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1 Introduction

Let X and Y be (everywhere at least Hausdorff) topological spaces and F : X → Y
be a set-valued (equivalently multivalued) mapping between them. In the subsequent
sections we will be interested in conditions which assure the existence of a continuous
selection of F which is defined on a big enough part of the domain space X.

More precisely, recall that a subset A of X is called residual in X if its complement
in X is of the first Baire category in X, i.e. X \A can be represented as a countable
union of sets whose closures in X are nowhere dense in X. The space X is said
to be a Baire space if the intersection of every countable family of open and dense
subsets of X is dense in X. Among the known examples of Baire spaces are complete
metric spaces, (locally) compact topological spaces and Čech complete spaces. We
will freely use also the fact that any open set of a Baiare space is again a Baire
space. More generally, any dense Gδ-subspace of a Baire space is also a Baire one.
Finally, if Y is a topological space which contains a dense Baire subspace is a Baire
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space as well. Therefore, if the space X is Baire and A is its residual subset, then
A contains a dense Gδ-subset of X and is considered to be a big subset of X from
topological point of view. In other words, the residual subsets in X contain most of
the points of X. A property which is fulfilled at the points of a residual subset of
some Baire space X is called a generic property.

Comming back to our main goal, it can be precisely formulated as follows: given
a set-valued mapping F : X → Y acting from the Baire space X into Y , can we find
conditions under which there exist a dense Gδ-subset X1 of X and a single-valued
continuous mapping f : X1 → Y so that f(x) ∈ F (x) for every x ∈ X1. The latter
means that f is a selection of F on the set X1. We will investigate also the cases
when the selection f is not necessarily a single-valued mapping, as well as situations
when the mapping F coincides with its selection.

Our approach to obtain the above results involves the well-known Banach-Mazur
game. We will see that the existence of selections as above is closely related to the
existence of (special type of) winning strategies for one of the players in this game.
Therefore, in the next section h we introduce this game, then we formulate and
prove the main results (Theorem 4.3 and Theorem 4.5). We then apply the selection
theorems to get various results in different branches like geometry of Banach spaces,
best approximation theory etc. Other applications of these theorems to optimization
will be given in the Sections 10-11.

2 The Banach-Mazur Game

The Banach-Mazur game appeared for the first time in the famous Scottish Book.
This book which has an exciting and interesting story (see [U,MO] for details and
other problems) was created in the period 1935-1941 in the town of Lwów which at
that time was in Poland. A group of mathematicians, working at the University of
Lwów, consisted of people whose names later became well-known, like St. Banach,
S. Mazur, S. Ulam, H. Steinhaus and others. This group frequently used to discuss
informally mathematical problems in one of the nearby caffés–The Scotish Caffé
House (from where the book took its name). Following an idea of St. Banach
a large notebook was bought and hidden by the waiter. Each time an intersting
problem (or its solution) appeared in the discussion the waiter was asked to bring
out the notebook in order to write down the problem (or the solution) and then to
return it at the secret place. Many of the problems were accompanied by prizes-from
a bottle of beer to a bottle of wine. It was the time when Functional Analysis and
related mathematical fields were born and the book contains a number of interesting
initial problems which later received their solution. Fortunately, the book survived
the Second World War and was published for the first time by S. Ulam in 1957 in
Los Alamos, USA. Later it had another edition as well as there was a conference
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devoted to it ([U, Mau]).
In the Scottish Book under problem No.43 appeared the following problem posed

by Mazur: There are two players (Mazur denoted them by A and B) and a non-
empty subset E of the real numbers R. The game is defined as follows: A selects
first a non-empty interval d1, then B selects a non-empty sub-interval d2 of d1.
Further, A continues by selecting a non-empty sub-interval d3 of d2 and B responds
by choosing a non-empty sub-interval d4 and so on. A wins if the intersection of
all intervals d1, d2, . . . has a common point with E. Otherwise B wins. Mazur had
observed the following: if the complement of E is of the first Baire category in some
interval, then the player A has a rule with which it will win. If the set E itself is
of the first Baire category in R then the player B has a winning rule in this game.
The question posed by Mazur (with prize a bottle of wine!) was whether these two
conditions are also necessary for the players A and B to win correspondingly. The
answer was given on August 4, 1935 by St. Banach and was affirmative. But a proof
by Banach never appeared. Later this game took the names of Banach and Mazur
and it seems it is the first infinite positional game with perfect information.

A proof of this result was announced in 1956 by Mycelski et all [MySwZi], but
the proof was not published. In 1957 the proof of a (much) more general result was
given by J. Oxtoby in [Ox]. He considered the following general setting containing
as a partial case the above game: there are given a topological space X, a subset
E ⊂ X of it and a family W of subsets of X with the following properties: (i)
each W ∈ W contains a non-empty open subset of X; and (ii) each non-empty
open subset of X contains an element of W . Two players, Player I and Player II,
choose alternatively elements from W U1 ⊃ U2 ⊃ U3 ⊃ · · · (the choices of Player
I are the sets with odd indexes and those of Player II, the sets with even indexes).
Player I wins if the intersection E ∩ (∩∞i=1Ui) is not empty. Otherwise Player II
wins. Oxtoby showed that: Player II has a winning rule in this game (see below
the precise definitions of a winning strategy) if and only if the set E is of the first
Baire category in X; moreover, if X is supposed to be a complete metric space then
Player I has a winning rule in the game if and only if the set E has a complement
which is of the first Baire category in some open subset of X.

Further generalizations and variants of this game (and discussion on many other
topological games) as well as more details can be found in the excellent survey
paper of Telgársky [Tel] (see also the book of Choquet [Ch2]). We will concentrate
ourselves on the following, probably most known, modification of the Banach-Mazur
game. In the above scheme we take E = X and the family W consists of all non-
empty open sets in X. Two players, who from now on we will designate by the
commonly accepted notation α and β, play a game in the following way: β chooses
first a non-empty open subset U1 of X. Then α chooses a non-empty open set
V1 ⊂ U1. Further, β chooses again a non-empty open subset U2 ⊂ V1 and again α
selects a non-void open subset of the set chosen by β. The so obtained sequence of
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non-empty open sets U1 ⊃ V1 ⊃ · · · ⊃ Un ⊃ Vn ⊃ · · · is called a play. The player
α wins this play if ∩∞i=1Ui = ∩∞i=1Vi 6= ∅. Otherwise β wins. This game is usually
denoted by BM(X).

A partial play in the above game is any finite sequence of non-empty open sets
of the type U1 ⊃ V1 ⊃ · · · ⊃ W , where either W = Un or W = Vn−1 (or W = Vn),
n ≥ 1, representing the first n legal moves of the player β and the first n− 1 (or n)
moves of the player α.

A strategy s for the player α is called every rule (or a mapping) which assigns
to each partial play U1 ⊃ V1 ⊃ · · · ⊃ Vn−1 ⊃ Un, n ≥ 1, a non-empty open set
Vn = s(U1, V1, . . . , Vn−1, Un) ⊂ Un. When α makes his/her choice with the help of the
strategy s we call the resulting play an s-play (i.e. Vi = s(U1, V1, . . . , Vi−1, Ui) ⊂ Ui

for every i). The strategy s is called winning for the player α (equivalently α-
winning) if for every s-play p = {Ui, Vi}∞i=1 the target set T (p) = ∩∞i=1Ui = ∩∞i=1Vi is
not empty. Similarly one defines a strategy (and winning strategy) for the player β
in this game. Given a strategy s, by Ts we will denote the target space generated by
this strategy, i.e. the set Ts := ∪{T (p) : p is an s-play in the game BM(X)}.

Let us stress the fact that in the above definition of a strategy, the choice of the
corresponding player at step n depends on all choices preceding this step. Of course
of interest are also the strategies which depend only on the last move of the opponent:
a stationary strategy (called also tactics) for the player α in the Banach-Mazur game
BM(X) is a mapping t from the family of all non-empty open sets of X into the
same family with the property t(U) ⊂ U for every non-empty open set U ⊂ X.
The stationary strategy t for the player α is called winning (equivalently, α-winning
stationary strategy, or α-winning tactics), if whenever one has a sequence of non-
empty open sets {Ui}∞i=1 with the property Ui+1 ⊂ t(Ui) for every i, it follows that
∩∞i=1Ui 6= ∅. One defines analogously the notion of a stationary strategy (tactics)
for the player β in BM(X).

Of course every (winning) stationary strategy is also (winning) strategy for the
same player. The converse is true if the player β is concerned, but not for the player
α. Namely, (see Galvin and Telgársky [GaTel], Corollary 1′): The player β has
a stationary winning strategy in the game B(X) if, and only if, it has a winning
strategy in BM(X). The same assertion for the player α is not true in general: G.
Debs has constructed in [De] a completely regular topological space which admits an
α-winning strategy in the game BM(X) but which does not admit any α-winning
stationary strategy in the same game.

Sometimes the topological spaces X which admit α-winning strategy in the game
BM(X) are called weakly α-favorable, and those which admit α-winning tactics–α-
favorable (cf. [Tel, Wh]. An obvious example of a α-favorable space is any compact
topological space X: given a non-empty open subset U of X the image of the tactis
is defined to be any fixed open subset V of U which is included in U together with
its closure. It is clear also that every complete metric space X is α-favorable: the

5



definition of the α-winning tactics in this case is also easy: given a non-empty open
set U ⊂ X, define t(U) as a non-empty open ball so that the closure of t(U) is a
subset of U and its diameter is strictly less than one half the diameter of U . It is
easily verified that the so defined t is a winning tactics for the player α in BM(X).
We will give Sections 10-11 characterizations of the weak α-favorability as well as
characterizations of the α-favorability in the class of the metric spaces. Here we
give a characterization of the absence of a winning strategy for the second player in
BM(X).

Theorem 2.1 The topological space X is Baire space if and only if X does not
admit a winning strategy for the player β in the game BM(X).

Proof: Let X be a Baire space and suppose that β possesses a winning strategy t in
the game BM(X). Let U1 be the first choice of β according to this srategy. We will
show that U1 is of the first Baire category, which will be a contradiction. Indeed,
put U0 = V0 := X and let γ1 := {(U1, V0)}. Let {γn}∞n=1 be a family of couples of
open sets which is maximal with rtespect to the following properties:

(i) for every n ≥ 2 and (Un, Vn−1) ∈ γn there is (Un−1, Vn−2) ∈ γn−1 with Vn−1 ⊂
Un−1;

(ii) for every n the family {U : (U, V ) ∈ γn for some V } is paire-wise disjoint;

(iii) for every n ≥ 2 and (Un, Vn−1) ∈ γn there exists a (by (ii), uniquely de-
termiened) sequence of couples (Ui, Vi−1) ∈ γi, i = 1, . . . , n − 1, so that
(U1, V1, ...., Un−1, Vn−1) is a partial play in the game BM(X) and, moreover,
Ui := t(U1, . . . , Vi−1) for every i = 2, . . . , n.

Put Wn := ∪{Un : (Un, Vn−1) ∈ γn for some Vn−1}, n = 1, 2, . . .. We will show
that each Wn is dense in U1. For n = 1 this is clear. Let the assertion is true up
to some n ≥ 1 and suppose that Wn+1 is not dense in U1. Then there is some non-
empty open set U0 ⊂ U1 so that U0∩Wn+1 = ∅. On the other hand, Wn∩U1 6= ∅ and
hence, there is some couple (Un, Vn−1) ∈ γn with Un ∩ U0 6= ∅. By (iii) above, there
is a sequence (Ui, Vi−1) ∈ γi for i = 1, . . . , n − 1, so that (U1, V1, . . . , Un−1, Vn−1) is
a partial play in the Banach-Mazur game and Un = t(U1, V1, . . . , Un−1, Vn−1). Set
Vn := Un ∩ U0 and let Un+1 := t(U1, V1, . . . , Un, Vn). Then the sequence of families
{γ′i} where γ′i := γi for i 6= n + 1 and γ′n+1 := γn+1 ∪ {(Un+1, Vn)} is stritcly larger
than {γi} and still satisfies (i)-(iii). The achieved contradiction shows that each Wn

is dense in U1.
Now, we claim that ∩∞n=1Wn = ∅. Assume the contrary and take some x ∈ Wn

for every n = 1, 2 . . .. By (i)-(iii) above there is a (uniquely determined) sequence
(Un, Vn−1) ∈ γn, n ≥ 1, so that x ∈ Un for each n and the sequence {(Un, Vn)} is a
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play in the game BM(X) in which every choice of the player β is obtained by using
the strategy t, i.e. Un = t(U1, V1, . . . , Un−1, Vn−1) for every n ≥ 1. Then ∩∞n=1Un = ∅
contradiction the choice of x. Hence, ∩∞n=1Wn = ∅ and consequently (remember that
every Wn was dense in U1) the set U1 is of the first Baire category. The proof of this
implication is completed.

Conversely, let the space X do not admit a winning strategy for the player β in
the game BM(X). Suppose that the space X is not Baire. This means that there
is a non-empty open set U1 which is of the first Baire category in X. I.e. there is a
sequence {An} of closed nowhere dense sets in X so that ∪∞n=1An ⊃ U1. Define the
following (stationary) strategy for the player β: for n = 1 the choice of β is U1; for
n ≥ 2, given a non-empty open Vn ⊂ U1 we put t(Vn) := Vn \ An. It is easily seen
that the so constructed t is a winning (stationary) strategy for the player β in the
game BM(X). This is a contradiction. Hence, the space X is a Baire space. The
proof of the theorem is completed. ¥

Topological spaces X which do not admit β-winning strategy in the game BM(X)
are called β-defavorable.

3 Preliminary facts about set-valued mappings

Let F be a set-valued mapping acting between the topological spaces X and Y .
First we introduce a piece of notation. Since we will consider mappings which may
have also empty images, the symbol Dom (F ) will denote, as usual, the domain of
F , i.e. the set

Dom (F ) := {x ∈ X : F (x) 6= ∅}.
For A ⊂ X its immage under F is the set F (A) := ∪{F (x) : x ∈ A}, and for B ⊂ Y
the two possible preimages of B under F are:

F−1(B) := {x ∈ X : F (x)
⋂

B 6= ∅}

and
F#(B) := {x ∈ X : F (x) ⊂ B}.

Observe that F#(B) contains each point x ∈ X with F (x) = ∅. Let us mention also
that F−1(Y ) = Dom (F ) and F#(Y ) = X. Finally, the set

Gr (F ) := {(x, y) ∈ X × Y : y ∈ F (x)},

is the graph of F ,
Further, we recall some continuity-like properties of set-valued mappings. The

mapping F : X → Y is called upper (resp. lower) semicontinuous at a point x0 ∈ X
if for every open V ⊂ Y with F (x0) ⊂ V (resp. F (x0)∩ V 6= ∅) there is an open set
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U ⊂ X with x0 ∈ U such that F (x) ⊂ V (resp. F (x) ∩ V 6= ∅) whenever x ∈ U .
We abbreviate this by F is usc (resp. lsc) at x0. F is usc (resp. lsc) in X if it is
usc (resp. lsc) at any point of X. Equivalently, F is usc (resp. lsc) in X if for every
open V ⊂ Y the set F#(V ) (resp. the set F−1(V )) is open in X.

In what follows, most of our examples will involve mappings F with domain
Dom (F ) which is dense in the domain space X. The reason is obvious: if x0

is a point outside the closure (in X) of Dom (F ) then for some open set U of X
containing x0 we have F (x) = ∅ for every x ∈ U . I.e. F is usc and lsc at each such
point. When we say the F is non-empty valued we mean that Dom (F ) = X. Let
us observe also that, if Dom (F ) is dense in X and if F is usc at some x ∈ X, then
F (x) 6= ∅.

The mapping F is called usco in X (or at a point x0 ∈ X) if it is usc and
compact-valued in X (or at x0). For every usco mapping F : X → Y its grap
Gr (F ) is a closed subset of X × Y considered with the product topology. When
Gr (F ) is closed in X×Y we say that F has a closed graph. Sometimes the converse
is also true: for instance, if F : X → Y has a closed graph and Y is compact then
F is usco.

An usco F : X → Y is minimal if its graph does not contain properly the graph
of any other usco G : X → Y with the same domain. Let us mention that every
non-empty valued mapping G : X → Y with closed graph which is contained in an
usco mapping F : X → Y (that is G(x) ⊂ F (x) for every x ∈ X) is usco itself.
Hence, by Kuratowski-Zorn lemma every usco mapping F : X → Y contains a
minimal usco G : X → Y .

We will go further by considering minimal elements in a larger class of mappings.
Below, as usual, for a subset A of a topological space X, we designate by Int X(A)
and Cl X(A) the interior and the closure of the set A in X. If there is no danger of
confusion, we will omit the subscript X.

First, we give a relaxation of the notion of semicontinuity: a mapping F : X → Y
is called upper (resp. lower) quasicontinuous at x0 ∈ X if for every open set V of Y
with F (x0) ⊂ V (resp. F (x0)∩ V 6= ∅) there is an open set U ⊂ X with x0 ∈ Cl (U)
such that F (x) ⊂ V (resp. F (x)∩ 6= ∅) whenever x ∈ U .

Given topological spaces X and Y we will consider the class QC(X, Y ) of set-
valued mappings F : X → Y which are upper quasicontinuous at any x ∈ Dom (F )
and, moreover, have closed graph. It is easily seen that, F is upper quasicontinuous
at any x ∈ Dom (F ) if and only if for every open V in Y the set Int F#(V ) is
dense in F#(V ) ∩ Dom (F ). Every usco F : X → Y (even every closed-valued usc
F : X → Y , with Y regular) is in the above class. Evidently, every mapping F from
QC(X,Y ) with Y compact, is usco in X.

We call, as above, a closed graph mapping F : X → Y which is upper quasicon-
tinuous at any point of Dom (F ), minimal if its graph is a minimal element, with
respect to the set inclusion order in X × Y , in the family of all graphs of mappings
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G from QC(X, Y ) with Dom (G) = Dom (F ).
Here we cannot claim that every F ∈ QC(X, Y ) contains a minimal one (of the

same type) with the same domain because of lack of compactness of the images.
But the minimal mappings from QC(X, Y ) still share the basic properties of the
minimal usco ones. The next proposition is well-known for minimal usco mappings.

Proposition 3.1 The following are equivalent for a closed graph mapping F : X →
Y which is upper quasicontinuous at any point of Dom (F ):

(a) F is minimal;
(b) for every open U in X and closed B in Y from F (x) ∩ B 6= ∅ for every

x ∈ U ∩Dom (F ), it follows that F (U) ⊂ B;
(c) if U and V are open subsets of X and Y such that U ∩ F−1(V ) 6= ∅ then

there is a non-empty open U ′ ⊂ U with F (U ′) ⊂ V .

Proof: First of all observe that, without loss of generality,we may assume that
Dom (F ) is dense in X.

To prove (a)⇒(b), let U ⊂ X be open and B ⊂ Y be closed in Y such F (x)∩B 6=
∅ for every x ∈ U ∩ Dom (F ). We show that F (U) ⊂ B. Suppose that the set
A := {x ∈ U : F (x) \B 6= ∅} is not empty and define G : X → Y by

G(x) =

{
F (x) if x ∈ X \ U
F (x)

⋂
B if x ∈ U.

By the assumptions Dom (G) = Dom (F ). Moreover, since A is non-empty the
graph of F is strictly larger than the graph of G. Therefore, to get a contradiction,
it remains to show that G is with closed graph and upper quasicontinuous at any
point of Dom (F ).

First, it is easily verified that Gr (G) = Gr (F ) \ (U × (Y \ B)). Hence G has a
closed graph.

Further, let x0 ∈ Dom (G) = Dom (F ). If x0 ∈ U then G(x0) = F (x0) and
the upper quasicontinuity of G at x0 follows by the upper quasicontinuty of F at
x0. So suppose x0 /∈ U and let G(x0) ⊂ V with V open in Y . Then F (x0) ⊂
V ′ := V ∪ (Y \B) and since Y \B is open, there is some open subset W of X with
x0 ∈ Cl (W ) and F (x) ⊂ V ′ for each x ∈ W . We may think that W ⊂ U and then it
is easily seen that G(x) ⊂ V for any x ∈ W . Therefore, G is upper quasicontinuous
at each x ∈ Dom (G).

(b)⇒(c). Let F : X → Y be a mapping from the class QC(X,Y ) satisfying (b),
and U and V be open subsets of X and Y correspondingly such that U∩F−1(V ) 6= ∅.
Then, because of (b), there is at least one point x0 ∈ U ∩Dom (F ) with F (x0) ⊂ V .
Since F is upper quasicontinuous at x0 we have some nonempty open set U ′ of X (we
may think U ′ ⊂ U) so that F (U ′) ⊂ V . This completes the proof of the implication.
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(c)⇒(a). Let F satisfy (c). Suppose there are a mapping G ∈ QC(X,Y ) with
Dom (G) = Dom (F ) which is contained in F and x0 ∈ Dom (F ) such that F (x0) \
G(x0) 6= ∅. Take y0 ∈ F (x0) \G(x0). This means (x0, y0) /∈ Gr (G). Since Gr (G) is
closed there are open sets U in X and V in Y with x0 ∈ U and y0 ∈ V such that
(U ×V )∩Gr (G) = ∅. On the other hand, (x0, y0) ∈ Gr (F ) giving U ∩F−1(V ) 6= ∅.
By c) there is a non-empty open set U ′ ⊂ U with F (U ′) ⊂ V . Since Dom (F ) is
dense in X we get x ∈ U ′ ∩ Dom (F ) with F (x) ⊂ V . But Dom (F ) = Dom (G),
hence ∅ 6= G(x) ⊂ V . This is a contradiction. The proof of this implication and the
proposition is completed. ¥

We mentioned above that each mapping G : X → Y which has a closed graph
and is contained in an usco mapping F : X → Y is usco itself. Hence, the following
is immediate.

Proposition 3.2 Every minimal usco mapping F : X → Y is minimal also in
the class QC(X,Y ) of closed graph mappings between X and Y which are upper
quasicontinuous at any point of their domain.

We give some simple examples showing that the class of (minimal) mappings
from QC(X, Y ) is strictly larger than the class of (minimal) usco mappings. Recall
that a mapping F : X → Y is called open if for every non-empty open set U ⊂ X
the set F (U) is (non-empty) and open in Y . Analogously, F is called closed if for
every closed set B ⊂ X the set F (B) is closed in Y .

Example 3.3 Let Y be a dense subspace of the space X. Consider the mapping
F : X → Y defined by F (x) := x provided x ∈ Y and F (x) := ∅ if x ∈ X \ Y .
Obviously Dom (F ) = Y . It is easily seen that the mapping F is from the class
QC(X,Y ) which is open, closed and minimal. F is usco iff X = Y . F is lsc iff the
space Y is open in X.

Example 3.4 Let us consider a single-valued mapping f : Y → X from the topo-
logical space Y into the topological space X such that the set Z = f(X) is dense in
X. Put F (x) := f−1(x) if x ∈ Z and F (x) := ∅ if x ∈ X \ Z. Suppose f is contin-
uous and closed with respect to the induced topology on f(X). Then the mapping
F is open, closed and belongs to the class QC(X, Y ). Moreover, if in addition f is
irreducible (that means f(B) 6= f(Y ) whenever B ⊂ Y is closed and B 6= Y ) then
F is minimal. The mapping F is usco iff Z = X and f is closed. Finally, F is lsc iff
f is open and Z is open in X.

Example 3.5 Let G : Z → Y be a non-empty valued mapping and Z be dense
in some topological space X. Define a mapping F : X → Y in a natural way:
F (x) := G(x) provided x ∈ Z and F (x) := ∅ otherwise. The mapping G is in the
class QC(Z, Y ) exactly when the mapping F is in the class QC(X, Y ). G is minimal
in QC(Z, Y ) iff F is minimal in QC(X,Y ).
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4 Main selection theorems

In this section we formulate and then prove our main selection theorems. To start
we need two notions. The first is a relation between a given set-valued mapping and
a strategy in the range space.

Definition 4.1 Let X, Y be topological spaces, F : X → Y be a set-valued mapping,
s be a strategy for the player α in the game BM(Y ). We say that F and s are
coordinated (resp. strictly coordinated) if for every partial s-play U1 ⊃ V1 ⊃ · · · ⊃
Un ⊃ Vn (i.e. Vi = s(U1, V1, . . . , Ui) for every i = 1, . . . , n) the set ∪{Int Cl F−1(V ) :
V = s(U1, V1, . . . , Un, Vn, U) for some non-empty open U ⊂ Vn} is dense in the set
Int Cl F−1Vn (resp. ∪{Int F−1(V ) : V = s(U1, V1, . . . , Un, Vn, U) for some non-empty
open U ⊂ Vn} covers the set Int F−1(Vn)).

The second notion concerns special type of winning strategies for the player α in
the game BM(Y ). Let us remind that a nested sequence of open sets {Un}∞n=1 of a
topological space Y is called complete if the intersection ∩∞n=1Un is non-empty and
compact and the family {Un}∞i=n is a base of neighborhoods for this intersection, i.e.
for every open U ⊃ ∩∞n=1Un there exists some m with Um ⊂ U .

Definition 4.2 An α-winning strategy s in the game BM(Y ) is said to be complete
if for every s-play p = {Ui, Vi}∞i=1 the sequence {Un}∞n=1 (as well as the sequence
{Vn}∞n=1) is complete.

In the next section we will give rather general sufficient conditions for given F
and s to be coordinated, as well as for the existence of complete winning strategies.
Here we continue by intruducing two mappings which are extensions to a set-valued
mapping F : X → Y . Namely, given such an F , let F ∗ : X → Y and F̄ : X → Y
be difend as follows:

F ∗(x) =
⋂
{Cl F (W ) : W open in X, x ∈ W}, x ∈ X,

and
F̄ (x) = Cl F (x), x ∈ X.

It is well-known that the mapping F ∗ has a closed graph, and that the graph of F
is closed if, and only if, F (x) = F ∗(x) for every x ∈ X. On the other hand, it is
evident that Dom (F ) = Dom (F̄ ) and that F (x) = F̄ (x) for each x ∈ X if and only
the mapping F has closed images.

We are ready to give our first selection theorem:

Theorem 4.3 Let X be a Baire space and Y be a topological space with a complete
α-winning strategy s and a target space Ts. Suppose F : X → Y is a set-valued
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map so that Dom (F ) is dense in X and F is coordinated with s. Then there exist a
dense Gδ-subset X1 ⊂ X and a non-empty valued usco map G : X1 → Ts ⊂ Y which
is a selection of F ∗ (i.e. for every x ∈ X1 we have G(x) ⊂ F ∗(x)). In particular, if
F itself has a closed graph then X1 ⊂ Dom (F ) and G is am usco selection of F on
X1.

If the complete strategy s is such that for every s-play p = {Ui, Vi}∞i=1 the target
set T (p) = ∩∞i=1Ui is a singleton, then the mapping G is single-valued and continuous
at each point of X1. Moreover, if F is non-empty valued and F and s are strrictly
coordinated then G is a single-valued selection also of F̄ .

Before proving this theorem we will formulate our second selection theorem. It
is concerned with the case when the given mapping F coincide with its selection.
For this we need another relation between the mapping and the complete strategy.

Definition 4.4 We say that the mapping F : X → Y and the strategy s in Y are
strongly coordinated if for every partial s-play U1 ⊃ V1 ⊃ · · · ⊃ Un ⊃ Vn the set
∪{Int F#V : V = s(U1, V1, . . . , Un, Vn, U) for some non-empty open U ⊂ Vn} is
dense in the set Int F#Vn.

Now we have our second selection theorem:

Theorem 4.5 Let X be a Baire space, Y be a regular topological space with a com-
plete α-winning strategy s and a target space Ts. Let F : X → Y be a set-valued map
such that Dom (F ) is dense in X and F is strongly coordinated with s. Then there
exists a dense Gδ-subset X1 ⊂ X such that the restriction of F ∗ on X1 is an usco
mapping from X1 into Ts. In particular, if F has a closed graph, then the restriction
F |X1 is an usco mapping from X1 into Ts.

If the complete strategy s is such that for every s-play p = {Ui, Vi}∞i=1 the target
set T (p) = ∩∞i=1Ui is a singleton, then the mapping F ∗ (and hence, in case F has
a closed graph, the mapping F ) is single-valued and upper semicontinuous at each
point of X1. Moreover, in this last case if in addition F is non-empty valued then F̄
(and hence, in case F has closed images, the mapping F ) is single-valued and upper
semicontinuous at each point of X1.

Let us prove now our selection theorems. We will first establish a lemma which
is a key point in the proofs. In the sequel, given a set-valued map F : X → Y ,
under an admissible pair (resp. strictly admissible) we mean a couple (W,V ) of non-
empty open subsets of X and Y , respectively, such that F−1V is dense in W (resp.
W ⊂ F−1(V )).

Lemma 4.6 In the assumptions of Theorem 4.3, let (U1, V1, . . . Un, Vn) be a partial
s-play and Wn be a non-empty open subset of X such that (Wn, Vn) is an admissible

12



pair. Suppose further that Γ(Wn) = {(W,U, V )} is a maximal system of triples such
that:

(i) U is a non-empty open subset of Vn;
(ii) V = s(U1, V1, . . . , Un, Vn, U) (i.e. (U, V ) is a continuation of the partial play

(U1, V1, . . . , Un, Vn);
(iii) (W,V ) is an admissible pair, so that W ⊂ Wn;
(iv) γ(Wn) := {W : (W,U, V ) ∈ Γ(Wn)} is a pairwise disjoint system of open

subsets of Wn.
Then the set H(Wn) := ∪{W : W ∈ γ(Wn)} is dense in Wn.
If, F is non-empty valued and F and s are strictly coordinated, then all admissible

couples above can be taken strictly admissble.

Proof: Suppose the contrary and take some non-empty open W ′ ⊂ Wn \Cl H(Wn).
Since F and s are coordinated and (Wn, Vn) is an admissible pair (i.e. Wn ⊂
Cl F−1(Vn)) there exists some continuation (Un+1, Vn+1) of the partial s-play (U1, V1, . . . , Un, Vn)
such that W := W ′∩Int Cl F−1(Vn+1) 6= ∅. Evidently, (W,Vn+1) is an admissible pair
for which the triple (W,Un+1, Vn+1) does not belong to Γ(Wn). On the other hand,
Γ(Wn) together with the latter triple is a system which satisfies (i)-(iv). This con-
tradicts the maximality of the system Γ(Wn). Observe that if the couple (Wn, Un)
above was strictly admissible and F and s are strictly coordinated, with F non-
empty valued, then the couple (W,Vn+1) would be strictly admissble as well. The
proof of the lemma is completed. Let us observe that if the couple (Wn, Un) was
strictly admissible and F and s are strictly coordinated then the couple (W,Vn+1)
would be strictly admissble as well. Let us note that the couple (X, Y ) is admissible
because Dom (F ) is dense in X (and strictly admissble if Dom (F ) = X). Therefore,
the lemma can be proved also for n = 0 provided we put W0 = X, U0 = V0 = Y . ¥

Proof of Theorem 4.3: Let W0 = X, U0 = V0 = Y and set γ0 := {X}. Apply
the lemma for n = 0. As a result we get the maximal system of triples Γ(W0)
satisfying (i)-(iv). Put Γ1 := Γ(W0), γ1 := γ(W0) and H1 := H(W0). Observe that
γ1 is a disjoint system of open sets in X whose union H1 is dense in X. Therefore, for
every W1 ∈ γ1 there exists a uniquely determined triple (W1, U1, V1) ∈ Γ1. Applying
the lemma for this triple we get a system of triples Γ(W1) satisfying (i)-(iv). Put
Γ2 := ∪{Γ(W1) : W1 ∈ γ1}, γ2 := ∪{γ(W1) : W1 ∈ γ1} and H2 := ∪{H(W1) :
W1 ∈ γ1}. As above, one sees that γ2 is a disjoint system of open sets in X which
is inscribed in γ1 and whose union is (open and) dense in X.

Continuing in this manner we construct a sequence of families {Γn}∞n=1 of triples
and a sequence of disjoint families {γn}n≥0 of open sets in X, with γ0 = {X}, such
that for every n ≥ 1 we have:

(a) Γn is a union of the families Γ(Wn−1), Wn−1 ∈ γn−1, where Γ(Wn−1) is obtained
by lemma 4.6 from some uniquely determined partial play (U1, V1, . . . , Un−1, Vn−1);
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(b) γn is a union of the families γ(Wn−1) from the condition (iv) of the Lemma;

(c) the set Hn : = ∪{Wn : Wn ∈ γn} is open and dense in X.

Put X1 := ∩∞n=1Hn. This is a dense and Gδ-subset of X. Every x ∈ X1 uniquely
determines a sequence of triples (Wn(x), Un(x), Vn(x))∞n=1 such that x1 ∈ ∩∞n=1Wn(x),
(Wn(x), Vn(x)) is an admissible pair for every n and the sequence {Un(x), Vn(x)}∞n=1

is an s-play. Observe that, if F ans s are strictly coordinated, then according to
Lemma 4.6 the sequence {Wn(x), Vn(x)} consists of strictly admissble pairs.

Since the strategy s is a complete α-winning strategy the set Φ(x) := ∩∞n=1Un(x) =
∩∞n=1Vn(x) is non-empty and compact. The so defined set-valued map Φ : X1 → Ts

is also usc. Indeed, take some open U ⊃ Φ(x0), where x0 ∈ X1. Since s is complete
the sequence {Un(x0)}∞n=1 is a base for the compact set Φ(x0). Hence, there exists
some n with Φ(x0) ⊂ Un(x0) ⊂ U . Now, if x ∈ Wn(x0)∩X1, then we have (because
of (iv) of the lemma) that U(x) = U(x0) and hence Φ(x) ⊂ Un(x0) ⊂ U . I.e. Φ is
usco.

We prove further that Φ(x)∩F ∗(x) 6= ∅ for every x ∈ X1 (thus we show also that
Dom(F ∗) ⊃ X1). Suppose that for some x0 ∈ X1 we have Φ(x0)∩F ∗(x0) = ∅. Since
the graph of F ∗ is closed in X × Y and (x0, Φ(x0)) ∩Gr (F ∗) = ∅ we can find some
open U ⊃ Φ(x0) and an open W containing x0 such that (W×U)∩Gr (F ∗) = ∅. Let
n be such that Φ(x0) ⊂ Un(x0) ⊂ U . Put W ′ := Wn(x0)∩W . This set is non-empty
(it contains x0) and, moreover, since the couple (Wn(x0), Vn(x0)) is admissible then
the couple (W ′, Vn(x0)) is admissible too. This means that F (W ′) ∩ Vn 6= ∅ and,
therefore, (W ′ × Vn) ∩Gr (F ∗) 6= ∅. On the other hand, W ′ × Vn ⊂ W × U . This is
a contradiction.

Put now G(x) := Φ(x) ∩ F ∗(x), x ∈ X1. The mapping G, which acts beteen X1

and Ts, is obviously a non-empty valued selection of F ∗ on X1. As an usco mapping
Φ has a closed graph. Since the mapping G is an intersection of two mappings with
closed graphs, it has a closed graph too. On the othe hand, as we already mentoned,
every non-empty valued mapping with closed graph which is contained in an usco
mapping is usco itself. Hence, G is usco.

Finally, if the strategy s is such that every s-play has a one-point target set, then
obviously the mapping Φ is single-valued and continuous, and therefore, the same
is true for the mapping G. Moreover, if F is non-empty valued and F and s are
strictly coordinated then for any x ∈ X1 the set Φ(x) (which is a singleton) belongs
also to F̄ (x). Indeed, suppose Φ(x0) /∈ F̄ (x0) for some x0 ∈ X1. Then for some open
set V of Y we have Φ(x0) ⊂ V and F̄ (x0) ∩ V = ∅. Let n0 be so that Vn0(x0) ⊂ V .
But the couple (Wn0(x0), Vn0(x0)) is strictly admissible, which is a contradiction
with F̄ (x0) ∩ V = ∅. Therefore, the mapping G(x) = Φ(x) ∈ F̄ (x), x ∈ X1 is a
single-valued and conyinuous selection of F̄ on X1. The proof of Theorem 4.3 is
completed. ¥
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Remark 4.7 The special case when F = f−1 for some continuous and single-valued
mapping f : Y → X deserves more attention. It was essentially considered by E.
Michael in [M5] (see Theorem 5.9 below). It can be shown in this case, that, in
addition to the conclusion of the above theorem, the set C : = G(X1) is a Gδ-
subset of Y . Indeed, with the notations in the proof above, let Cn : = ∪{f−1(W )∩
V : (U, V, W ) ∈ Γn for some uniquely determined U, V }. The continuity of f implies
that every Cn is open in Y . Since for every x ∈ X1 we have F (∩∞n=0Un(x)) =
f−(∩∞n=0Un(x)) = ∩∞n=0f

−1(Un(x)) it is easily verified that C = ∩∞n=0Cn.

Further, Theorem 4.5 can be proved using exactly the same scheme (starting
with a lemma similar to Lemma 4.6) replacing the sets F−1V , V ⊂ Y , by the sets
F#V . Indeed, given F : X → Y , call a couple (W,V ) of open sets W of X and V of
Y strongly admissible if Cl (F (W )) ⊂ V . The next lemma is proved exactly in the
same way as Lemma 4.6 (using also the regularity of Y ).

Lemma 4.8 In the assumptions of Theorem 4.5, let (U1, V1, . . . Un, Vn) be a partial
s-play and Wn be a non-empty open subset of X such that (Wn, Vn) is a strongly
admissible pair. Suppose that Γ(Wn) = {(W,U, V )} is a maximal system of triples
such that:

(i) U is a non-empty open subset of Vn;
(ii) V = s(U1, V1, . . . , Un, Vn, U);
(iii) (W,V ) is a strongly admissible pair, so that W ⊂ Wn;
(iv) γ(Wn) := {W : (W,U, V ) ∈ Γ(Wn)} is a pairwise disjoint system of open

subsets of Wn.
Then the set H(Wn) := ∪{W : W ∈ γ(Wn)} is dense in Wn.

Again the lemma is true for n = 0 if we put W0 = X, U0 = V0 = Y because the
couple (X,Y ) is strongly admissible.

Proof of Theorem 4.5. The proof of this theorem follows the same pattern as
of Theorem 4.3 using Lemma 4.8. As above we obtain a dense Gδ-subset X1 of X so
that each x ∈ X1 uniquely determines a sequence of triples (Wn(x), Un(x), Vn(x))∞n=0

such that x0 ∈ ∩∞n=0Wn(x), (Wn(x), Vn(x)) is a strongly admissible pair for every n
and the sequence {Un(x), Vn(x)}∞n=1 is an s-play.

Again as above the mapping Φ(x) := ∩∞n=1Un(x) = ∩∞n=1Vn(x), x ∈ X1 is un
usco mapping from X1 to Ts. Similarly (using also that Dom (F ) is dense in X)
one sees that for every x ∈ X1 is true Φ(x) ∩ F ∗(x) 6= ∅. What is true in addition
here is that F ∗(x) ⊂ Φ(x) for any x ∈ X1. Indeed, for every such x, by definition
F ∗(x) ⊂ Cl (F (Wn(x))) ⊂ Vn(x) for every n whence the desired inclusion. Since F ∗

is with a closed graph, the latter entails that the restriction F ∗|X1 : X1 → Ts is
usco.

Now, let the strategy s be so that for each s play the target set is a singleton.
By the above, this means that we have F ∗(x) = Φ(x) for every x ∈ X1 and the
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latter set is a singleton. We prove that F ∗ is not only single-valued but also upper-
semicontinuous at any x ∈ X1 as a mapping from X into Ts. To this end let
F ∗(x) = Φ(x) ⊂ V for some open V and x ∈ X1. There is some n so that Vn(x) ⊂ V .
Let x′ ∈ Wn(x). Then (since (Wn(x), Vn(x)) is strongly admissible), F ∗(x′) ⊂
Cl (F (Wn(x))) ⊂ Vn(x) ⊂ V .

Finally, if the mapping F is non-empty valued one sees as in the proof of the
previous theorem that F̄ (x) ∩ Φ(x) 6= ∅ for every x ∈ X1. Now, using the same
argument as above F̄ coincide with Φ at the points of X1 (whence is single-valued
at these points) and is upper semicontinous at any x ∈ X1 as a mapping from X to
Ts. The proof of the theorem is completed. ¥

Remark 4.9 We would like to mention a variant of the above theorem related to
another modification of the notion of a strategy for the player α in the game BM(X).
Namely, let the strategy s for the player α in the space Y be so that for each s-play
p = {Ui, Vi}∞i=1 the target space T (p) is either empty or if it is non-empty then the
partial play is complete. Then, if we assume the hypothesis of Theorem 4.5 with
this new type of strategy (and even without assuming the denseness of Dom (F )), its
conclusion is changed to: for every x ∈ X1 the mapping F ∗ (resp. F̄ ) is either empty,
or F ∗ (resp. F̄ ) is usco (or upper semicontinuous and single-valued) at x. We will
comme across with strategies like this in the applications. Moreover, a closed look at
the proof shows that the latter result is true even without supposing the openess of
the sets Un, Vn (i.e. we may allow a very general game in which the players choose just
non-empty subsets and to keep only the requirement for the strategy s to have either
empty target set or a one point set for which the corresponidng play is complete).

5 Sufficient conditions for the existence of resid-

ually defined selections of set-valued mappings

In this section we will give (rather general) conditions for the assumptions of The-
orems 4.3, 4.5 to be fulfilled. Before that we need some more notions.

We start with a further weakening of the notion of lower semicontinuity. Let
F be a set-valued map between the topological spaces X and Y . The mapping
F is said to be lower demicontinuous at some x0 ∈ X if for every open V of Y
with F (x0) ∩ V 6= ∅, there is some open set U of X with x0 ∈ Cl (U) and the set
F−1(V ) is dense in U . F is lower demicontinuous in X if it is lower demicontinuous
at any x ∈ X. It is straitforward to verify that F is lower demicontinuous in X
if for every open V in Y the set Int Cl F−1(V ) is dense in Cl F−1(V ). Obviously,
every lsc in X mapping F : X → Y is lower demicontinuous in X. Observe that,
by Proposition 3.1 every minimal closed graph and upper quasi continuous at any
point of its domain mapping F : X → Y is lower demicontinuous in X.
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Call a set-valued mapping F : X → Y demi-open (as in [HeS] for single-valued
maps) if for every open set U in X the set Int Cl F (U) is dense in Cl F (U). The
following is elementary:

Proposition 5.1 The mapping F : X → Y is lower demicontunous in X if, and
only if, the set-valued map F−1 : Y → X is demi-open.

Here is a situation when we have the assumptions of Theorem 4.3 fulfilled.

Proposition 5.2 Let F : X → Y be a lower demicontinuous and demi-open map-
ping and s be a strategy for the player α in the game BM(Y ). Then F and s are
coordinated. If, in addition, F is non-empty valued and F is lower quasicontinuous,
then F and s are strictly coordinated

Proof: Suppose that F is lower demicontinuous and demi-open and s is a strat-
egy for α in the game BM(Y ). Let U1 ⊃ V1 ⊃ · · ·Un ⊃ Vn be a partial s-play,
i.e. Vi = s(U1, V1, . . . , Ui) for every i = 1, 2, . . . n. We have to prove that the set
∪{Int Cl F−1(V ) : V = s(U1, V1, . . . , Un, Vn, U) for some non-empty open U ⊂ Vn}
is dense in Int Cl F−1(Vn).

Let W be a non-empty open subset of X such that W ∩ Int Cl F−1(Vn) 6= ∅.
Since F is demi-open and F (W ) ∩ Vn 6= ∅ there exists some non-empty open set
U ⊂ Vn ∩ Int Cl F (W ). Let V = s(U1, V1, . . . , Un, Vn, U) ⊂ U . Since V ∩ F (W ) 6= ∅
and F is lower demicontinuous in X we have that W ∩ Int Cl F−1(V ) 6= ∅. Thus F
and s are coordinated.

Assuming in addition that F is non-empty valued and lower quasicontinuous in
X, the proof that F and s are strictly coordinated (i.e. that the set ∪{Int F−1(V ) :
V = s(U1, V1, . . . , Un, Vn, U) for some non-empty open U ⊂ Vn} is dense in the set
F−1(Vn)) follows exactly the same pattern. This completes the proof. ¥

Now we look for conditions assuring the existence of complete winning strategies
for the player α in the Banach-Mazur game. First, let us remind that the completely
regular topological space Y is Čech complete if it lies as a Gδ-subset in its Stone-
Čech compactification βX (or in any other compactification of Y ). Recall also that
a cover δ for a topological space Y is a family of subsets of Y whose union is Y .
The cover is open if it consists of open sets. Given two covers δ and γ of X we write
δ ⊂ γ when every element of δ is contained in some element of γ.

The next proposition gives sufficient conditions for a space Y to admit a complete
strategy as defined above. In fact, as it will be seen by Theorems 11.1, 11.2 in the
next chapter, these conditions are also necessary.

Proposition 5.3 Let Y be a completely regular topological space which contains a
dense subset Y1 which is Čech complete in the induced topology. Then Y possesses
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a complete α-winning stationary strategy s in the game BM(Y ) so that Ts ⊂ Y1. If,
in addition the space Y1 is completely metrizable, then the strategy s can be taken in
such a way that for every s-play p = {Ui, Vi}∞i=1 the target set T (p) is a singleton.

Proof: By a characterization of the Čech completeness [Fro1, Fro2], the space Y1

admits a countable family {δn}∞n=1 of open covers of Y1 so that if {nk}∞k=1 is a strictly
increasing sequence of integers and {Unk

}∞k=1 is a nested family so that Unk
∈ δnk

for
every k, then the sequence {Unk

}∞k=1 is complete in Y1. In fact, since Y1 is dense in
Y and Y is completely regular, we may think that each δn consists of open sets of Y
and if {Unk

}∞k=1 is a nested family as above, then the sequence {Unk
}∞k=1 is complete

in Y as well. Moreover, for every such sequence ∩∞k=1Unk
⊂ Y1.

Suppose (without loss of generality) that δ1 := {Y } and for any U ⊂ Y define
d(U) := max{n ≥ 1 : there is some W ∈ δn with U ⊂ W} (it is possible that for
some U , d(U) = ∞). Now, let τ be the topology in Y and set τ0 := τ \ {∅}. Given
a non-empty open set U of Y let us consider the family

γU :=

{ {W ∈ τ0 : Cl (W ) ⊂ U} if d(U) = ∞, and
{W ∈ δ2d(U) : W ⊂ U} otherwise.

Since Y is completely regular and the union of the sets from each δn is dense in Y
then γU is a non-empty family for every U ∈ τ0. Fix some mapping t : τ0 → ∪{γU :
U ∈ τ0} with the property t(U) ∈ γU for each U ∈ τ0.

The so defined mapping t is a complete α-winning (stationary) strategy in the
game BM(Y ). Indeed, let {Ui}∞i=1 be a family of non-empty open sets of Y so that
Ui+1 ⊂ t(Ui) for every i = 1, 2 . . .. We have two possibilities: either for some i
d(Ui) = ∞ or the sequence {d(Ui)} is a strictly increasing sequence of integers. In
the first case we may suppose i = 1 and we see that the sequence {Ui} lies in some
compact subspace of Y of the type ∩∞n=1Wn with Wn ∈ δn for each n. Because
Cl (Ui+1) ⊂ Ui for every i we easily see that the sequence {Ui} is complete. In the
second case t(Ui) ∈ δ2d(Ui) for every i and hence the sequence {t(Ui)} (as well as
{Ui}) is complete. Observe that in both cases Ts ⊂ Y1.

If in addition Y1 is metrizable by some complete metric ρ we may think that the
subsets from δn have diameters (with respect to ρ) less than 1/n for every n = 1, 2 . . ..
In this case the strategy t will have the required additional property. The proof of
the proposition is completed. ¥

The following theorem is an immediate corollary from Theorem 4.3 and the above
proposition.

Theorem 5.4 Suppose X is a Baire space and Y is a topological space which contain
a dense Čech complete subspace Y1. Let F : X → Y be a demi-open set-valued
mapping with dense domain. Suppose that either F is lower demicontinuous mapping
with closed graph, or F is lower quasicontinuous and has non-empty closed images.
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Then there exists a dense Gδ-subset X1 of X and a non-empty-valued usco mapping
G : X1 → Y1 such that:

a) X1 ⊂ Dom (F );
b) G(x) ⊂ F (x) for every x ∈ X1, i.e. G is a selection of F on X1.
If, in addition, Y1 is completely metrizable, then the selection G is single-valued.

Further, we see that if the very space Y is Čech complete (or completely metriz-
able), then the conclusion of the above theorem can be obtained without assuming
demi-openess of the mapping.

Proposition 5.5 Let Y be Čech complete. Then there exists an α-winning strategy
s in Y which is coordinated with any lower demicontinuous mapping F : X → Y
and strictly coordinated with any non-empty valued lower quasicontinuous mapping
F : X → Y . If Y is a complete metric space, then the strategy s has the additional
property that for any s-play p = {Ui, Vi} the target set T (p) is a singleton.

Proof: Let {δk}∞k=1 be a countable family of open covers of Y as in the proof of
Proposition 5.3 which exists according to the Froĺık characterization of the Čech
completyeness [Fro1, Fro2]. Again as in the same proposition we may think that if
Y is a complete metric space them the covers are such that for every k each element
of δk has diameter less than 1/k. Suppose the strategy s is constructed up to the
k-th step, k ≥ 0 (if k = 0 we put U0 = V0 = Y ). Let U1 ⊃ V1 ⊃ · · · ⊃ Uk ⊃ Vk

be a partial play with length k obtained by the constructed strategy s and let
U ⊂ Vk. If U is such that U ⊂ δk+1 then we define s on the k + 1 step by putting
s(U1, V1, . . . , Uk, Vk, U) := U . For all other open sets U contained in Vk we define
the set s(U1, V1, . . . , Uk, Vk, U) to be any non-empty open subset V of U such that
V ∈ δk+1 and Cl (V ) ⊂ U .

It is clear that the so constructed strategy is a complete α-winning one. We
show that it is coordinated with any lower demicontinous mapping F : X → Y
(resp. strictly coordinated with F if the latter is non-empty valued and lower qua-
sicontinuous). Indeed, take some s-partial play U1 ⊃ V1 ⊃ · · · ⊃ Uk ⊃ Vk and some
non-void open H ⊂ Int Cl F−1(Vk). Take some x0 ∈ H∩F−1(Vk) and y0 ∈ F (x0)∩Vk.
Since δk+1 is a cover of Y there is some U ∈ δk+1 so that y0 ∈ U . Since F is lower
demicontinuous and H ∩ F−1(U) 6= ∅ we have that H ∩ Int Cl F−1(U) 6= ∅. On
the other hand, U = s(U1, V1, . . . , Uk, Vk, U) and this shows that F and s are co-
ordinated. The verification that F and s are strictly coordinated provided F is
non-empty valued an lower quasicontinuos is completely similar. This completes the
proof. ¥

Having this proposition, the following theorem is again an immediate corollary
from Theorem 4.3.
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Theorem 5.6 Let F : X → Y be a set-valued mapping between the Baire space X
and the Čech complete space Y . Suppose that either F is lower demicontinuous with
dense domain and closed graph, or F is lower demicontinuous and has non-empty
closed images. Then there exists a dense and Gδ-subset X1 of X and a non-empty-
valued usco mapping G : X1 → Y such that:

a) X1 ⊂ Dom (F );
b) G is a selection of F on X1.
If Y is a complete metric space then the selection G is single-valued.

We give now some examples showing that the assumptions on F in the above
theorems are essential.

Example 5.7 Let the segment X := [0, 1] be endowed with the usual topology on
the real line. Let further B ⊂ [0, 1] be such that both B and X\B are dense Baire
subspaces of X (e.g. let B be a Bernstein subset of [0, 1], see [En], 4.5.5 (b) and
5.5.4). Put Y : = (B×{0})∪ ((X\B)×{1})∪ (X× (0, 1)), where (0, 1) is the open
interval, and consider on Y the topology inherited by the product topology of X×X.
Let F : X → Y be defined by F (x) = (x, 0) if x ∈ B and F (x) = (x, 1) if x ∈ X\B.
F has a closed graph because B × {0} and (X\B)× {1} are closed subsets of Y . F
is obviously lower demicontinuous. But there is no dense Gδ-subset of X on which
F possesses a continuous selection. In this example F is not coordinated with any
complete α-winning strategy in Y . The reason is that F is not demi-open.

Example 5.8 Let X and B be as in the previous example. Define F : X → {0, 1}
by F (x) = 1 if x ∈ B and F (x) = 0 otherwise. F is lower demicontinuous (but
not lower quasicontinuous) and F does not have a continuous selection on a dense
Gδ-subset of X. Here Gr (F ) is not closed.

We give some further consequences of Theorem 5.4. Let us start rt with a result
of E. Michael [M5].

Theorem 5.9 ([M5], Theorem 7.2) Let f : Y → X be a continuous and demi-
open single-valued mapping acting from the regular space Y which contain a dense
Čech complete subspace into the space X such that f(Y ) is dense in X. Then there
exist a Gδ-subset C of Y and a dense Gδ-subset D of X such that f |C : C → D is
perfect and onto.

Proof: Let F : = f−1 : X → Y . By assumptions Dom (F ) = f(Y ) is dense in
X. It can be seen that (e.g. [M5], Proposition 6.6) X is a Baire space. Since f is
demi-open then by Proposition 5.1 F is lower demicontunous. On the other hand,
the continuity of f implies that F is open and has closed graph. Therefore, by
Theorem 5.4 there are a dense Gδ-subset D of X and an usco G : D → Y such that
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D ⊂ Dom (F ) = f(Y ) and G is a selection of F . Let C := G(D). Since F = f−1

and f is single-valued then F (x1)∩ F (x2) = ∅ for x1 6= x2. Hence G(x) = F (x)∩C
for every x ∈ D. This implies that G = (f |C)−1 showing that f |C : C → D is
perfect and onto. The rest follows by Remark 4.7.

Theorem 5.10 ([M5], Theorem 7.3) If the space Y in Theorem 5.9 contains a
dense and completely metrizable subspace then f |C can be considered to be a home-
omorphism.

Proof: As above using again Theorem 5.4.

Remark 5.11 Let us note that Theorems 7.2 and 7.3 from the paper of E. Michael
[M5] contain additional information about the sets C and D (special completeness
properties). This properties do not follow directly from our Theorems 5.4.

In connection with the above theorem E. Michael raised the following questions
in [M5], Question 7.4: Let f be an open and continuous single-valued mapping from
a Čech complete space Y onto a regular (or even metrizable) space X. Must f map
some non-empty subset C of Y homeomorphically onto a dense Gδ-subset of X. The
answer when X Čech complete but not metrizable is negative.

Example 5.12 Let τ be a cardinal which is greater or equal to the first uncountable
cardinal. By a result of Pasinkov [Pas], Theorem 2, there are a compact space Yτ

of weight τ with dim Yτ = 1, and a continuous and open mapping f which maps Yτ

onto [0, 1]τ and such that dim(f−1(x)) = 0 for every x ∈ [0, 1]τ . Let us observe that
if H is a non-empty Gδ-subset of [0, 1]τ then H contains a homeomorphic image of
[0, 1]τ . Suppose now that there is C ⊂ Yτ , C 6= ∅, such that f(C) = H, H is Gδ

in [0, 1]τ and f |C is a homeomorphism. Then C contains a homeomorphic image
of [0, 1]τ , so the same does Yτ . But dim[0, 1]τ = ∞ while dim Yτ = 1. This is a
contradiction.

Now, we show that when the range space Y is second countable the conclusion
of Theorem 5.4 can be obtained under weakened assumptions on the mapping F .

Theorem 5.13 Let F be a mapping with closed graph acting from a Baire space X
into the completely metrizable separable space Y . Let Dom (F ) = X. Then there
exist a dense Gδ-subset X1 of X and a single-valued continuous mapping f : X1 → Y
which is a selection of F on X1.

Proof: Let {Vn}, n ≥ 1, be a countable base for the topology in Y . Consider the
sets Hn = Cl F−1(Vn)\Int Cl F−1(Vn). The sets Hn are closed and nowhere dense
in X and consequently the set X ′ : = ∩∞n=1X\Hn is dense Gδ in X. Further, since
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{Vn}, n ≥ 1 is a base in Y , it is a routine matter to check that the restriction
F |X ′ of the mapping F on X ′ is lower demicontinous. To complete the proof, apply
Theorem 5.4 for the mapping F |X ′ : X ′ → Y .

Finally, we will give several applications of our second main selection theorem
and will prove results in which a mapping F : X → Y is usco (or single-valued and
usc) itself at the points of a residual subset of its domain. We start with a general
result when the range space is metric.

A mapping F : X → Y , where Y is a metric space with a metric ρ, is said to be
fragmented by ρ ([HaJT], p.217) if for every ε > 0 and every non-empty open set U
in X there exists a non-empty open U ′ ⊂ U such that ρ− diam (F (U ′)) < ε.

Theorem 5.14 Let F : X → Y , where X is a Baire space and (Y, ρ) is a metric
space, be fragmented by the metric ρ. Then there exists a dense Gδ-subset X1 of X
such that:

a) for every x ∈ X1 either F (x) = ∅ or F is single-valued and usc at x.
b) if ρ is complete, Dom (F ) is dense in X and F has a closed graph then X1 ⊂

Dom (F ) and at the points of X1 F is single-valued and usco.

Proof: Put U0 = V0 = Y and define the stratgey s as above: given a partial play
{Ui, Vi}k

i=0, k ≥ 0, and a non-empty open U ⊂ Vk, let V := s(U0, V0, . . . , Uk, Vk, U)
be a non-empty open subset of Y so that Cl (V ) ⊂ U and diam (V ) < 1/(k +
1). It is easily verified that, if X is a complete metric space then s is complete
and in the general case, s satisfies the weaker condition from Remark 4.9. The so
constructed strategy s and the mapping F are strongly coordinated because of the
fragmentability of F . Therefore, the conclusion of the theorem follows by Theorem
4.5 and Remark 4.9. ¥

The next applications concerns minimal mappings. First, we show the funda-
mental fact that for such mappings the existence of a densely defined selection in
fact implies the coincidence between the mapping and its selection and even more.

Theorem 5.15 Let F : X → Y satisfy condition c) from Proposition 3.1 (i.e.
Int F#(V ) is dense in F−1(V ) for every open V in Y ). Let F possess an usco
selection G : X1 → Y on some dense subset X1 of X. Then F coincides with G at
the points of X1 and, moreover, F is usc at any x ∈ X1.

Proof: Suppose that F (x0) \ G(x0) for some x0 ∈ X1. Then (because G(x0) is
compact) there are some point y0 from this set difference and non-empty open sets
V0 and V1 of Y with y0 ∈ V0, G(x0) ⊂ V1 and V0 ∩ V1 = ∅. By the fact that G is ucs
there is some open set U of X containing x0 with the property G(X1∩U) ⊂ V1. On
the other hand, by the property of the mapping F there is some non-empty U1 ⊂ U
with F (U) ⊂ V0. This is a contradiction since U ′ ∩X1 6= ∅ and G is a selection of
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F in X1. Therefore, F (x) = G(x) for any x ∈ X1. To finish the proof, we show that
at the points of X1, F is usc as a mapping from X into Y .

Indeed, take x0 ∈ X1 and let V be an open subset of Y such that F (x0) ⊂ V .
Since F (x0) is compact and Y is regular there is an open subset W of Y with
F (x0) ⊂ W and Cl (W ) ⊂ V . Having in mind that F is usc in X1 (since F = G on
this set) there is an open subset U of X such that F (x) ⊂ W for every x ∈ U ∩X1.
Suppose there is a point x1 ∈ U ∩ Dom (F ) such that F (x1)\Cl (W ) 6= ∅. Take
y0 from this latter set. Then there is an open in Y set V0 such that y0 ∈ V0 and
V0∩Cl (W ) = ∅. Since F satisfies Proposition 3.1 c) we have that Int F#(V0) is dense
in F−1(V0). Therefore, there exists a non-empty open U ′ ⊂ U such that F (U ′) ⊂ V0.
This is a contradiction since U ′ ∩X1 is a non-empty subset of U ∩X1. The proof is
completed. ¥

Having the above fact, the following theorem is an immediate consequence from
Theorem 4.3.

Theorem 5.16 Let F be a minimal upper quasicontinuous and closed graph map-
ping acting from a Baire space X into the regular space Y such that Dom (F ) is
dense in X. Suppose that F is coordinated with some complete α-winning strategy
s in Y . Then there exists a dense Gδ-subset X1 of X such that X1 ⊂ Dom (F ), F
maps X1 into Ts and at the points of X1 F is usco. If the strategy s is such that
each s play has a one-point target set, then F is also single-valued at the points of
X1.

We already mentioned that sometimes set-valued mappings that satisfy condition
c) from Proposition 3.1 are called simply minimal. For such mappings, the conclusion
of the above theorem can be obtainde without assuming the closedness of the graph,
provided the mapping is non-empty valued. Namely, we have the following theorem

Theorem 5.17 Let F be a non-empty valued set-valued mapping acting from a
Baire space X into the regular space Y which satisfies condition c) from Proposition
3.1. Suppose that F is coordinated with some complete α-winning strategy s in Y .
Then there exists a dense Gδ-subset X1 of X such that X1 ⊂ Dom (F ), F maps X1

into Ts and at the points of X1 F is usco. If the strategy s is such that each s play
has a one-point target set, then F is also single-valued at the points of X1.

Proof: Observe that if F is non-empty valued and satsifies condition c) from Propo-
sition 3.1 then F is lower quasicontinuous. The conclusion then follows by Theorem
4.5, Proposition 5.2 and the above argument. ¥
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6 Some applications to the geometry of Banach

spaces

In this and the next section we see how the results about residually defined selections
of set-valued mappings can be applied to get various results in differet fileds. Another
applications of the selection theorems to optimization will be given in Sections 10–11.

Let (E, ‖·‖) designate a real Banach space with norm ‖·‖. By E∗, as usual, we will
denote the dual of E endowed with the standard dual norm ‖x∗‖ = sup{|〈x, x∗〉| : x ∈
B}, x∗ ∈ E∗, where B : = {x ∈ E : ‖x‖ ≤ 1} is the closed unit ball in E and 〈·, ·〉
designates the usual duality between E and E∗. The weak topology in E and weak
star topology in E∗ will be denoted by w and w∗ respectively.

Let f : E → R be a continuous convex function. The subdifferential ∂f of f , is
a multivalued mapping acting from E into E∗, defined by the formula:

∂f (x) : = {x∗ ∈ E∗ : 〈y − x, x∗〉 ≤ f(y)− f(x) for every y ∈ E}, x ∈ E.

It easily follows by this definition that ∂f is a monotone mapping, i.e. for every
x1, x2 ∈ E and for every x∗1 ∈ ∂f (x1) and x∗2 ∈ ∂f (x2) one has 〈x1−x2, x

∗
1−x∗2 >≥ 0.

The following facts are well-known and may be found in [Ph].

i) ∂f : E → E∗ is a norm-to-w∗ usco mapping with Dom (∂f ) = E;

ii) f is Gâteaux differentiable at x0 ∈ E iff ∂f (x0) is a singleton;

iii) f is Fréchet differentiable at x0 ∈ E iff ∂f is single-valued and norm-to-norm
usc at x0.

In 1933 Mazur [Ma] proved that if E is a separable Banach space, then f is
Gâteaux differentiable at the points of some residual subset of E (in such a case
we say that f is generically Gâteaux differentiable). We will see how the theorems
from the previous paragraph can be used to show generic differentiability of convex
functions in some other cases.

Let d(·, ·) be a metric in E∗. It is said that d fragments E∗ ([JaRo]) if for every
bounded subset A of E∗ and every ε > 0 there exists some w∗-open subset V of
E∗ such that V ∩ A 6= ∅ and d − diam (V ∩ A) < ε. It is well-known that E∗

has Radon-Nikodym Property (RNP) iff E∗ is fragmented by the metric generated
by the dual norm in E∗. Another important example is provided in the paper of
Ribarska [Ri]: if the norm in E is Gâteaux differentiable at each x ∈ E, x 6= 0, then
E is fragmented by some metric d.

Theorem 6.1 Let E be a Banach space with dual E∗ fragmented by some metric d
and f : E → R be a continuous convex function. Then there exists a dense Gδ-subset
D of E at the points of which f is Gâteaux differentiable. If the metric d is generated
by the dual norm in E∗ then at the points of D f is Fréchet differentiable.
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Proof: Since ∂f : (E, ‖ · ‖) → (E∗, w∗) is usco there exists some minimal usco
F : (E, ‖ · ‖) → (E∗, w∗) which is a selection of ∂f . The following lemma gives us
the possibility to apply Theorem 5.14.

Lemma 6.2 The mapping F : (E, ‖ · ‖) → (E∗, d) is fragmented by the metric d.

Proof of the lemma: Consider the closed unit ball B∗ in E∗. Since F is norm-
to-w∗ usco the sets F−1(nB∗) are closed in X for every n ≥ 1. Take an arbitrary
non-empty open set U of E and positive ε. Observe that U ⊂ ∪∞n=1F

−1(nB∗). By the
Baire theorem U1 := U ∩ Int F−1(nB∗) 6= ∅ for some n ≥ 1. Since F is minimal we
get F (U1) ⊂ nB∗ (Proposition 3.1). On the other hand, d fragments E∗, hence there
exists a w∗-open set V of E∗ such that V ∩F (U1) 6= ∅ and d−diam (V ∩F (U1)) < ε.
Again by the minimality of F (Proposition 3.1 c)) one gets a non-empty open U ′ ⊂
U1 such that F (U ′) ⊂ V . Therefore d− diam (F (U ′)) < d− diam (V ∩ F (U1)) < ε.
The proof of the lemma is completed. ¥

Now, let us go back to the proof of Theorem 6.1. By Theorem 5.14 there exists
a dense Gδ-subset D of E at the points of which F is single-valued and norm-to-d
usc. We will show also that

i) ∂f (x) = F (x) for every x ∈ D (i.e. F is Gâteaux differentiable at the points of
D);

ii) if the metric d is generated by the dual norm in E∗ then ∂f is single-valued
and norm-to-norm u.s.c. at any x ∈ D (this would imply that f is Fréchet
differentiable at the points of D).

We prove ii). Let x0 ∈ D and ε > 0. Then F (x0) = {x∗0} for some x∗0 ∈ E∗

and x∗0 ∈ ∂f (x0). Since F is norm-to-norm usc at x0 there exists some open U of X
such that x0 ∈ U and F (U) ⊂ x∗0 + εB∗. It suffices to show that ∂f (U) ⊂ x∗0 + εB∗.
Suppose this is not the case and take some x∗1 ∈ ∂f (x1)\{x∗0 + εB∗} where x1 ∈ U .
Then there exists h ∈ E, ‖ h ‖= 1, which strongly separates x∗1 from the close
convex ball x∗0 + εB∗, i.e. for some δ > 0 the w∗-open set Hδ : = {x∗ ∈ E∗ :
〈h, x∗〉 > 〈h, x∗1〉 − δ} does not intersect x∗0 + εB∗.

Consider, for t > 0, the point x(t) : = x1 + th. By the monotonicity of ∂f we
have

0 ≤ 〈x(t)− x1, x
∗ − x∗1〉 = t〈h, x∗ − x∗1〉 for every x∗ ∈ ∂f (x(t)).

This means that ∂f (x(t)) ⊂ Hδ for every t > 0. However, when t is small enough
x(t) ∈ U and hence F (x(t)) ⊂ x∗0+εB∗. This is a contradiction since F is a selection
of ∂f . The proof of ii) is completed. The proof of i) is simpler. ¥

In the next theorem the Banach space E is identified with its natural embedding
in its second dual E∗∗.
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Theorem 6.3 Let E be a separable Banach space and f : E∗ → R be a continuous
convex function such that the set A : = {x∗ ∈ E∗ : ∂f (x

∗) ∩ E 6= ∅} is residual in
the norm topology in E∗. Then f is Fréchet differentiable on a dense Gδ-subset A′

of E∗ and ∂f (x
∗) ∈ E for every x∗ ∈ A′.

Proof: Consider the mapping F : A → E defined by F (x∗) : = ∂f (x
∗)∩E, x∗ ∈ A.

Evidently Dom (F ) = A. On the other hand, since ∂f has a closed graph, the
mapping F has a closed graph too. Hence, by Theorem 5.13 there exist a residual
subset A′ of A and a continuous single-valued mapping h : A′ → E which is a
selection of F . Hence A′ is residual in E∗. Arguments similar to the used in the
proof of ii) from Theorem 6.1 show that for every x∗ ∈ A′ ∂f (x

∗) = h(x∗) and ∂f is
norm-to-norm usc at x∗. This means that f is Fréchet differentiable at the points
of A′.

Put, further, BP : = {x∗ ∈ E∗ : x∗ attains its maximum on the unit ball B}.
According to the famous Bishop-Phelps theorem [BiPh], the set BP is dense in the
norm topology in E∗.

Corollary 6.4 Let E be a separable Banach space such that the Bishop-Phelps set
BP is residual in E∗. Then the norm in E∗ is Fréchet differentiable at the points
of some residual subset A′ of E∗ and for every x∗ ∈ A′ ∂‖·‖(x∗) ∈ B. In particular,
for every x∗ ∈ A′ the maximization problem (B, x∗) is Tikhonov well-posed.

Proof: Let B∗∗ be the closed unit ball in E∗∗. It is well known that ∂‖·‖(x∗) =
{x∗∗ ∈ B∗∗ : 〈x∗, x∗∗〉 =‖ x∗ ‖} and that ∂‖·‖(x∗)∩E = ∂‖·‖(x∗)∩B 6= ∅ iff x∗ attains
its maximum on B. Therefore, BP = {x∗ ∈ E∗ : ∂‖·‖(x∗) ∩ E 6= ∅}. It remains to
apply the previous theorem. ¥

Remark 6.5 As shown in [KG], Theorem 4.5, the last two statements are valid for
all Banach spaces which admit an equivalent locally uniformly rotund norm.

7 Applications to best approximation theory

Let again E be a real Banach space with norm ‖ · ‖. Denote by S the unit sphere
of E, i.e. the set {x ∈ E : ‖ x ‖= 1}. Recall that the norm ‖ · ‖ in E is locally
uniformly rotund if for every x0, xn ∈ S such that (1/2) ‖ x0 + xn ‖→ 1, it follows
that xn → x0. ‖ · ‖ is strictly convex if S does not contain line segments.

Let A ⊂ E be a non-empty subset of E. The metric projection generated by A
is the multivalued mapping PA : E → A defined by PA(x) : = {y ∈ A : ‖ x− y ‖=
inf{‖ x − y′ ‖ : y′ ∈ A}}. In 1966 Stečkin [St] stated the conjecture that the set
{x ∈ E : PA(x) = ∅ or PA(x) is a singleton } is residual in E provided the norm in
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E is strongly convex. Up to now there have been partial positive answers to this
question (see [FaZh], [Kon1], [Kon2], [La], [St], [Za], [Zh1]).

Analogously, if A is a non-empty and bounded subset of E one can consider the
metric antiprojection mapping QA : E → A defined by QA(x) : = {y ∈ A :‖ x−y ‖=
sup{‖ x− y′ ‖ : y′ ∈ A}}. From the above point of view the metric antiprojection is
investigated in [PaKa], [Zh1].

Using our selection theorems, we will prove here the original result of [St] about
metric projections in a slightly stronger form containing Theorem 1.8 from [Zh1].
Before that we need the following lemma:

Lemma 7.1 Let E be with locally uniformly rotund norm and A be its non-empty
closed subset. Then the mapping PA is a minimal closed graph and upper quasicon-
tinuous mapping.

Proof: The fact that Gr (PA) is closed is verified easily having in mind that A
is closed. In order to conclude, we will show that PA satisfies condition c) from
Proposition 3.1. Let x0 ∈ Dom (PA). We will show that for every y ∈ PA(x0) the
metric projection PA is upper semicontinuous and single-valued at each point x from
the interior of the line segment [x0, y]. Since for every such x PA(x) = y we will
easily get that PA satisfies condition c) from Proposition 3.1.

Fix some x ∈ [x0, y]. To prove that PA is usc at x we will show the following
(stronger) property: if xn → x and yn ∈ P (xn), then yn → y.

First, we may think, without loss of generality that the left-open segment (x0, y]
is non-empty. If not, then x0 = y ∈ A and PA(x0) = y. Take some sequence {xn}
converging to x0 = y and let yn ∈ PA(xn). Then, because the distance function is
continuous, we get

‖yn−y‖ = ‖yn−x0‖ ≤ ‖yn−xn‖+‖xn−x0‖ = d(xn, A)+‖xn−x0‖ → d(x0, A) = 0.

Hence PA is usc at x0.
So fix an element x ∈ (x0, y] and take some y′ ∈ A. Then obviously ‖y′ − x0‖ ≥

‖y − x0‖ since y is a best approximation of x0. But ‖y − x0‖ = ‖y − x‖+ ‖x− x0‖,
while ‖y′ − x0‖ ≤ ‖y′ − x‖ + ‖x − x0‖. Hence, ‖y′ − x‖ ≥ ‖y − x‖ showing that
y ∈ PA(x). Observe that the above arguments show that if y′ is outside the closed
ball B[x0; ‖y−x0‖] then it cannot be a best approximation of x since the inequality
we got would be strict. Hence, if there are other best approximations of x in A they
must be on the surface of the ball B[x0, ‖y − x0‖]. But if y′ is such that y′ 6= y,
‖y′ − x0‖ = ‖y − x0‖ and y′ ∈ PA(x) then we have:

‖y′ − x0‖ = ‖y − y0‖ = ‖y − x‖+ ‖x− x0‖ = ‖y′ − x‖+ ‖x− x0‖

which is a contradiction with the strict convexity of the norm.
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Now, let xn → x and yn ∈ PA(xn). Again by the continuity of the distance
function we get:

‖y − x‖ = d(x,A) = lim d(xn, A) = lim ‖yn − xn‖ = lim ‖yn − x‖

the last equality being true since xn → x. Observe that the points yn are outside the
ball B(x0, ‖y− x0‖) and are ”tending” to the surface of the inner ball B[x, ‖y− x‖]
which has only one common point with the bigger one–the point y. This together
with local uniform rotundity of the space show that yn → y. Hence PA is usc at x.
¥

Theorem 7.2 Let E have a locally uniformly rotund norm and A be closed (resp.
closed and bounded). Then there exists a dense Gδ-subset E1 of E at the points of
which PA (resp. QA) is usc and either empty or single-valued. Moreover, if Dom (PA)
(resp. Dom (QA)) is dense in E then E1 ⊂ Dom (PA) (resp. E1 ⊂ Dom (QA)).

Proof: We prove the theorem only for metric projections. The case of antiprojec-
tions is analogous.

Let X : = Cl Dom (PA). The set E\X is open and if it is non-empty then
obviously for every x ∈ E\X PA(x) = ∅ and PA is usc at x. So consider Y : =
Int Cl Dom (F ). The set X\Y is nowhere dense in E. Hence, if Y = ∅, we are done.
On the other hand, if Y 6= ∅ and one proves that there is a dense Gδ-subset X1 of X
such that PA is single-valued and usc in X at each point of X1, then one can easily
get the conclusion of the theorem.

So, to finish, one consider PA only in X and applies Theorem 5.16. ¥

8 The Banach-Mazur game and optimization prob-

lems

Let X be a completely regular topological space and let us consider the family C(X)
of all continuous and bounded real-valued functions in X equipped with the usual
sup-norm ‖f‖ := sup{|f(x)| : x ∈ X}, f ∈ C(X). Each f ∈ C(X) determines in a
natural way a minimization problem:

find x0 ∈ X with f(x0) = inf{f(x) : x ∈ X} =: inf(X, f).

We shall denote this problem by (X, f). Among the different properties of the
minimization problem (X, f) the following ones are of special interest in the theory
of optimization:

(a) (X, f) has a solution (existence of the solution);
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(b) the solution set for (X, f) is a singleton (uniqueness of the solution) or is a
compact set of X;

(c) the solution set has some sort of continuous dependence on the data of the
problem (see bellow the precise definitions–this is called often stability of the
solution set).

In general, taken together, the properties (a)-(c) for the problem (X, f) give the
content of the notion ”well-posed minimization problem (X, f)”. More precisely,
the minimization problem (X, f) is said to be Tykhonov well-posed if it has unique
solution x0 and xn → x0 whenever f(xn) → inf(X, f). The sequences {xn} ⊂ X
such that f(xn) → inf(X, f) are called minimizing for (X, f). For a continuous func-
tion f , the Tykhonov well-posedness of (X, f) simply means that every minimizing
sequence is convergent. Since we are in a general topological space a question about
minimizing nets may arise. It is easily seen that if the problem (X, f), f ∈ C(X),
is Tykhonov well-posed then every minimizing net (not only every minimizing se-
quence) converges to the unique solution of the problem. Therefore, in the case of
Tykhonov well-posedness we can confine ourselves to the minimizing sequences and
not to consider minimizing nets.

This is not the case with a generalized notion of this type when uniqueness
of the solution is not required. The minimization problem (X, f), f ∈ C(X), is
said to be generalized well-posed if every minimizing net of the problem (X, f) has a
convergent subnet. The generalized well-posedness of (X, f), f ∈ C(X), implies that
the solution set of the problem (X, f) (i.e. the set of minimizers of f) is nonempty
and compact in X.

The well-posed problems are of special interest in Optimization both from the-
oretical and practical point of view. Indeed, it is seen that if the problem is
(Tykhonov) well-posed then every numerical method for solving this problem which
produces minimizing sequences will be successful in a sense that the produced itera-
tive sequence will approach the (unique) minimum. On the other point of view, the
well-posedness often means (see below Propositions 9.6) that the (unique) solution
is stable under small perturbations of the data of the problem. I.e., we have con-
tinuous dependence of the solution on the data–this is important every time when
we have to replace the original problem by a similar one which is close to it. For
a comprehensive study of the these and other similar concepts of well-posedness we
refer the reader to the book [DoZ].

The notion of well-posedness of a given problem (X, f), f ∈ C(X), is also related
to the differentiability properties of the sup-norm in C(X) (see e.g. [ČKR1, ČKR2].
Let us mention that the concept of Tykhonov well-posedness for a problem (X, f)
is termed also as f has a strong minimum (see e.g. [DvGZi1, DvGZi2]). Motivated
by the case of linear functionals, one says in such a case also that f strongly exposes
its unique minimum.
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In general, a particular problem (X, f) may fail to have any of the properties (a)-
(c). But the question which may be raised is to measure the “topological bigness”
of the set of functions from C(X) possessing some (or all) of the properties (a)-(c).
The term “topological bigness” is understood (as above) in the Baire category sense.
For instance, one may ask when the set T := {f ∈ C(X) : (X, f) is Tykhonov
well-posed} is residual in C(X). I.e., we are interested in under what conditions
(necessary and sufficient) this set contains a dense Gδ-subset of C(X). In other
words, under what conditions almost all problems are well-posed? Similar questions
for different classes of optimization problems have been a common point of interest
for many authors in the last 30 years. We will see that the positive answer to the
above question is closely related to the existence of residually defined selections of
certain set-valued mappings. Moreover, investigating the above issue of generic well-
posedness we will see that some of the sufficient conditions for the existence of the
selections in Section 4 are also necessary. All this, on the other hand is intimately
related to the existence of special winning strategies in the Banach-Mazur game
BM(X).

Analogously, one can consider the situations when the property from (a) or (b)
is generic. In other words, situations when the set E := {f ∈ C(X) : (X, f) has
a solution} or the set U := {f ∈ C(X) : (X, f) has unique solution} is residual
in C(X). We will see for example that the generic existence of solutions to the
problems from C(X) is a characterization of the existence of α-winning strategy in
the Banach-Mazur game BM(X).

All the above generic properties are a partial case of the following more general
scheme of variational principle: let f : X → R ∪ {+∞} be an extended-real-valued
lower semicontinuous function, which is proper. The latter means that the effective
domain dom f of f , i.e. the set dom f := {x ∈ X : f(x) < +∞} is not empty.
Equivalently, f is finite at least in one point. Let us recall that f is lower semicon-
tinuous if its epigraph

epi f := {(x, t) ∈ X × R : f(x) ≤ t}
is closed in the product topology. In conclusion, f is lower semicontinuous and
proper iff its epigraph is non-empty and closed in the product topology.

Let f be in addition bounded from below: then the notion of Tykhonov well-
posedness for the minimization problem (X, f) is defined exactly as above–f has a
unique minimum towards converges any minimizing sequence.

Suppose further that we are given a family of (usually at least continuous)
bounded from below functions P defined in X. We may think that the class P
is equipped with some complete metric (most often a P is a Banach space lying in
C(X) with a norm which is at least as stronger as the sup-norm in C(X)). The
following question is of importance in many situations: does there exist a non-empty
subset P ′ of P so that for any g ∈ P ′ the minimization problem (X, f +g) attains its
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minimum in X (or stronger, is Tykhonov well-posed). In other words we are seeking
whether in the class P there are perturbations g making the perturbed minimization
problem (h + f) solvable (or well-posed). Often, the aim is to prove that the set
P is as big as possible in P , i.e. is dense in P or even more, contains a dense and
Gδ-subset of P . These are the general schemes of Ekelenad variational principle
[Ek1, Ek2], Deville-Godefroy-Zizler [DvGZi1, DvGZi1] variational principle, Stegall
variational principle [S1] and Borwein-Preiss [BoPr] smooth variational principles.
Our generic existence (or well-posedness) described above is evidently a partial case
of this scheme with f ≡ 0 and the class P being just C(X) with the usual norm.

Such variational principles have turned out to be extremely useful in different
branches of mathematics, as optimization, non-linear analysis, critical point the-
ory, differentiability of convex functions, existence of solutions to Hamilton-Jacobi
equations and many others.

9 The solution mapping in C(X)

We introduce below a mapping which will play an important role in the sequel and
prove its basic properties.

Let X be a completely regular topological space and C(X) be the space of all
continuous and bounded real-valued functions in X equipped with the sup-norm. In
C(X) we define the solution mapping M : C(X) → X related to the minimization
problems from C(X) by

M(f) := {x ∈ X : f(x) = inf(X, f)}, f ∈ C(X).

Obviously M is onto. Moreover, the following facts are true for M .

Proposition 9.1 The mapping M has the following properties:
(a) Gr (M) is a closed subset of X × Y ;
(b) Dom (M) is dense in C(X);
(c) M is open;
(d) for every open U in X the set IntM#(U) is dense in M#(U)

⋂
Dom (M);

(e) for every two open sets W in C(X) and U in X with W
⋂

M−1(U) 6= ∅ there
is a non-empty open W ′ ⊂ W such that M(W ′) ⊂ U .

Proof: (a) is trivial. As to (b), let f ∈ C(X) and ε > 0 be arbitrary. Then,
obviously M(fε) 6= ∅ for fε(x) := sup{f(x), inf(X, f) + ε}.

Further we demonstrate (c). Let W be an open subset of C(X) and x0 ∈ M(f0)
for some f0 ∈ W . Take ε > 0 such that the ball B(f0, ε) : = {f ∈ C(X) : ‖f−f0‖ <
ε} ⊂ W . Then each x′ ∈ {x ∈ X : f0(x) < inf(X, f0) + ε} is a minimizer of some f
from W , e.g. of the function f0ε considered above.
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It is easy to see that (d) is a consequence of (e). So we prove (e).
Let x0 ∈ M(f0)

⋂
U for some f0 ∈ W . Since X is completely regular there exists

a function h0 ∈ C(X) such that h0(x0) = 0, h0(X \U) = 1 and ‖h0‖ = 1. Find δ > 0
such that f0 + δh0 ∈ W . Let further, W ′ ⊂ W be an open set in C(X) containing
f0 + δh0 and such that diam(W ′) < δ/3. Take f ∈ W ′. Since for x ∈ X \U one has

f(x) ≥ (f0 + δh0)(x)− δ

3
= f0(x) +

2δ

3

≥ f0(x0) +
2δ

3
= (f0 + δh0)(x0) +

2δ

3

> (f0 + δh0)(x0) +
δ

3
≥ f(x0),

we see that M(f) ⊂ U .
The proof of the proposition is completed. ¥

Immediate corollaries of this proposition and Proposition 3.1 and Proposition
3.2 are the following two ones:

Corollary 9.2 Let X be completely regular. Then the solution mapping M : C(X) →
X is an open minimal closed graph upper quasicontinuous mapping.

Corollary 9.3 Let X be compact. Then the solution mapping M : C(X) → X is
an open minimal usco.

Further we show that the continuity-like properties of M are related to the con-
cept of well-posedness. First we investigate the relationship between the generalized
well-posedness and upper semicontinuity of M . Namely, we have

Proposition 9.4 Let X be a completely regular topological space. The minimization
problem (X, f), f ∈ C(X), is generalized well-posed iff the solution mapping M :
C(X) → X is usco at f .

Proof: Let (X, f) be generalized well-posed. Then, as it was mentioned, M(f)
is non-empty and compact. Suppose M is not usc at f . Then there is an open
set V of X with M(f) ⊂ V such that for every open U of C(X) containing f one
has M(U) \ V 6= ∅. Let xU ∈ M(U) \ V . Then xU ∈ M(fU) for some fU ∈ U .
Ordering the family of all open neighborhoods U of f by inclusion we get two nets
{fU} ⊂ C(X) and {xU} ⊂ X such that fU → f and xU ∈ M(fU).

Further, it is easily checked that the marginal function inf(X, ·) is a continuous
function from C(X) into the reals R. Hence fU(xU) → inf(X, f). This, together
with fU → f gives f(xU) → inf(X, f). Hence, {xU} is a minimizing net for the
minimization problem (X, f). But this net does not have any subnet convergent to
a solution of (X, f) since xU /∈ V and M(f) ⊂ V . This is a contradiction.
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Conversely, let M be usco at f ∈ C(X). Take a minimizing net {xλ} for
the problem (X, f) and consider the continuous and bounded real-valued functions
fλ(x) := sup{f(x), f(xλ)}. Since f(xλ) → inf(X, f) we get fλ → f in C(X). Hence,
by the upper semicontinuity of M at f for every open V in X containing M(f) we
have M(fλ) ⊂ V for large λ, giving xλ ∈ V for large λ. Now, it is a routine matter
to organize a subnet of {xλ} converging to a point from the compact set M(f). The
proof is completed. ¥

Another fact characterizing the generalized well-posedness is related with the
compactification of X. Let βX as usual denote the Stone-Čech compactification of
the completely regular topological space X. Given f ∈ C(X) we will denote by
e(f) the unique continuous extension of f in βX. Let M̃ be the solution mapping
determined by βX, i.e. the set-valued mapping between C(βX) and βX which
assigns to each function from C(βX) its minimizers in βX. Since, in fact, C(βX)
and C(X) are congruent (which means that as Banach spaces they are the same) here
(and in the sequel) we will always consider the mapping M̃ to act between C(X) and
βX. I.e. for f ∈ C(X), M̃(f) = {x ∈ βX : e(f)(x) = inf(X, f) = inf(βX, e(f))}.
According to Corollary 9.3 the mapping M̃ is an open minimal usco. Now we have:

Proposition 9.5 Let X be a completely regular topological space and f ∈ C(X).
Then the minimization problem (X, f) is generalized well-posed iff M̃(f) ⊂ X.

Proof: Let (X, f), f ∈ C(X), be generalized well-posed and suppose that there is
a point x ∈ βX \X so that e(f)(x) = inf(βX, f) = inf(X, f). Then there is a net
{xλ} ⊂ X which converges to x. But then f(xλ) = e(f)(xλ) → e(f)(x) and hence
{xλ} is minimizing net for the problem (X, f) which does not have a convergent (in
X) subnet. This is a contradiction.

Conversely suppose that M̃(f) ⊂ X. Let M be the solution mapping determined
by X. Since obviously M(f) = M̃(f) ∩ X, and M̃ is usco, we see easily that M
is usco at f . According to Proposition 9.4 this means that (X, f) is generalized
well-posed. ¥

Since it is clear that a problem (X, f), f ∈ C(X), is Tykhonov well-posed iff
(X, f) is generalized well-posed and has unique solution, then the following two
assertions are immediate consequence from the above propositions.

Proposition 9.6 Let X be a completely regular topological space and f ∈ C(X).
The minimization problem (X, f), f ∈ C(X), is Tykhonov well-posed iff the solution
mapping M : C(X) → X is single-valued and usc at f .

Proposition 9.7 Let X be a completely regular topological space and f ∈ C(X).
Then the minimization problem (X, f) is Tykhonov well-posed iff M̃(f) is a singleton
lying in X.
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10 Winning strategies in the Banach-Mazur game

and generic existence of solutions

In this section we give a characterization of the existence of α-winning strategy
in the Banach-Mazur game BM(X), where X is a completely regular topological
space. Before stating it we need a simple fact concerning multivalued mappings.

Proposition 10.1 Let F : X → Y be a multivalued mapping with closed graph. Let
x0 ∈ X and the family {Uλ : λ ∈ A} be a local base for x0 in X. Then

F (x0) = F (
⋂
{Uλ : λ ∈ A}) =

⋂
{F (Uλ) : λ ∈ A} =

⋂
{Cl F (Uλ) : λ ∈ A}

.

Proof: The next chain of equalities and inclusions is clear:

F (x0) = F (
⋂
{Uλ : λ ∈ A}) ⊂

⋂
{F (Uλ) : λ ∈ A} ⊂

⋂
{Cl F (Uλ) : λ ∈ A}.

So, take some y ∈ ⋂{Cl F (Uλ) : λ ∈ A} and suppose y /∈ F (x0). Hence, (x0, y) /∈
Gr (F ) and since F has a closed graph, there are open sets U ⊂ X and V ⊂ Y such
that x0 ∈ U, y ∈ V and F (U)

⋂
V = ∅. But the family {Uλ : λ ∈ A} is a base

for x0 in X. Therefore, there exists λ0 ∈ A with Uλ0 ⊂ U . On the other hand,
y ∈ Cl F (Uλ0) which entails V

⋂
F (U) 6= ∅. This is a contradiction which completes

the proof. ¥

Now we are ready to prove the following characterization of weakly α-favorable
spaces:

Theorem 10.2 For a completely regular topological space X the following assertions
are equivalent:

(a) X is weakly α-favorable;
(b) every (demi-) open and minimal closed graph upper quasicontinuous mapping

F : Z → X with dense domain acting from a complete metric space Z into X is
non-empty valued at the points of a dense and Gδ-subset of Z;

(c) the set E = {f ∈ C(X) : (X, f) has a solution} contains a dense Gδ-subset
of C(X).

Proof: Suppose (a) is true and let F : Z → X be a demi-open minimal closed
graph upper quasicontinuous mapping from the complete metric space Z into X so
that Dom (F ) is dense in Z. We may suppose that F (Z) is dense in X, otherwise we
may consider F : Z → Cl F (Z) which is again a demi-open minimal closed graph
upper quasicontinuous mapping. Observe that, because F is demi-open, for every
non-empty open W of Z we have Int Cl F (W ) 6= ∅.

Let s be a winning strategy for the player α in the game BM(X). The next
lemma is modification of Lemma 4.8.
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Lemma 10.3 Let F be as in Theorem 10.2, (U1, V1, . . . , Un, Vn), n ≥ 1, be a par-
tial play in the game BM(X) and Wn is a non-empty open subset of Z such that
Int Cl F (Wn) ⊂ Vn. Let Γ(Wn) be a maximal family of triples (Un+1, Vn+1,Wn+1)
such that:

(a) Un+1 is a non-empty open subset of Int Cl F (Wn);
(b) Vn+1 = s(U1, V1, . . . , Un, Vn, Un+1);
(c) Wn+1 is a non-empty subset of Z such that diam (Wn+1) < 1/(n + 1),

Cl (Wn+1) ⊂ Wn and Int Cl F (Wn+1) ⊂ Vn+1;
(d) the family γ(Wn) : = {Wn+1 : (Un+1, Vn+1,Wn+1) ∈ Γ(Wn) for some Un+1, Vn+1}

is disjoint;
Then the set H(Wn) : =

⋃{Wn+1 : Wn+1 ∈ γ(Wn)} is dense in Wn.

Proof of the Lemma: A family satisfying (a)-(d) always exists. Take a max-
imal one Γ(Wn) and suppose the conclusion of the lemma is not true. Then there
exists a non-empty open subset G of Z with G ⊂ Wn and G

⋂
H(Wn) = ∅. Since

F is demi-open Int Cl F (G) 6= ∅. Moreover, Int Cl F (G) ⊂ Int Cl F (Wn) ⊂ Vn. Let
Un+1 : = Int Cl F (G) and Vn+1 := s(U1, V1, . . . , Un, Vn, Un+1). By Proposition 3.1
(c) and the regularity of X there is a non-empty open subset Wn+1 of Z such that
Wn+1 ⊂ G and Int Cl F (Wn+1) ⊂ Vn+1. We may think, in addition, that Cl (Wn+1) ⊂
Wn and diam (Wn+1) < 1/(n + 1). Now, the family Γ(Wn)

⋃{(Un+1, Vn+1,Wn+1)}
is strictly larger than Γ(Wn) and satisfies (a)-(d). This is a contradiction showing
that the maximal H(Wn) is dense in (Wn). ¥

Let us mention that, as usual, the above lemma is true also for n = 0 provided
we put U0 = V0 = X.

Now, we get back to the proof of the theorem. Proceeding as in the proof of
Theorem 4.3 we obtain a sequence of families {Γn}n≥1 of triples and a sequence of
disjoint families {γn}n≥0 of open sets in Z, with γ0 = {Z}, such that for every n ≥ 1
we have:

(i) Γn is a union of the families Γ(Wn−1), Wn−1 ∈ γn−1, where Γ(Wn−1) is obtained
by the Lemma from some uniquely determined partial play (U1, V1, . . . , Un−1, Vn−1);

(ii) γn is a union of the families γ(Wn−1) from condition (d) of the Lemma;

(iii) the set Hn : =
⋃{Wn : Wn ∈ γn} is open and dense in Z.

Let H0 : =
⋂∞

n=1 Hn. Obviously H0 is a dense Gδ-subset of Z. Take z0 ∈ H0.
By the properties above, this z0 determines a unique sequence {Wn}n≥1 such that
for every n ≥ 1, Wn ∈ γn, z0 ∈ Wn, Cl (Wn+1) ⊂ Wn and diam (Wn) < 1/n.
Hence {z0} =

⋂∞
n=1 Wn and the family {Wn}∞n=1 is a local base for z0 in Z. By

the properties (a)-(d) from Lemma 10.3 and conditions (i)-(iii) above it follows that
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there is an s-play p = {Un, Vn}∞n=1 such that Un+1 ⊂ Int Cl F (Wn) ⊂ Vn for every
n ≥ 1.

Hence, by Proposition 10.1 we have

F (z0) =
∞⋂

n=1

Int Cl F (Wn) =
∞⋂

n=1

Vn =
∞⋂

n=1

Un = T (p).

Since s is an α- winning strategy, we see that F (z0) = T (p) =
⋂∞

n=1 Vn 6= ∅. The
proof of the implication (a)⇒(b) is completed.

The implication (b)⇒(c) follows by the fact the solution mapping M : C(X) →
X is open and minimal closed graph upper quasicontinuous mapping. So we prove
(c)⇒(a).

Let (c) be fulfilled and consider the solution mapping M : C(X) → X. The set
Dom (M) contains a dense Gδ-subset of C(X). Then, there exist countably many
open and dense subsets {Gn}n≥1 of C(X) such that

⋂∞
n=1 Gn ⊂ Dom (M). The

sets Fn : = C(X) \ Gn, n ≥ 1, are closed and nowhere dense in C(X). That is
Int (Fn) = ∅ for every n ≥ 1.

We start now constructing a winning strategy for the player α in BM(X). Let
U1 be a non-empty open subset of X. Consider the set Int M#(U1) which is non-
empty by Proposition 9.1 (d). Since F1 is closed and nowhere dense in C(X), the
set Int M#(U1)\F1 is non-empty and open in C(X). Take an open ball B1 in C(X)
with radius less or equal to 1, such that B1 ⊂ Int M#(U1) \ F1. Define now the
value of the strategy s at U1 by s(U1) : = M(B1). By Proposition 9.1 (c), s(U1) is
a non-empty open subset of U1.

Further, let U2 be an arbitrary non-empty open subset of V1 = s(U1) = M(B1).
Since U2 ⊂ M(B1) there is some f ∈ B1 such that M(f)

⋂
U2 6= ∅. Hence, by

Proposition 9.1 (e) there exists a non-empty open W ⊂ B1 such that M(W ) ⊂ U2.
As above the set W \ F2 is a non-empty and open subset of C(X). Take an open
ball B2 with radius less or equal to 1/2 so that Cl (B2) ⊂ W \ F2 ⊂ B1 and put
s(U1, V1, U2) : = M(B2). Obviously s(U1, V1, U2) is a non-empty open subset of U2.
Proceeding by induction we define the strategy s for every chain (U1, V1, . . . , Un), n ≥
1, such that Uk ⊂ Vk−1 and Vk−1 = s(U1, V1, . . . , Uk−1) for every k, 1 ≤ k ≤ n (with
V0 = X).

Let p = {Un, Vn}∞n=1 be an s-play and {Bn}n≥1 is the sequence of open balls in
C(X) associated with {Un}n≥1 and {Vn}n≥1 from the construction of s. Then for
every n ≥ 1:

1) Cl (Bn+1) ⊂ Bn and Bn

⋂
Fn = ∅;

2) diam (Bn) < 1/n;

3) Vn = M(Bn)
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The conditions 1) and 2) above guarantee that
⋂∞

n=1 Bn is a one-point set in
C(X), say f0, and {Bn}∞n=1 is a local base for f0. Moreover, 1) shows in addition
that f0 ∈ C(X) \ ⋃∞

n=1 Fn ⊂ Dom (M). Therefore, by 3) and Proposition 10.1 we
have

∅ 6= M(f0) =
∞⋂

n=1

M(Bn) =
∞⋂

n=1

Vn = T (p).

Hence s is a winning strategy for the player α in the Banach–Mazur game BM(X).
This completes the proof. ¥

11 Strengthened strategies in the Banach-Mazur

game and generic well-posedness

In this section we consider stronger conditions for the player α to win in the game
BM(X). As a result we obtain special kind of winning strategies for the player α
which already were considered in the previous chapter. On the one hand, it turns out
that the existence of such kind of strategies characterizes the generic well-posedness
in the class C(X). On the other hand we will see that, those strengthened strategies
are not only sufficient for the existence of residually defined selection as it was shown
in Section 4 but are also necessary.

Indeed, the following two theorems characterize the generic well-posedness in
the class C(X). Simultaneously they characterize also the existence of residually
defined selections for (demi-)open lower demicointinuous and minimal pseudo usc
mappings.

Theorem 11.1 Let X be a completely regular topological space. The following as-
sertions are equivalent:

(a) the space X is almost Čech complete;
(b) the player α has a complete (stationary) winning strategy in the game BM(X);
(c) every demi-open lower demicontinuous mapping F : Z → X with closed

graph (and dense domain), acting from a Baire space Z into X possesses an usco
selection G : Z1 → X where Z1 is a dense Gδ-subset of Z with Z1 ⊂ Dom (F );

(d) every (demi-)open minimal closed graph upper quasicontinuous mapping F :
Z → X, acting from a Baire space Z into X is usco (hence, also non-empty valued)
at the points of a dense Gδ-subset Z1 of Z;

(e) the set GT : = {f ∈ C(X) : (X, f) is generalized well-posed } contains a
dense Gδ-subset of C(X).

Theorem 11.2 Let X be a completely regular topological space. The following as-
sertions are equivalent:
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(a) the space X contains a dense completely metrizable subspace;
(b) the player α has a complete (stationary) winning strategy s in the game

BM(X) such that for every s-play p = {Un, Vn}∞n=1 the target set T (p) is a singleton;
(c) every demi-open lower demicontinuous mapping F : Z → X with closed

graph (and dense domain), acting from a Baire space Z into X possesses a single-
valued and continuous selection g : Z1 → X where Z1 is a dense Gδ-subset of Z with
Z1 ⊂ Dom (F );

(d) every (demi-)open minimal closed graph upper quasicontinuous mapping F :
Z → X, acting from a Baire space Z into X is single-valued and usc at the points
of a dense Gδ-subset Z1 of Z;

(e) the set T : = {f ∈ C(X) : (X, f) is Tykhonov well-posed } contains a dense
and Gδ-subset of C(X).

We will first give the proof of the second theorem. The proof of the previous one
is similar.

Proof of Theorem 11.2: (a)⇒(b) is Proposition 5.3, while (b)⇒(c) is The-
orem 5.4. (c)⇒(d) follows by Thoerem 5.15 Finally, (d)⇒(e) is a consequence of
Propostion 9.1 and Proposition 9.6. So it remains to prove (e)⇒(a).

Suppose that T contains a dense Gδ-subset T1 of C(X). Consider the Čech-
Stone compactification βX of X and let M̃ be the corresponding solution mapping
between C(X) and βX, i.e. given f ∈ C(X), M̃(f) are the minimizers of the
(unique) continuous extension e(f) of f in βX. Consider further the mapping
M̃−1 : βX → C(X). It is lsc (since by Proposition 9.1 M is open) and has closed
graph, again by the same proposition. Moreover, since M̃ is minimal, then it is lower
demicontinuous and thus (Proposition 5.1 M̃−1 is demi-open. Hence, by Theorem
5.4 there exist a dense Gδ-subset X1 of βX and a continuous single-valued mapping
h : X1 → T1 which is a selection of M̃−1 on X1. Obviously X1 is Čech complete.
Take x ∈ X1. Then h(x) ∈ T1 and hence h(x) ∈ T . Therefore M̃(h(x)) ⊂ X,
showing that x ∈ X. Hence X1 ⊂ X. On the other hand, since h is a selection of
M−1 mapping X1 into T1 and M is usco and single-valued on T , it is seen that h is
a homeomorphism between X1 and h(X1) ⊂ T1. To finish, let us recall that every
metrizable Čech complete space is completely metrizable. ¥

Proof of Theorem 11.1:
(a)⇒(b) is Proposition 5.3, (b)⇒(c) is Theorem 5.4, (c)⇒(d) follows by Thoerem

5.15. As above, (d)⇒(e) is a consequence of Proposition 9.1 and Proposition 9.4.
To prove (e)⇒(a) one proceeds as above (the proof of the same implication) and
obtain a dense subset X1 of X which turns out to be Čech complete.

Remark 11.3 Since for any x ∈ βX, M̃−1(x) is a convex closed subset of C(X)
and M̃−1 is lsc in βX, the classical Michael selection theorem [M1] always gives a
single-valued selection of M̃−1 : βX → C(X) which is defined on βX. The values of
this selection, however, are not obliged to lie in T or GT .
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Final Remark: The material in these notes is based on the content of the following
papers from the references below: [ČKR1, ČKR2, ČKR3, ČKR4, ČKR5, ČKR6,
KMoR1, KMoR2, KR1, KR2, KR3, KR4, R1, R2, R3].
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[Fro2] Z. Froĺık, Baire spaces and some generalizations of complete metric
spaces, Czech. Math. J. 11(1961), 237–247.
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[Tel] R.Telgárski, Topological games: On the 50-th anniversary of the Banach-
Mazur game, Rocky Mount. J. Math. 17(1987), 227–276.

[Tro] S.L. Troyanski, On locally uniformly convex and differentiable norms in
certain non separable Banach spaces, Studia Math. 37(1971), 173-180.

[U] S.M. Ulam, The Scottish Book, Los Alamos, CA, 1977.

47



[Wh] H.E. White, Jr., Topological spaces that are α-favorable for player with
perfect information, Proc. Amer. Math. Soc. 50(1975), 477–482.

[Za] L. Zaj́ıček, On the points of multivaluedness of metric projections in
separable Banach spaces, Comment. Math. Univ. Carol. 19(1978), 513–
523.

[Zh1] N.V. Zhivkov, Continuity and non-multivaluedness properties of metric
projections and antiprojections, Serdica Bulg. Math. Publ. 8(1982), 378–
385.

[Zh2] N.V. Zhivkov, Generic Gâteaux differentiability of directionally differen-
tiable mappings, Rev. Roum. de Math. Pures et Appl. 32(1987), 179–188.

48


