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Abstract

In this paper, we improve and tailor a recent statistical
region merging approach to biased (partially supervised)
grouping. The approach appears to be attractive both
for its theoretical benefits and its experimental results, as
light bias brings dramatic improvements over unbiased ap-
proaches on difficult pictures. Comparisons with another
biased grouping algorithm display very favorable results.

1. Introduction
Grouping is the discovery of intrinsic clusters in data [1].
Image segmentation is a particular kind of grouping in
which data consists of an image, and the task is to extract
as regions the objects a user may find conceptually distinct
from each other. The automation and optimization of this
task face computational issues [2] and an important con-
ceptual issue: basically, segmentation has access only to
low level descriptions (e.g. pixels’ color levels) and their
spatial relationships, while a user always uses higher level
of knowledge to cluster the image objects.

With the advent of media making it easier and cheaper
to collect and store digital images, this challenge has
been raised even further towards both computational effi-
ciency and robust processing. Consider for example image
flower in Figure 1. At the highest level, users would con-
sider that this image contains two distinct objects (the bee
and the flower) plus the background. Due to the distribution
of colors, it is virtually impossible for a non-biased segmen-
tation technique to make a single region out of the flower,
whose colors are contrasted, while preventing the bee to be
merged with the background. The right image is the result
of our algorithm with a slight grouping bias. Regions found
are delimited by white borders. This result is presented in
greater details in the experimental Section (Figure 4).

Common grouping algorithms for image segmentation
use a weighted neighborhood graph to formulate the spatial
relationships among pixels [3, 2, 4, 5, 1], and then formu-
late the segmentation as a graph partitioning problem. An
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Figure 1: Image flower (left), and SRM.B’s result (right).

essential difference between these algorithms is the local-
ity of the grouping process. [5, 1] solve it from a global
standpoint, whereas [3, 2, 4] make greedy local decisions to
merge the connex components of induced subgraphs.

Our approach to segmentation, which gives the results of
Figure 1, is based on a framework previously studied by [1].
It is particularly useful for domains in which the user may
interact with the segmentation, by inputting constraints to
bias its result: sensor models in MRF [6], Human-computer
interaction, spatial attention and others [1]. Grouping with
bias is basically solved by pointing in the image some pix-
els that the user feel belong to identical/different objects,
and then solving the segmentation as a constrained group-
ing problem. The solution for the global approach of [1, 7]
is mathematically appealing, but it is computationally de-
manding, it cannot easily handle all constraints generated
by bias, it works on a single (composite) channel, and it re-
quires a significant bias to guide reliably the segmentation.

A different grouping approach appears to be concep-
tually appealing for an adaptation to biased segmentation
[2, 4]. It considers that the observed image is the result of
the sampling of a theoretical image, in which regions are
statistical (“true”) regions characterized by distributions ;
the segmentation aims at approximating the statistical re-
gions on the sole basis of the observed image. There is no
distribution assumption on the statistical pixels of this theo-
retical image, apart from an homogeneity property which
relies on the region’s expectations. The biased grouping
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problem turns out to allow statistical regions to contain dif-
ferent statistical sub-regions, not necessarily connex, each
satisfying independently the homogeneity property, and for
which the user feels they all belong to the same perceptual
object. Thereby, this relaxes even further the constraints on
the theoretical image.

Our contribution in this paper is twofold. First, it con-
sists of two modifications and improvements to the unbi-
ased segmentation algorithm of [2, 4]. Second, we extend
this algorithm to grouping with bias. Our extension keeps
both fast processing and theoretical bounds on the segmen-
tation’s quality. Experimental results display very favorable
results compared to [5, 1] for both the unbiased and the bi-
ased settings.

Section 2 summarizes the unbiased approach of [2, 4],
and presents our modifications to their algorithm in the
unbiased setting. Section 3 presents extensions to biased
grouping. Section 4 presents experimental results and com-
parisons with [5, 1], and Section 5 concludes.

2. Improving grouping as in [2, 4]

We first recall the basic facts of the model of [2, 4].
Throughout this paper, “log” is the base-2 logarithm. The
notation |.| denotes the number of pixels (cardinality) when
applied to a region R, or to the observed image I . Each
pixel of I contains three color levels (R, G, B), each of the
three belonging to the set {1, 2, ..., g}.

The image I is an observation of a perfect object (or
“true region”, or statistical region) scene I∗ we do not know
of, and which we try to approximate through the observa-
tion of I . It is I∗ which captures the global properties of
the scene: theoretical (or statistical) pixels are each repre-
sented by a set of Q distributions for each color level, from
which each of the observed color level is sampled. The sta-
tistical regions of I∗ satisfy a 4-connexity constraint, and
the simple homogeneity constraint that the R (resp. G, B)
expectation is the same inside a statistical region. In order
to discriminate regions, we assume that between any two
adjacent regions of I∗, at least one of the three expectations
is different.

From this model, [2, 4] obtain a merging predicate
P(R, R′) based on concentration inequalities, to decide
whether two observed regions R and R′ belong to the same
statistical region of I∗, and thus have to be merged. Let
Ra denote the observed average for color channel a in
region R of I , and let Rl be the set of regions with l
pixels. Let b(R) = g

√

(1/(2Q|R|)) ln(|R|R||/δ), with
|Rl| ≤ (l + 1)g . The merging predicate is [2]:

P(R, R′)=







true iff ∀a ∈ {R, G, B},
|R′

a − Ra| ≤ b(R) + b(R′)
false otherwise

.(1)

The description of the algorithm PSIS of [2] is straightfor-
ward:

1. it makes a sorting over the set SI of the pairs of ad-
jacent pixels of the image, according to the increasing
values of f(p, p′) = maxa∈{R,G,B} |p

′
a − pa|, with pa

color channel a of pixel p;

2. afterwards, the algorithm traverses this order only
once, and test for any pair (pi, p

′
i) the merging of the

two regions to which they currently belong, R(pi) and
R(p′i), with the merging predicate P(R(pi), R(p′i)).

This approach to segmentation is interesting from the al-
gorithmic standpoint, because it is simple and fast: its com-
plexity is O(|I |), both in time and space [2, 4], which is
significantly better than [5]. We now propose two modifica-
tions and improvements of the approach of [2, 4].

The first is a modification of step [1.] of the algorithm,
with a more reliable f . [4] have shown that f should theo-
retically be an estimator, as reliable as possible, of the local
between-pixel gradients. We have chosen to extend Sobel
convolution kernels classically used in edge detection for
pixel-wise gradient estimation, and use in 4-connexity those
estimating ∂̂x or ∂̂y between neighbor pixels, for each color
channel a ∈ {R, G, B}. Only for the pixels for which the
estimations with ∂̂x and ∂̂y cannot be done (i.e. those of the
image’s border) do we keep the usual f of [2, 4].

Our second improvement concerns step [2.] and the
merging predicate P . It relies on the following theorem
whose proof follows from [8].

Theorem 1 Consider a fixed couple (R, R′) of regions
of I . ∀0 < δ ≤ 1, ∀a ∈ {R, G, B} the probability
is no more than δ that |(Ra − R

′

a) − E(Ra − R
′

a)| ≥
g
√

(1/(2Q)) ((1/|R|) + (1/|R′|)) ln(2/δ).

Theorem 1 is a single event’s concentration in what it con-
siders a single couple of regions (R, R′), and one should
extend this to the whole image, in order to obtain a con-
venient merging predicate. Fortunately, one can easily up-
perbound the probability that such a large deviation occurs
in the observed image I , using the union bound and taking
into account that in 4-connexity, there are O(|I |) couples of
adjacent pixels.

Theorem 2 ∀0 < δ ≤ 1, there is probability at least 1 −
(3|SI |δ) that all couples (R, R′) tested shall verify ∀a ∈

{R, G, B}, |(Ra − R
′

a) − E(Ra − R
′

a)| ≤ b(R, R′), with
b(R, R′) = g

√

(1/(2Q))(1/|R|+ 1/|R′|) ln(2/δ).

b(R, R′) would lead to a very good theoretical merging
predicate P instead of using the threshold b(R) + b(R′)
in eq. 1, provided we pick a δ small enough. This pred-
icate would be much better than [2, 4] from the theoret-
ical standpoint, but slightly larger thresholds are possible
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that keep all the desirable theoretical properties we look for,
and give much better visual results. Our merging predicate
uses one such threshold, which turns out to be Õ(b(R, R′)).
Remark that provided regions R and R′ are not empty,
b(R, R′) ≤

√

b2(R) + b2(R′) < b(R) + b(R′). This right
quantity is that of eq. 1. The center quantity (which is in-
deed Õ(b(R, R′)) provided a good upperbound on |Rl| is
used) is the one we use for our merging predicate. It is thus:

P(R, R′)=







true iff ∀a ∈ {R, G, B},
|R′

a − Ra| ≤
√

b2(R) + b2(R′)
false otherwise

.(2)

Let us now concentrate on |Rl|. [2, 4] pick |Rl| ≤ (l +1)g,
considering that a region is an unordered bag of pixels (each
color level is given 0, 1, ..., l pixels). This bound counts nu-
merous duplicates for each region: e.g. at least (l + 1)g−l

when l < g. Thus, we consider |Rl| ≤ (l + 1)min{l,g}.
Because our merging predicate is tighter than [2, 4], the

segmentation enjoys both the qualitative and the quantita-
tive error limitation bounds proven in [2, 4]. In the se-
quel, we shall refer to our modified version of PSIS as
SRM.B (SRM stands for Statistical Region Merging).

3. Grouping with bias
It shall be useful in this Section to think of I as containing
vertices instead of pixels, and the (4-)connexity as defin-
ing edges, so that I can be represented by a simple graph
(V, E). Following [1], we define a grouping bias to be user-
defined disjoint subsets of V : {V1, V2, ..., Vm} = V . Any
feasible solution to the constrained grouping problem is a
partition of V into connex components (thus, a partition of
the pixels of I into regions), such that

(i) any such connex component intersects at most one el-
ement of V , and

(ii) ∀1 ≤ i ≤ m, any element of Vi is included into one
connex component.

The first condition states that no region in the segmenta-
tion of I may contain elements from two distinct subsets in
V , and condition (ii) states that each pointed pixel (coming
from V) belongs to a region.

For any region R of I , we define a model for the region
to be a subset of R, without connexity constraints on its el-
ements, containing one vertex of some element of V . The
term model makes statistical sense because any Vi ∈ V with
|Vi| > 1 may represent a single object for the user, but com-
posed of different statistical sub-regions (“models”) of I∗.

There are two types of regions in a biased grouping’s
result. The first are usual regions, without models, which
we call “model-free”. Each other region (“model-based”)
corresponds to some element of V . A region correspond-
ing to some Vi with |Vi| = 1 may be reduced to a single

model (model = region). A region corresponding to some
Vi with |Vi| > 1 is the union of |Vi| different models, each
of which representing a different sub-part of the whole ob-
ject represented by the region. Notice that grouping with
bias authorizes occluded regions (i.e. non-connex).

Our region merging algorithm keeps the following
invariant: merging a model-free region and a model-based
region results in the merging of the first region into one
model (sub-region) of the second. The modification of the
approach of [2, 4] consists in first making each Vi defined
by the user, and then, through the traversing of SI (step [1.]
above), replacing the merging stage by the following new if
condition (∀(p, p′) ∈ SI ):

if If R(p) and R(p′) are model-free, then we compute
P(R(p), R(p′)), and decide whether to merge or not;

else if both contain models, then we do not merge them; In-
deed, in that case, either the models are defined by ver-
tices of different subsets in V (and we obviously do not
have to merge them), or they are defined by vertices of
the same subset of V . However, in that case, they have
been defined by the used as different sub-regions of
the same object, so we keep these sub-regions distinct
until the end of the algorithm.

else consider without loss of generality that R(p) con-
tains models and R(p′) does not. We first compute
P(M(p), R(p′)), with M the model of R(p) adjacent
to R(p′) (notice that p ∈ M(p)):

if it returns true, then a merge is done: we fold
R(p′) into M(p); thus, M(p) grows (and not the
other models of R(p)), as after this merging it
integrates R(p′).

else we search for the best matching model M(p)
of R(p) w.r.t. R(p′) (the one minimizing
maxa∈R,G,B |M(p)a − R(p′)a|), and eventually
fold R(p′) into M(p) iff P(M(p), R(p′)) returns
true.

At the end of the algorithm, all models of each Vi are
merged altogether in the segmentation’s output.

The theoretical properties enjoyed by this extension to
grouping with bias are the same as the unbiased approach
given in Section 2, provided we make the assumption that
all the vertices of the subsets in V come from different sta-
tistical regions of I∗. This is sound with the goal of bias,
which is precisely to make it possible for the observer to
integrate in the same perceptual object different statistical
(true) regions of I∗.

4. Experiments
We have run SRM.B on a benchmark of pictures of various
domains and hardness levels, to test its ability to improve
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SRM.B#1 SRM.B#2 SRM.B#3 SRM.B#4 SRM.B#5 SRM.B#6 SRM.B#7

NCuts#1 NCuts#2 NCuts#3 NCuts#4 NCuts#5 NCuts#6 NCuts#7

SRM.B#1 SRM.B#2 SRM.B#3 SRM.B#4 SRM.B#5 SRM.B#6 SRM.B#7

NCuts#1 NCuts#2 NCuts#3 NCuts#4 NCuts#5 NCuts#6

Figure 2: Results of SRM.B and NCuts without bias on images castle (top, 567×378) and saint-pierre (bottom,
640×480). For each image, the top row displays the largest regions found by SRM.B, and the bottom row those of NCuts.

the segmentation quality over the unbiased approach, while
using a bias as light as possible. We have also compared
SRM.B against normalized cuts (NCuts) approaches, with
and without bias [5, 1].

While looking at the experiments of SRM.B, the reader
may keep in mind that images are segmented as they are,
i.e. without any preprocessing, and with the same parame-
ters value following [2, 4]: Q = 32, δ = 1/(3|I |2). Thus,
the quality of the results may be attributed only to SRM.B,
and not to any domain-specific tuning nor preprocessing op-
timization.

We split our results in three subsections. The first makes
comparisons of SRM.B and NCuts without bias. The two
others explore segmentation with bias: the first one com-
pares both approaches for segmenting with a restricted fo-
cus of attention [1]. The last one explores grouping with
bias without restricted focus of attention. In this last part,
only results for SRM.B are provided, because it appears that

the bias used can hardly be handled by NCuts.

4.1. SRM.B vs NCuts without bias
Figure 2 gives segmentation’s results on two digital pic-
tures. Both approaches manage to find regions that the
user would consider as perceptually distinct: the castle’s
tower, the big bushy tree, the clouds, etc. . However,
there are some notable differences between the algorithms.
The regions found by SRM.B fit more precisely the ob-
ject contours. Those of NCuts sometimes encompass
more than a single object, even when these objects are
clearly distinct, such as region #6 for NCuts on im-
age saint-pierre. This advantage for SRM.B partially
seemingly comes from the fact that its neighborhood graph
is planar. The number of tunable parameters gives also
advantage to SRM.B: NCuts integrate various parameters
which we had to tune extensively to make its results’ quality
come close to SRM.B’s (neighborhood radius, sample rate,
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SRM.B (w/ bias) SRM.B#1 SRM.B#2 SRM.B#3

NCuts#1 NCuts#2 NCuts#3

SRM.B (w/ bias) SRM.B#1 SRM.B#2

NCuts#1 NCuts#2 NCuts#3

Figure 3: Results of SRM.B and NCuts without bias on images leopard (top, 331×500) and badger (bottom, 427×640).
For each image, the partition of the image found by SRM.B is shown (top row, left image), with the user-defined bias. For
image leopard, we have m = 2, |V1| = 4, |V2| = 5, and m = 2, |V1| = 10, |V2| = 4 for badger. The largest regions
found follow the convention of Figure 2 (see text for details).

sigmas, number of regions, etc.). Finally, the results have
also to be appreciated in the light of the execution time:
both algorithms were ran on a Pentium IV 2 Ghz PC with
512 Mb ram. While SRM.B took less than one second on
each image, NCuts took more than four minutes on the
same images.

4.2. Bias as restricted focus of attention
We ran SRM.B and NCuts with a bias aimed at segregat-
ing an object from the background [1, 7]. The most conve-
nient solution which led to the best results for NCuts was
to define for the bias a frame of 10 pixels width, which is
supposed to point for the background, and then try to sepa-
rate this background from the object of attention. Executing
SRM.B was by far simpler, since we only had to point exclu-
sion constraints between two types of models: those for the
background, and those for the object. Notice also the very
light bias imposed for SRM.B, as no more than a total of 14
pixels are pointed for the models.

Image leopard is an example of what can be obtained
for a particularly hard picture, due to the speckled animal’s
coat. Five models are pointed for the animal’s coat to re-
trieve almost entirely the animal in a single region, out of
the dozen regions obtained when segmenting the picture

without bias. Both images show a limit of NCuts when it
comes to segmenting images with deep localized contrasts
inside objects: both animals are split into two regions each.
Again, the execution time gives a significant advantage to
SRM.B: both images were segmented in about a second with
SRM.B, while NCuts took five minutes for leopard and
nine minutes for badger. Grouping with bias involves an
interaction with the user to define the constraints, and a loop
between the user and the machine for their optimization: in
that case, an algorithm running in no time to get the results
is clearly an advantage.

4.3. More grouping results for SRM.B
NCuts make it hard to define exclusion constraints (i.e.
points which must-not belong to the same region), and it
is even harder when constraints define more than two re-
gions. On the other hand, SRM.B does not put any such
restriction on the bias. Figures 4 and 5 show results on two
more pictures (Figure 4 details the experiments of Figure 1).
Figure 4 shows that a light bias for SRM.B brings a nice so-
lution to the problem pointed out in the introduction, since
we keep almost all the flower as a single region (region #1),
while preventing the merge of the bee (region #3) with the
background (region #2). On Figure 5, the segmentation of
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flower

SRM.B (w/o bias) SRM.B (w/ bias)

SRM.B#1 SRM.B#2 SRM.B#3

Figure 4: Image flower (512×512), and its segmentation
by SRM.B, without bias, and with bias (upper right, Cf Fig-
ure 1). In the segmentations’ results, regions found are de-
limited with white borders. Here, m = 3, |V1| = |V2| = 3
and |V3| = 2. The bottom table shows the largest regions
extracted from the segmentation.

SRM.B gives many regions due to the shadows on the fa-
cade. With a total of only twelve models for three regions,
the biased segmentation yields accurate approximations to
the conceptually distinct regions of the image: the first floor,
the ground floor, the tower and the sky.

5. Conclusion
In this paper, we have proposed a novel method for seg-
menting an image with a user-defined bias. The bias takes
the form of pixels pointed by the user on the image, to de-
fine regions with distinctive sub-parts. Our algorithm relies
on an improvement of an unbiased segmentation algorithm
[2, 4]. Unbiased and biased results compare all the more
favorably with respect to normalized cuts approaches [5, 1]
as we read the results in the light of the execution times.
Code availability SRM.B is freely available for Linux and
Windows operating systems, from the authors webpages.
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