of Browder (Ref. 22) and Rockafellar (Ref. 23)] solution xλ of the
inclusion

0∈J(xλAx)CλAxλ . (7)

The resolvent JA
λ maps X into Dom(A) and is norm-to-weak continuous. It

is used to define another important mapping related to A, the Yosida
approximation Aλ of A of order λ , as follows:

Aλ x_ (1�λ ) J(xAxλ), x∈X. (8)

The mapping Aλ is an everywhere defined single-valued maximal monotone
operator between X and X*. One has always

Aλ x∈A(JA
λ x), for every x∈X.

Moreover, for every λH0,

JA
λ xGxAλJ−1Aλ x, for every x∈X. (9)

In the special case of a Hilbert space X, J is the identity and the above
formulas take the well-known forms

JA
λ G(JCλA)−1 and Aλ G(JAJA

λ )�λ .

Now, we turn back to the inclusion problems. First, since the inclusion
(7) has a unique solution, it is verifiable easily that, if A: X →→ X* is a maxi-
mal monotone operator, then for any λH0, the inclusion problem

find x∈Dom(A) such that 0∈Ax

is equivalent to the fixed-point problem

find x∈X such that xGJA
λ x.
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On the other hand, because of (8), the latter problem is equivalent to the
inclusion (which is in fact an equality)

find x∈X such that Aλ xG0.

In the next theorem, we see that the well-posedness by perturbations
for the different variational problems generated by a maximal monotone
operator A: X →→ X* and its approximations, defined above, are equivalent.

Theorem 2.2. Let A: X →→ X* be a maximal monotone operator. Con-
sider a parametrization Ã( · , p), p∈P, so that, for every p∈P, Ã( · , p) is a
maximal monotone operator between X and X* such that Ã( · , p*)GA, for
some p*∈P. Let λH0. Then, the following assertions are equivalent:

(a) the inclusion problem generated by A is Ã-well-posed by
perturbations;

(b) the fixed-point problem for JA
λ is JÃ

λ -well-posed by perturbations;
(c) the inclusion problem for Aλ is Ãλ -well-posed by perturbations.

Proof. First we prove that (a) ⇒ (b). Let the inclusion problem for A
be Ã-well-posed by perturbations with (nonempty) solution set S. Then, as
pointed above, the fixed-point problem generated by the resolvent JA

λ has
the same set of solutions S. Take a sequence of parameters pn→p* and
suppose that {un} is a JÃ

λ -asymptotically regular sequence corresponding to
{pn}. For every n∈�, let

wnGJÃ( · , pn)
λ un .

By definition, this means that

0∈J(wnAun)CλÃ(wn , pn).

The last entails that, for every n∈�, the functional

y*n _A(1�λ )J(wnAun)

satisfies the inclusion

y*n ∈Ã(wn , pn).

On the other hand, by the definition of J, we have that, for every n∈�,

��y*n ��G(1�λ ) ��wnAun ��.

But since the sequence {un} is asymptotically regular, we obtain that
��wnAun ��→0, from where ��y*n ��→0. Therefore, the sequence {wn} is Ã-
asymptotically stationary corresponding to {pn}. Since the inclusion prob-
lem for A is Ã-well-posed by perturbations, we get d(wn , S )→0, from where,



JOTA: VOL. 115, NO. 2, NOVEMBER 2002358

using once again that ��wnAun ��→0, we obtain that d(un , S )→0 as well. The
proof of this implication is completed.

Conversely, to prove that (b)⇒ (a), suppose that the fixed point for the
resolvent JA

λ is JÃ
λ -well-posed by perturbations with (nonempty) solution set

S. Let again {pn} be a sequence of parameters converging to p*. Let further
{xn} be an Ã-asymptotically stationary sequence corresponding to {pn}.
This means that, for every nG1, 2, . . . , there exists x*n ∈Ã(xn , pn) so that
��x*n ��→0. For every nG1,2, . . . , put

yn_xnAJ−1(−λx*n ).

Then, it is seen easily that, for every nG1,2, . . . , we have

0∈J(xnAyn)CλÃ(xn , pn),

which shows that, for every nG1, 2. . . ,

xnGJÃ( · , pn)
λ yn .

From here, using the definition of yn and J, we get that, for each
nG1, 2, . . . ,

��ynAJÃ( · , pn)
λ yn ��G��ynAxn ��

G��J−1(−λx*n ) ��

Gλ ��x*n ��.

As ��x*n ��→0, we conclude that the sequence {yn} is asymptotically regular
corresponding to {pn} with respect to the parametrization JÃ

λ . Thanks to
the JÃ

λ -well-posedness by perturbations of the fixed-point problem generated
by JA

λ , we get that d(yn , S )→0. Since ��xnAyn ��→0, we deduce that
d(xn , S )→0. The proof of the equivalence between the assertions (a) and
(b) is completed.

As to the equivalence between (b) and (c), we see from the definition
of the Yosida approximations (8) that the inclusion problem for Aλ and the
fixed-point problem for JA

λ have the same set of solutions. On the other
hand, given a sequence of parameters {pn}⊂P, it is seen easily from the
relation (9) that the Ãλ -asymptotically stationary sequences for the
inclusion problem Aλ corresponding to {pn} are JÃ

λ -asymptotically regular
sequences for the fixed-point problem JA

λ corresponding to {pn} and vice-
versa, from where the equivalence between (b) and (c) follows. �

3. Links with Diagonal Well-Posedness

In this section, we outline briefly the natural relation of the notion of
well-posedness by perturbations with the so-called diagonal well-posedness
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considered in Refs.13, 15. We will do this only for minimization problems.
The natural counterparts for inclusion problems and fixed-point problems
as well as the corresponding relations are left to the reader.

The idea of diagonal well-posedness is motivated by problems where
the initial (bounded from below) function f: X→�∪{+S} to be minimized
is approximated in some way by a sequence of (bounded from below) func-
tions fn : X→�∪{+S}, and one considers the corresponding minimization
problems generated by fn in X. In such a situation, one possible approach
is: instead of searching for a notion of well-posedness for the particular
problem determined by f, it is better sometimes, from a practical point of
view, to look for a notion of well-posedness for the whole sequence { fn}.

More precisely (for more details, see Refs. 13, 15), let X be a real Ban-
ach space and we are given a sequence of usually lower-semicontinuous
bounded from below functions fn : X→�∪{+S}. The sequence {xn}⊂X is
said to be diagonally minimizing for { fn} if

fn (xn)Ainf fn→0.

Definition 3.1. The sequence {fn} is called diagonally well-posed iff

(i) ∀n∈�, Argmin fn ≠ ∅;
(ii) any diagonally minimizing sequence {xn} for {fn} is diagonally

convergent to Sn , i.e.,

d(xn , Sn)→0.

Of course, if fn ≡ f, for every n, then the above is exactly the well-posedness
of f.

As we mentioned, there are natural extensions of this idea for inclusion
and fixed point-problems: one has a sequence of set-valued operators

Tn : X →→ (Y,�� · ��Y), n∈�,

for inclusion problems, and a sequence of single-valued operators

Fn : X→X, n∈�

for fixed-point problems. Then, one defines the corresponding diagonally
solving sequences: diagonally stationary sequences {xn}⊂X, if
d(0, Tn (xn))→0 for inclusion problems, and diagonally regular sequences
{xn}, if ��xnAFn (xn) ��→0 for fixed-point problems. Finally, the notion of
diagonal well-posedness in the two cases requires the existence of solutions
for the perturbed problems and the diagonal convergence of the correspond-
ing diagonally solving sequences.
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For details and a result similar to Theorem 2.1, as well as for other
properties of this notion, the reader is referred to Refs. 13, 15. Here, we
want to mention only that, using the same techniques as in Theorem 2.2,
one can prove the following analogous result.

Theorem 3.1. Let X be a reflexive real Banach space and, for every
n∈�, let An be a maximal monotone operator between X and X*. Let
λH0. Then, the following assertions are equivalent:

(a) the sequence of inclusion problems {An} is diagonally well-posed;
(b) the sequence of fixed-point problems {JAn

λ } is diagonally well-
posed;

(c) the sequence of inclusion problems {(An)λ } is diagonally well-
posed.

Further, we give an obvious natural relation of the notion of diagonal
well-posedness with the notion of well-posedness by perturbations.

Theorem 3.2. Let X be a real Banach space, and let P be a conver-
gence space of parameters. Suppose that, for all p∈P, f̃( · , p) is a bounded
from below proper extended real-valued function on X so that
S( p)_Argmin f̃( · , p) ≠ ∅, f̃( · , p*)Gf, S_S( p*), and haus (S( p), S ) →

p→p*
0.

Then, the minimization problem for f is f̃-well-posed by perturbations iff,
for all {pn} converging to p*, {f̃( · , pn)} is diagonally well-posed.

Proof. The proof is elementary using (in both directions) the triangle
inequality for the distance function. �

Let us mention that the assumption

haus (S( p), S ) →
p→p*

0

cannot be avoided in general. This is seen for instance by Example 2.1 if
one takes pnG1�n and xnGnA1, n∈�.

We finish the section by pointing out that exact analogues of the above
result are true if one considers inclusion problems or fixed-point problems.

4. Staircase Iteration and Well-Posedness

4.1. General Discussion. Let us describe the general scheme of a stair-
case iteration process and its relation to well-posedness by perturbations. A
standard situation, which occurs often in numerical analysis is the following;
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it is given a problem P with solution set S and there exists a sequence of
approximate problems P n , nG1, 2, . . ., of the same type as P and an
iterative method adapted to the type of problems considered. The idea is to
apply this iterative method successively to P n for every nG1, 2, . . . , but

for each particular n stopping after a finite number of iterates kn and then
restarting with a new approximate problem from the last iterate. This gives
rise to a staircase iterative process.

More precisely, let x0
1 be a given initial point in the underlying space

and, for every nG1, 2, . . . , denote by Qn the iteration mapping for the prob-

lem P n given by the method. Then, for fixed n¤ 1, one makes kn iterations
of the usual type,

xk
n_Qnx

kA1
n , kG1, 2, . . . , kn .

To pass to the next problem P nC1 one just sets as an initial point

x0
nC1_xkn

n .

Of course, the aim of the stopping rule is to obtain a sequence {xkn
n } which

converges to S in a reasonable sense.
In some cases, after a possible reformulation of the problem P as a

fixed-point problem generated by some mapping F in a Banach space X, the
sequence {Qn} is defined via a certain embedding F̃ of F, as in Section 2, in
the following way: there is a sequence {pn} of parameters so that
Qn_ F̃( · , pn). Hence, if the problem P is well-posed by perturbations with
respect to this embedding, the question amounts to finding a stopping rule
(the choice of kn) so that the sequence {xkn

n } is asymptotically regular corres-
ponding to {pn}.

In general, for the three types of problems (minimization, inclusion,
and fixed-point) considered in Section 2, this is done as follows. In the
notation of Section 2, given a sequence of parameters {pn}, let

sn (x)_ f̃( pn , x)Ainf f̃( · , pn) [resp. sn (x)_d(0, T̃(x, pn)) or

sn (x)_ ��xAF̃(x, pn) ��].

Then, obviously, {xn} is asymptotically solving corresponding to {pn} iff

lim
n→CS

sn (xn)G0.

Now, let us assume that, for each fixed n, we can build a sequence {xk
n}

such that

lim
k→CS

sn (x
k
n)G0;
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i.e., in a certain sense, the sequence {xk
n}

S
kG1 is asymptotically solving for

the fixed n (or pn). Let {(n} be a sequence of positive reals converging to 0,
and set kn so that

sn (x
kn
n )⁄(n .

It is clear that

sn (x
kn
n )→0, as n→S.

In particular, coming back to the above staircase iterative process, we
see that, if the iteration Qn for each fixed n generates a sequence {xk

n}
S
kG1

so that

lim
k→CS

��xk
nAxkA1

n ��G0,

then kn must be chosen so that

��xkn
n AxknC1

n ��⁄(n ,

where (n converges to 0 with positive values.

4.2. Application: Staircase Proximal Method. Let {Tn} be a sequence
of maximal monotone operators on the real Hilbert space X. Let us consider
the staircase iterative process with

Qn_JT n
λ ,

where

JT n
λ _ (JCλTn)

−1

denotes the resolvent of parameter λH0 associated with Tn. It is known
(Ref. 24) that the iteration process generated by Qn at fixed n generates an
asymptotically regular sequence for this fixed n, i.e.,

lim
k→CS

��xk
nAQnx

k
n ��G0,

in the following cases: Tn is the subdifferential of a bounded-from-below
proper lower-semicontinuous convex function fn or T −1

n (0) is nonempty. So,
in these cases, we can choose kn as described above. Therefore, if Tn is
defined from some maximal monotone operator T via an embedding
T̃( · , · ) such that TGT̃( · , p) and Tn ( · )GT̃( · , pn) for some sequence of par-
ameters pn→p, and if the inclusion problem for T is T̃-well-posed by pertur-
bations, thanks to Theorem 2.2, the sequence {xkn

n } generated satisfies
d(xkn

n , T −1(0))→0.
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The above described method is called staircase proximal method. We
will give two examples which lead to convergence in this method. In what
follows, given a nonempty set C⊂X, the symbol δC ( · ) denotes the usual
indicator function of C; i.e.,

δC (x)G0, if x∈C,

δC (x)G+S, otherwise.

Example 4.1. Exterior Penalization. Let X_�m, m∈�, and let
f0 : X→� be a bounded-from-below lower-semicontinuous function which
is coercive, i.e.,

f0(x)→S if ��x��→S.

Let C be a nonempty closed subset of X, and set

f ( · )_ f0( · )CδC ( · ) and S_Argmin f.

The coercivity of f0 implies that S is nonempty and bounded.
Put PG[0,+S), and define the embedding

f̃( · , p)_ f0( · )C(1�p)Φ ( · ), if pH0,

f̃( · , 0)_ f ( · ),

where Φ: X→�C is a lower-semicontinuous function such that CGΦ−1(0).
It can be seen that the minimization problem for f is f̃-well-posed by pertur-
bations. Indeed, let {pn}⊂P be a sequence of parameters converging to 0
and take a sequence {xn}⊂X which is asymptotically minimizing for {pn},
i.e.,

f̃(xn , pn)Ainf f̃( · , pn)→0. (10)

First of all, since Φ is positive and CGΦ−1(0), we see easily that

inf f0 ⁄ inf f̃( · , pn)

⁄ inf {f0(x): x∈C} (11)

G: inf
C

f0 , for every n.

Now, suppose that d(xn , S ) does not converge to zero. Without loss of
generality, we may assume that

d(xn , S )¤ (, for some(H0.

Since f0 is coercive, then because of (10)–(11) the sequence {xn} is bounded.
Therefore, again without loss of generality, we can assume that xn→x0 for



JOTA: VOL. 115, NO. 2, NOVEMBER 2002364

some x0∈X. Obviously, x0∉S. We claim that x0∈C. Otherwise, Φ (x0)H0
and, because of the lower semicontinuity of Φ, we would have
Φ (xn)HtH0, for some t and large n. But this would imply f̃(xn , pn)→S,
hence inf f̃( · , pn)→S, contradicting (11). Thus, x0∈C. Since x0∉S, for
some t∈�, we have

f0(x0)HtHinf
C

f0 ,

which imply that

f0(xn)HtHinf
C

f0 , for large n,

this time because of the lower semicontinuity of f0. This is a contradiction,
having in mind (10), (11), and the obvious inequality f̃(xn , pn)¤ f0(xn).

The contradiction achieved shows that the minimization problem for f
is f̃-well-posed by perturbations. Now, suppose in addition that f0 , C, Φ are
convex. Therefore, since S is bounded, by Theorem 2.1 the inclusion prob-
lem for ∂f is ∂f̃-well-posed by perturbations. Hence, if we set fn_ f̃( · , pn) for
a sequence of parameters {pn} converging to zero, the staircase proximal
method described above for Tn_∂fn is convergent, i.e.,

d(xkn
n , S )→0.

Example 4.2. Variational Approximation. Let us assume here that X
is a real Hilbert space, C⊂X is nonempty closed and convex, and
f0 : X→� is bounded from below, continuous, and strongly convex; the lat-
ter as usual means that, for some aH0, we have

f0(λxC(1Aλ )y)⁄λ f0(x)C(1Aλ )f0(y)Aaλ (1Aλ ) ��xAy��2,

for every x, y∈X and λ∈(0, 1).

Setting

f ( · )_ f0( · )CδC ( · ),

these suppositions imply that

S_Argmin fG{x̂}, for some x̂∈C.

Let P_ [0,CS), and define

f̃( · , p)_ f0CδCp, if pH0,

f̃( · , 0)_ f,

where Cp is a nonempty closed convex subset of X, such that
weakAlim supp→0Cp⊂ C and, for each sequence {pn} converging to 0, there
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exists x̂n∈Cpn so that x̂n→ x̂. As usual, weakAlim supp→0Cp⊂C means that,
whenever we have pn→0 and xn converges weakly to x, with xn∈Cpn for
every n, then x∈C.

Here again the minimization problem for f is f̃-well-posed by pertur-
bations. To see this, let pn→0 and take a sequence as in (10). Since

inf f̃( · , pn)Ginf
Cn

f0⁄ f0(x̂n) and x̂n→ x̂,

it follows that {xn} is bounded and

lim inf f ( · , pn)⁄ f0(x̂).

Arguing by contradiction as above, we may suppose that

��xnAx̂�� ¤ (H0, for some (,

and that xn converges weakly to some x0. Because obviously xn∈Cpn for
large n, the latter implies that x0∈C. Since f0 is weakly lower semicontinu-
ous, and using the above, we get

f0(x0)⁄ lim f0(xn)

Glim f̃(xn , pn)

⁄ lim f̃(xn , pn)

⁄ f0(x̂).

This implies x0Gx̂ and

lim f0(xn)Glim f̃(xn , pn)

Glim inf f̃( · , pn)

Gf0(x̂).

But this is a contradiction already: if we take the point

yn_ (1�2)(xnCx̂n), nG1, 2 . . . ,

we have yn∈Cpn and it is seen easily that

lim f̃ (yn , pn)Glim f0(yn)

Gf0(x̂).

Thus, applying the strong convexity assumption of f0 for the points
yn , xn , x̂n , and having in mind the above chain of equalities, we get

��xnAx̂n ��→0.
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Therefore, by Corollary 2.1, the inclusion problem for ∂f is ∂f̃-well-posed
by perturbations. Hence, if fn_ f̃( · , pn), for some sequence {pn} converging
to 0, then the staircase proximal method described above is convergent; i.e.,

xkn
n → x̂.

We refer to Ref. 25 for another discussion on such a coupling between
the proximal method and approximation; we refer to Ref. 26 on the general
staircase iteration method in connection with regularization.

5. Conclusions

In this paper, we have considered the extension of the concept of well-
posedness by perturbations, introduced by Zolezzi (Refs. 17–18) for optim-
ization problems, to other related variational problems, like inclusion prob-
lems and fixed-point problems. This notion unifies the two underlying ideas
of stability of the solution: continuous dependence on the data and conver-
gence of the solving sequences.

We have shown that, under some assumptions, the well-posedness in
the above sense of a minimization problem for a proper lower-semicontinu-
ous convex function f, defined in a Banach space, is equivalent to the same
notion for the inclusion problem determined by the corresponding subdiffer-
ential ∂f (Theorem 2.1). On the other hand, the well-posedness by pertur-
bations of the inclusion problem for a maximal monotone operator A in a
reflexive Banach space has turned out to be equivalent to the same well-
posedness of the fixed-point problem for the resolvent of A (Theorem 2.2).

In Section 3, we outlined briefly the relation of the well-posedness by
perturbations for the above variational problems with another similar con-
cept, the so-called diagonal well-posedness (Theorems 3.1 and 3.2). Finally,
in Section 4, we showed how Theorems 2.1 and 2.2 can be used to assure
the convergence of the proximal staircase method (Examples 4.1 and 4.2).
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